Geometric Stability Conditions on Finite Free Abelian Quotients Hannah Dell University of Edinburgh

2

A B + A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bridgeland Stability Conditions

Definition

A numerical Bridgeland stability condition on a triangulated category \mathcal{D} is a pair: $\sigma = (\mathcal{A}, Z)$ such that

- \mathcal{A} is the heart of a bounded *t*-structure on \mathcal{D} .
- $Z: K(\mathcal{A}) \to \mathbf{C}$ is a group homomorphism such that for all $0 \neq A \in \mathcal{A}$, $Z([A]) \in \mathbf{H}$. Z must also satisfy the Harder-Narasimhan property and factor via $K_{num}(\mathcal{A})$.

Moreover, σ must satisfy the *support property*.

Theorem (Bridgeland '07)

The set of all numerical Bridgeland stability conditions on a triangulated category D, denoted Stab(D), has the structure of a complex manifold.

Let X be a smooth complex projective variety, and let $\mathcal{D} = D^{\mathrm{b}}(X)$

Definition

 $\sigma \in \operatorname{Stab}(X) := \operatorname{Stab}(\operatorname{D^b}(X))$ is called **geometric** if \mathcal{O}_x is σ -stable for all $x \in X$.

イロト イポト イヨト イヨト

Geometric stability conditions

Definition

 $\sigma \in \text{Stab}(X)$ is called **geometric** if \mathcal{O}_x is σ -stable for all $x \in X$.

What is known?

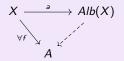
- dim X = 1: Stab^{Geo} $(X) \cong \mathbf{C} \times \mathbf{H}$
- dim X = 2: General construction produces geometric stability conditions
- dim X = 3: General construction for some 3-folds produces geometric stability conditions
- dim X ≥ 4: ???

Theorem (Lie Fu - Chunyi Li - Xiaolei Zhao '21)

If X has finite Albanese morphism, then $Stab(X) = Stab^{Geo}(X)$

Question: What about the converse?

Albanese morphism



Every algebraic variety X has a map a to its Albanese variety, $Alb(X) := \operatorname{Pic}^{0}(\operatorname{Pic}^{0}(X))$. This map is called the **Albanese morphism** of X. It is algebraic, and every morphism $f : X \to A$ to another abelian variety A factors via a.

The Le Potier Function

Definition/Proposition (D.)

Let X be a surface. Let $H, B \in NS_{\mathbb{R}}(X) := NS(X) \otimes \mathbb{R}$ with H ample. We define the Le Potier function twisted by B, $\Phi_{X,H,B} : \mathbb{R} \to \mathbb{R}$, as

$$\Phi_{X,H,B}(x) := \limsup_{\mu \to x} \left\{ \frac{\operatorname{ch}_2(F) - B \cdot \operatorname{ch}_1(F)}{H^2 \operatorname{ch}_0(F)} : \frac{F \in \operatorname{Coh}(X) \text{ is } H\text{-semistable}}{\text{with } \mu_H(F) = \mu} \right\}$$

Proposition (D.)

$$\Phi_{X,H,B}$$
 is well defined and satisfies $\Phi_{X,H,B}(x) \leq \frac{1}{2} \left(x - \frac{H.B}{H^2}\right)^2 - \frac{B^2}{2H^2}$

Theorem (D.)

 $\Phi_{X,H,B}$ controls Stab^{Geo}(X). In particular:

$$\mathsf{Stab}^{\mathsf{Geo}}(X)\cong \mathbf{C} imes \left\{(H,B,lpha,eta)\in \mathrm{NS}_{\mathbf{R}}(X)^2 imes \mathbf{R}^2: H ext{ ample, } lpha > \Phi_{X,H,B}(eta)
ight\}.$$

Fu, Li, and Zhao introduced the Le Potier function with B = 0.

- **()** They showed: If $\rho(X)=1$, then $\Phi_{X,H} := \Phi_{X,H,0}$ controls $\text{Stab}^{\text{Geo}}(X)$.
- **2** They conjectured: If $H^1(\mathcal{O}_X) = 0$, then $\Phi_{X,H}$ is discontinuous at 0.

Hannah Dell

Computations with $\Phi_{X,H}$

Proposition (D.)

Suppose G is a finite group acting freely on X, and let $\pi: X \to S := X/G$ be the quotient map. Let $H_X = \pi^* H_S$ be an ample class pulled back from S. Then $\Phi_{S,H_S}(x) = \Phi_{X,H_X}(x)$.

Proposition (D.)

