Bitwarden Client Applications Security Report

ISSUE SUMMARIES, IMPACT ANALYSIS, AND RESOLUTION

BITWARDEN, INC

Table of Contents

Bitwarden Client Applications Security Report

Table of Contents

Summary

Issues
BITSR24-06 - Open Redirect (Critical)
BITSR24-11 - Master Password Input Not Cleared (Medium)
BITSR24-10 - Account Lockout (Medium)
BITSR24-02 - Denial of Service via Local File Permissions (Medium)
BITSR24-01 - Denial of Service via Untrusted Search Path (Low)
BITSR24-07 - Denial of Service via CSPRNG Code Flaws (Low)
BITSR24-08 - SSO Organization Enumeration via Error Messages (Low)
BITSR24-09 - Vault Timeout Options Modifiable via Local Storage (Low)
BITSR24-04 - No Warning for Auto-fill from Different Site (Info)
BITSR24-05 - Multi-Factor Authentication Not Enforced by Default (Info)

OO 0000 ok BAADDBEADMDEDBON-

Page 2 of 6

Summary

In November 2024, Bitwarden engaged with cybersecurity firm I0Active to perform penetration
testing and a dedicated audit of the Bitwarden client applications and SDKs. A team of testers
from IOActive were tasked with preparing and executing the audit over four weeks to reach total
coverage of the system under review.

Ten issues were discovered during the audit. Five issues were resolved post-assessment. Three
issues were determined not feasible to address. Two issues are under planning and research.
One positive finding is excluded from this report.

This report was prepared by the Bitwarden team to cover the scope and impact of the issues
found during the assessment and their resolution steps. For completeness and transparency, a
copy of the Findings section within the report delivered by IOActive has also been attached to
this report.

Page 3 of 6

Issues

BITSR24-06 - Open Redirect (Critical)

Status: Resolved post-assessment.

Pull requests:
e https://github.com/bitwarden/clients/pull/12149

Hostname validation was enhanced to capture a wider range of Duo URLs.

BITSR24-11 - Master Password Input Not Cleared (Medium)

Status: Accepted.

A poor user experience would result if the master password input were cleared on every error
and the existence of the incorrect master password aids the user in eventual login success.

BITSR24-10 - Account Lockout (Medium)

Status: Resolved post-assessment with additional improvements underway.

A myriad of user experience improvements have been made to the passkey login experience.

BITSR24-02 - Denial of Service via Local File Permissions (Medium)

Status: Resolved post-assessment.

Pull requests:
e https://github.com/bitwarden/clients/pull/12048

If the SSH agent spawned thread encounters errors there is no way for the TypeScript
implementation to see this error, nor is there a way to see if the agent is running. This can lead
to the application crashing because it does not know that the agent has not properly started.
Error handling was added to protect against this.

BITSR24-01 - Denial of Service via Untrusted Search Path (Low)

Status: Resolved post-assessment.

Pull requests:
Page 4 of 6

https://github.com/bitwarden/clients/pull/12149
https://github.com/bitwarden/clients/pull/12048

e https://qithub.com/bitwarden/sdk-sm/pull/1346

Reliance on an external library was removed in favor of a standard PHP library call.

BITSR24-07 - Denial of Service via CSPRNG Code Flaws (Low)

Status: Accepted, but under planning and research.
Random number generator functions have been previously audited and are considered to be

implemented securely, but the Bitwarden applications will migrate the TypeScript implementation
used today to a stronger Rust-based implementation in the SDK.

Page 5 of 6

https://github.com/bitwarden/sdk-sm/pull/1346

BITSR24-08 - SSO Organization Enumeration via Error Messages
Low

Status: Resolved post-assessment.

Pull requests:
e https://github.com/bitwarden/server/pull/6345

Single sign-on errors have been made consistent so that their differences cannot imply any
information exposure.

BITSR24-09 - Vault Timeout Options Modifiable via Local Storage

Low

Status: Under planning and research.

User-based signatures will be generated and the user’s settings signed upon write, then verified
upon usage, therefore preventing tampering.

BITSR24-04 - No Warning for Auto-fill from Different Site (Info)

Status: Accepted.

A setting exists to warn the user for certain autofill scenarios but it is disabled by default to
support a less interruptive user experience.

BITSR24-05 - Multi-Factor Authentication Not Enforced by Default
(Info)

Status: Accepted.
Various use cases exist to not immediately require or force multifactor authentication setup.

Enhancements have been made to require email verification and additional multifactor offerings
continue to be introduced to the platform.

Page 6 of 6

https://github.com/bitwarden/server/pull/6345

| _'Active.

Researchisfueled Security Services

Security Assessment 2024

Bitwarden, Inc.

I0Active, Inc.
1426 Elliott Ave W
Seattle, WA 98119

Toll free: (866) 760-0222
Office: (206) 784-4313
Fax: (206) 784-4367

© 2024 10Active, Inc. All Rights Reserved.

Technical Summary

Project Approach

The consultants used a white-box methodology, meaning they had access to source code
and internal documentation, as well as internal experts.

IOActive’s approach to testing adhered to industry-standard frameworks, including OWASP
Application Security Verification Standard (ASVS), ensuring thorough and systematic
evaluation.

The methodology comprised the following steps:

¢ Reconnaissance and Threat Modeling

Identified the architecture, components, and security-critical workflows within the
Bitwarden ecosystem

Developed a threat model to focus testing efforts on high-risk areas
e Static Application Security Testing (SAST)

Reviewed source code for vulnerabilities in key areas, including cryptographic
functions, input handling, and inter-process communication

¢ Dynamic Application Security Testing (DAST)

Conducted runtime analysis of the applications to identify vulnerabilities during
real-world usage scenarios

Tested functionality, such as login workflows, autofill features, and browser
extensions, under various attack conditions

o Cryptographic Analysis

Assessed cryptographic primitives, protocols, and key management for
adherence to best practices

Evaluated the security of encryption mechanisms used in storing and transmitting
sensitive data

e Exploit Simulation

Simulated common attack scenarios such as cross-site scripting (XSS), cross-
site request forgery (CSRF), privilege escalation, and enumeration attacks to
assess resilience

Performed penetration testing to identify potential misuse of exposed APIs,
cookies, and local storage

Confidential. Proprietary. [4]

Detailed Findings

#BITSR24-06 - Open Redirect

Host(s) / File(s) https://github.com/bitwarden/clients/

Category CWE-601: URL Redirection to Untrusted Site ('Open Redirect’)
CWE-807: Reliance on Untrusted Inputs in a Security Decision
CWE-923: Improper Restriction of Communication Channel to Intended
Endpoints

Testing Method White Box

Tools Used Vim

Likelihood High (4)

Impact Critical (5)

Effort to Fix Low

CVSS 9.6 (Critical) - CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H

Unintentional redirects and forwards are possible when a web application accepts untrusted input that
directs the web application to a URL given in that untrusted input. By modifying the input to contain a
malicious address, an attacker may steal data or impersonate a victim user.

As part of the Duo authentication flow, the Bitwarden client exposes an endpoint that redirects to a
client-supplied URL. A malicious actor can use this endpoint and its legitimate affiliation with the
Bitwarden brand as part of a social engineering attack to harvest Duo credentials of victims or take
over their accounts.

Consider the following scenario: Threat actor Mal registers a domain called myduosecurity.com.
Mal creates web content on that domain that bears the Duo brand. On a sub-page of that web content,
Mal creates a form that informs the user their password may have been compromised as part of a
purported Duo attack and that they need to reactivate their account by submitting and authenticating
with their Duo credentials. The victim, out of concern for their account, submits those credentials in the
form. At this point, Mal has harvested the victim's credentials for later password stuffing attacks, sale
on the dark web, or proxies them to the Bitwarden.com domain for immediate use as account
takeover. In the latter case, the attacker has initiated the login sequence by proxy and authenticated
with one factor. Bitwarden sends the Duo 2FA challenge to the victim, which only reinforces the

Confidential. Proprietary. [5]

authenticity of the transaction in the mind of the victim, which the victim then accepts. At this point Mal
has a Bitwarden session identifier and has control of the account.

For this scenario to work, Mal has to convince the victim (Alice) that she needs to visit the malicious
myduosecurity.com domain. This is where the open-redirect flaw comes into play. Mal creates an
email with the urgent message that their Duo account at Bitwarden has been compromised and they
need to reset it. The reset URL is given as https://vault.bitwarden.com/duo-redirect-
connector.html?duocFramelessUrl=https://myduosecurity.com/bitwarden-reset.