Suppose X has finite Albanese morphism, and $H_X = a^* H_A$ be an ample class pulled back from Alb(X). Then $\Phi_{X,H_X}(x) = \frac{x^2}{2}$.

Beauville-type Surfaces

Let $X = C_1 \times C_2$ where $g(C_i) > 0$. Suppose G is a finite abelian group acting freely on X such that S := X/G satisfies $H^1(\mathcal{O}_S) = H^2(\mathcal{O}_S) = 0$. These were classified by Bauer and Catanese in 2003. G is one of the following groups: $(\mathbb{Z}/2\mathbb{Z})^3$, $(\mathbb{Z}/2\mathbb{Z})^4$, $(\mathbb{Z}/3\mathbb{Z})^2$, $(\mathbb{Z}/5\mathbb{Z})^2$

X has finite Albanese morphism, but S does not. One can find $H \in \operatorname{Amp}_{\mathbb{R}}(X)$ that is pulled back from S and Alb(X). By the above theorems, $\Phi_{S,H_S}(x) = \Phi_{X,H_X}(x) = \frac{x^2}{2}$. This disproves (2).

< (T) > <

Group Actions on Triangulated Categories

Let G be a finite group, and let \mathcal{D} be a triangulated category.

Definition (Deligne)

A (right) action of G on \mathcal{D} is defined by:

- a functor $\phi_g \colon \mathcal{D} \to \mathcal{D}$, for every $g \in G$;
- a natural isomorphism $\varepsilon_{g,h}$: $\phi_g \phi_h \rightarrow \phi_{hg}$ for every $g, h \in G$, such that these isomorphisms are compatible with triples of group elements.

Deligne also defines \mathcal{D}_G , the category of G-equivariant objects

Examples

- Suppose G acts on X, define φ_g := g^{*}: D^b(X) → D^b(X). There are canonical isomorphisms g^{*}h^{*} → (hg)^{*}. Moreover, (D^b(X))_G = D^b_G(X) ≅ D^b([X/G])
- If G is abelian and acts on \mathcal{D} , then $\widehat{G} := \text{Hom}(G, \mathbf{C}^*)$ acts on \mathcal{D}_G .

Theorem (Elagin '15)

Let G be abelian. Then $(\mathcal{D}_G)_{\widehat{G}} \cong \mathcal{D}$.

イロト イポト イヨト イヨト

Group Actions on Triangulated Categories Continued

Theorem (Macrí-Mehrotra-Stellari '09, D.)

There is a one-to-one correspondence:

$$\left\{\begin{array}{c} G\text{-invariant stability}\\ conditions on \mathcal{D} \end{array}\right\} \stackrel{\mathsf{Forg}_{G}^{-1}}{\underset{\mathsf{Forg}_{G}^{-1}}{\overset{\frown}{\leftarrow}}} \left\{\begin{array}{c} \widehat{G}\text{-invariant stability}\\ conditions on \mathcal{D}_{G} \end{array}\right\}$$

One can show that geometric stability conditions are preserved under (*). This can be used to deduce the following result:

Theorem (D.)

Let X be a surface with finite Albanese morphism. Let G be a finite abelian group acting freely on X and let S := X/G. Then $(\operatorname{Stab}(S))^{\widehat{G}} = \operatorname{Stab}^{\operatorname{Geo}}(S)$, and this is a connected component of $\operatorname{Stab}(S)$.

This disproves the expectation in the literature that there would exist a wall of the geometric chamber on S.

イロト イポト イヨト イヨト

(*)

Any questions?

- Bridgeland, Tom. "Stability Conditions on Triangulated Categories." In: Annals of Mathematics 166.2 (2007): 317-345
- Deligne, Pierre. "Action du groupe des tresses sur une catégorie." In: *Inventiones mathematicae* 128.1 (1997): 159–175
- Elagin, Alexey. "On equivariant triangulated categories." arXiv preprint arXiv:1403.7027 (2014).
- Fu, Lie, Li, Chunyi, and Zhao, Xiaolei. "Stability manifolds of varieties with finite Albanese morphisms." In: *Transactions of the American Mathematical Society* 375 (2022): 5669-5690.
- Bauer, Ingrid, Catanese, Fabrizio. "Some new surfaces with $p_g = q = 0$." arXiv preprint arXiv:math/0310150 (2003)
 - Macrì, Emanuele, Mehrotra, Sukhendu, and Stellari Paolo. "Inducing stability conditions." In: *Journal of Algebraic Geometry* 18.4 (2009): 605-649.

イロト イポト イヨト イヨト