This looks and appears to be a completely legitimate email address. First, it is running code from the
bitwarden.com domain. Second, it is redirecting to a site that bears the Duo brand. This would fool
casual users and many professionals.

This proof of concept works because, within the Duo 2FA flow, the Bitwarden web client performs an
incomplete validation on the redirect domain:
https://github.com/bitwarden/clients/blob/234a832fc445e43d799989a93bbd784285
42f06e/apps/web/src/connectors/duo-redirect.ts#L58-L59

if (
validateUrl.protocol !== "https:" ||
N
validateUrl.hostname.endsWith ("duosecurity.com") ||
validateUrl.hostname.endsWith ("duofederal.com")
)
) A

throw new Error ("Invalid redirect URL") ;

}

Instead of matching the supplied URI against the valid domain name " .duosecurity.com" (note the
leading dot), the code validates against any URI ending in "duosecurity.com" (note the missing
dot). This allows an unintentional redirect to a non-Duo site, such as the malicious
myduosecurity.com site in this proof of concept.

At administration time, ensure URI are checked against valid domain names, not parts of domain
names. This appears to function securely [1]: when trying to enter an illegitimate Duo domain (e.g.
myduosecurity.com) on the Settings > Security > Two-step login page, an error appears stating
"Host is invalid.”

At redirect time, ensure the URI is checked against valid domain names, not parts of domain names.
Also, ensure the list of valid domain names here matches the list of valid domain names in the
administrative area.

For this specific code, update the existing checks to look specifically for the domains
"duosecurity.com" and "duofederal.com" at a minimum.

validateUrl.hostname.endsWith (".duosecurity.com") ||
validateUrl.hostname.endsWith (".duofederal.com")

Consider also checking that the hostname begins with "api-", as is done in the code path at [1].

Finally, consider issuing a CVE to alert the community to patch.

Confidential. Proprietary. [6]

(1]
https://github.com/bitwarden/server/blob/eb20adb53eb703feacb36d38c6451f91c4e89c4c/src/Core/Aut

h/ldentity/TokenProviders/DuoUniversalTokenService.cs#L151-L152

During the testing window, the BitWarden team was able to remediate this finding by changing the
code to:

/**
* validate the Duo AuthUrl and redirect to it. *

@param redirectUrl the duo auth url

*/

function redirectToDuoFrameless (redirectUrl: string) { const
validateUrl = new URL(redirectUrl); const validDuoUrl =
validateUrl.protocol === "https:" &&
validateUrl.hostname.startsWith ("api-") && (

validateUrl.hostname.endsWith (".duosecurity.com") ||
validateUrl.hostname.endsWith (".duofederal.com"));

if (!validDuoUrl) { throw new Error ("Invalid redirect URL"); }
window.location.href = decodeURIComponent (redirectUrl);

}

Confidential. Proprietary.

m

https://github.com/bitwarden/server/blob/eb20adb53eb703feacb36d38c6451f91c4e89c4c/src/Core/Auth/Identity/TokenProviders/DuoUniversalTokenService.cs#L151-L152
https://github.com/bitwarden/server/blob/eb20adb53eb703feacb36d38c6451f91c4e89c4c/src/Core/Auth/Identity/TokenProviders/DuoUniversalTokenService.cs#L151-L152

#BITSR24-11 - Master Password Input Not Cleared

Host(s) / File(s) https://github.com/bitwarden/clients

Category CWE-312: Cleartext Storage of Sensitive Information

Testing Method White Box

Tools Used Web Browser

Likelihood Low (2)

Impact Critical (5)

Total Risk Rating Medium (10)

Effort to Fix Low

CVSS 6.3 (Medium) - CVSS:3.1/AV:P/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H

Threat and Impact

During authentication, the user enters their correct master password; however, owing to a problem on
the server hosting the Bitwarden vault, the authentication takes a long time to respond. The user,
assuming it will happen soon, gets up to take a break. Meanwhile, the request times out after one
minute and the login fails, leaving the master password input field containing the correct master
password for this user. A threat actor in the same physical space as this user then exfiltrates that
master password and uses it for an account takeover.

When the error is "user mistyped their master password," the threat of retaining the input password is
limited; however, when the error is a timeout, there is a likelihood the password is correct and the
threat of retaining it is substantially higher.

To reproduce this finding:

1. Visithttps://vault.bitwarden.com/.

2. Arrange for a request to the Bitwarden endpoint /identity/connect/token to return with a timeout
error (either induce it with excessive login attempts, insert a proxy, or wait for a maintenance
window).

Enter the email address and master password.
Click "Login with master password."

Wait 60 seconds for the request to timeout.

o o &~ W

Click the eye icon to expose the correct password.

Confidential. Proprietary. [8]

Recommendations

Always clear the master password input field after every error, regardless of what the error is.

Confidential. Proprietary. [9]

#BITSR24-10 - Account Lockout

Host(s) / File(s) https://github.com/bitwarden/clients

Category CWE-837: Improper Enforcement of a Single, Unique Action
CWE-1288: Improper Validation of Consistency within Input

Testing Method White Box

Tools Used Web Browser

Likelihood Low (2)

Impact Critical (5)

Total Risk Rating Medium (10)

Effort to Fix Medium

CVSS 6.3 (Medium) - CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:C/C:N/I:N/A:H

Threat and Impact

The Bitwarden Ul allows passkeys to participate in log-in flows at two locations:

1. As a primary login method (aka "first factor"), configured under Settings > Security > Master
Password > Login with Passkey

2. As a second factor, configured under Settings > Security > Two-step Login > Passkey >
Manage

The Bitwarden implementation of passkeys in these two locations allows for the same device to be
registered as a passkey; however, because passkeys operate by closing a hash over the domain, this
leads to the passkey added last overwriting the passkey added first. With the passkey now overwritten,
it cannot be used for its intended factor: this can lead to account lockout in the case of second factor
overwrite or no longer having the convenience of passkeys as a first factor.

A threat actor could convince a victim who has a second factor passkey configured to also setup a first
factor passkey on the same device, then have the victim remove that first factor, claiming they already
had it as a second factor, leading to total account lockout.

In the following example, account access is denied by overwriting the second factor passkey with a first
factor passkey, then removing the first factor. This attack is either a social engineering attack, where a
threat actor convinces a victim to lock themselves out, or self-harm, where a naive victim accidentally
configures their account and locks themself out.

Warning: ensure you have recorded the tested account's two-step account recovery code, as the
following steps will cause an account lockout.

1. Enable second factor passkey in Settings > Security > Two-step Login > Passkey > Manage.

Confidential. Proprietary. - [10]

2. Choose a passkey device, like a mobile phone, to act as the authenticator.

3. In an incognito window, authenticate using email address & master password, with second
factor.

a) Expected: to be logged in

b) Actual: as expected

Close that incognito window.

Enable first factor passkey in Settings > Security > Master Password > Login with Passkey.

Choose the same device as chosen in step 2.

N o A

In an incognito window, authenticate using email address and master password, with the
second factor.

a) Expect: to be logged in
b) Actual: invalid passkey
8. In the same incognito window, authenticate using the passkey device.
a) Expect: to be logged in
b) Actual: as expected
9. Close that incognito window.
10. Remove the first factor passkey.

11. In an incognito window, authenticate using email address & master password, with the second
factor.

a) Expect: to be logged in
b) Actual: invalid passkey
12. In the same incognito window, authenticate using the passkey device.
a) Expect: to be logged in
b) Actual: invalid passkey

The account is now locked out. A threat actor could encourage a victim, who is known to have
passkeys as a second factor, to add a passkey first factor using the same device, then encourage them
to remove the first factor since they already have it as a second factor.

Recommendations

Prevent the addition of a passkey that has already been recorded for that device and domain. This
protection is already present on the Login with Passkey administration page, where, when trying to add
the same device as another passkey, an error is presented ("Error creating passkey").

Additional Information

https://www.w3.org/TR/webauthn/#relying-party-identifier

Confidential. Proprietary.

B EEY

#BITSR24-02 - Denial of Service via Local File Permissions

Host(s) / File(s) https://github.com/bitwarden/clients/

Category CWE-280: Improper Handling of Insufficient Permissions or Privileges
Testing Method Code Review

Tools Used Vim

Likelihood Medium (3)

Impact Low (2)

Total Risk Rating Medium (6)

Effort to Fix Low

CVSS 4.4 (Medium) - CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H

Threat and Impact

Unix domain sockets leverage the operating system's filesystem permissions to control access to the
socket file. Careful consideration must be given to the location and accessibility of a socket file before
the socket is used. Storage in a common directory or overly permissive access could allow a local
attacker to deny access to the socket or to intercept communication over the socket.

In
https://github.com/bitwarden/clients/tree/master/apps/desktop/desktop native
/core/src/ssh_agent/unix.rs, if the user does not have a home directory, the application falls
back to storing the Unix domain socket file at /tmp/ .bitwarden-ssh-agent.sock. While the
application attempts to remove any prior existing socket file at this path to ensure that only the
application user has access to the socket file, the application does not check the return code of the file
removal, which means the socket file in use may not be fully under the control of the application user.

To invoke a denial of service, an attacker needs to create a socket only they can read in the fallback
location, then induce the application user

(pre-condition)

through misconfiguration or malice, victim user (alice) does
not have a home directory as seen by homedir::my home

this might occur on Windows machines per the documentation:
https://docs.rs/homedir/latest/homedir/#for-windows-users

(pre-condition)

local attacker user (mal) has created a bitwarden ssh auth
socket using the hard-coded fallback path from the code:

#
https://github.com/bitwarden/clients/blob/4829%4aac864082b22a31

Confidential. Proprietary. - [12]

6ccbbledfb07b8220e4e/apps/desktop/desktop native/core/src/ssh
agent/unix.rs#L36

and set the permissions so that the victim user (alice)
desktop client cannot remove it, as intended:

#
https://github.com/bitwarden/clients/blob/48294aac864082b22a31
6ccbbledfb07b8220e4e/apps/desktop/desktop native/core/src/ssh
agent/unix.rs#L51

$ python -c "import socket as s; sock = s.socket (s.AF UNIX);
sock.bind ('/tmp/.bitwarden-ssh-agent.sock')"

$ chmod 600 /tmp/.bitwarden-ssh-agent.sock

$ 1s -1 /tmp/.bitwarden-ssh-agent.sock

—rwWw—-—————-— 1 mal 0 Nov 14 17:07 /tmp/.bitwarden-ssh-
agent.sock

victim user launches the desktop app, with the necessary
settings to start the ssh agent along this code path

and the application crashes with an error "[SSH Agent Native
Module] Error while starting agent server"

because the application cannot bind to a socket that is
unwritable by the application process' user

A variation on this attack sees the local attacker opening the permissions of the socket to allow for any
user to read and write the socket, but then uses a socket tee to record the conversation

(pre-condition)

local attacker has created a socket and made it writeable by
the victim user

$ chmod 666 /tmp/.bitwarden-ssh-agent.sock

(pre-condition)

local attacker has setup a socket tee, like:

https://unix.stackexchange.com/a/471369/50240

$ sudo ./sockdump.py /tmp/.bitwarden-ssh-agent.sock | tee -a
/home/mal/socket-capture

In these proofs of concept, the local attacker may not be a local user but rather an Advanced Persistent
Threat (APT) infection.

Recommendations

At a minimum, check the return code of the std: : fs: :remove file (sockname) call to ensure that
the socket file is fully removed. However, note this minimum fix still has a race condition, where a
malicious attacker could recreate the fallback socket file in /tmp between the remove file and
bind calls. The best solution is to fallback into a directory that has had strict permissions set to only
the app user and, if possible, to use a safe temporary file creation mechanism like mktemp{3) .

Additional Information

In general, when dealing with Unix domain sockets, consider these tactics in the design and
implementation:

Confidential. Proprietary.

o3

File system permissions:

o Create the socket file with appropriate user and group ownership, restricting access to
only the intended processes.

o Set restrictive permissions on the socket file path, ensuring only authorized processes
can read and write to the socket.

Socket path selection:

o Avoid placing the socket file in a world-writable directory like /tmp.

o Use a dedicated directory with strict permissions for your application's sockets.
Error handling:

o Gracefully handle potential errors during socket creation, binding, connecting, and data
exchange to prevent unexpected behavior.

Authorization:

o Use the getpeercred system call (where available) to retrieve the user and group ID
of the connecting process, allowing identity verification.

Confidential. Proprietary.

#BITSR24-01 - Denial of Service via Untrusted Search Path

Host(s) / File(s) https://github.com/bitwarden/sdk

Category CWE-426: Untrusted Search Path

Testing Method Code Review

Tools Used Vim

Likelihood Low (2)

Impact Low (2)

Total Risk Rating Low (4)

Effort to Fix Low

CVSS 2.2 (Low) - CVSS:3.1/AV:L/IAC:H/PR:L/UI:R/S:U/C:N/I:N/A:L

Threat and Impact

The application executes an external operating system resource using an externally-supplied search
path that can point to resources that are not under the application's direct control. This might allow
attackers to execute their own programs, access unauthorized data files, or modify configuration in
unexpected ways.

In the code at
https://github.com/bitwarden/sdk/blob/main/languages/php/src/BitwardenLib.ph
p#L36-L36, uname -mis invoked with exec () without sanitizing the environment or restricting the
path.

(pre-condition) attacker installs a malicious uname
implementation

printf 'echo "haha";' > /home/mal/uname

chmod 755 /home/mal/uname

(pre-condition) attacker gets their path added to the
victim's environment
PATH=/home/mal:"${PATH}"

victim invokes their program that includes the vulnerable
PHP SDK

php myprog.php

the vulnerable PHP SDK now uses either the cross-compiled
debug version of libbitwarden c.dylib (if present) or throw an
exception if not available.

Confidential. Proprietary. - [15]

in either case, the outcome is not desirable for the victim
user and the reason isn't obvious as to why

Recommendations

When invoking other programs, specify those programs using fully-qualified pathnames, or using tools
that limit the PATH to known system paths.

In this case, replace

Sarchitecture = trim(exec ('uname -m'));

with
Sarchitecture = trim(exec ('/usr/bin/env -1 /usr/bin/uname -
m'));

This clears out the environment variables that might affect current or future versions of uname and
explicitly uses the trusted system version of uname to identify the architecture.

Confidential. Proprietary.

- [e]

#BITSR24-07 - Denial of Service via CSPRNG Code Flaws

Host(s) / File(s) https://github.com/bitwarden/clients
Category CWE-190: Integer Overflow or Wraparound
CWE-674: Uncontrolled Recursion
Testing Method White Box
Tools Used Vim
Likelihood Low (2)
Impact Low (2)
Total Risk Rating Low (4)
Effort to Fix Low
CVSS 3.9 (Low) - CVSS:3.1/AV:L/AC:L/PR:L/UI:R/S:U/C:N/I:L/A:L

Threat and Impact

Edge conditions may not occur frequently within an application, but when they do, they can produce
invalid, incorrect, or potentially weak results that have less security than intended or render the result
unusable.

The key management service contains a random number generator:
https://github.com/bitwarden/clients/blob/34e20b7ae86b0ac3737fd5e096303077df
a%9lal9/libs/key-management/src/key.service.ts#L564

While this random number generator uses a cryptographically secure source of entropy and correctly
handles bias when mapping the output range via a rejection sampling strategy, the algorithm suffers
from several edge-case implementation flaws that could lead to denial of service.

First, this code does not handle integer overflow, leading to return values that are out of the desired
range [1]. This was fixed upstream in a PR that was never merged [2].

rval = rval & mask

Second, this code does not bound the recursive depth, potentially leading to a stack overflow in
scenarios where the entropy source produces many generations of values that are out of the desired
range:

return this.randomNumber (min, max) ;

Confidential. Proprietary. . [17]

Recommendations

Apply the upstream commit that was never merged and switch the recursion to iteration. Or, if possible,
switch the implementation to use an implementation provided by the language, such as node.js

randomInt ()

Additional Information

[1] https://jsfiddle.net/oyd9ptnv/

(2]
https://github.com/EFForg/OpenWireless/pull/306/commits/d7987e0c4f6ed3121d40c6890fca79bb0efac
209

Reference: https://nodejs.org/api/crypto.html#cryptorandomintmin-max-callback

Confidential. Proprietary. - [18]

https://github.com/EFForg/OpenWireless/pull/306/commits/d7987e0c4f6ed3121d40c6890fca79bb0efac209
https://github.com/EFForg/OpenWireless/pull/306/commits/d7987e0c4f6ed3121d40c6890fca79bb0efac209

#BITSR24-08 - SSO Organization Enumeration via Error Messages

Host(s) / File(s) https://vault.bitwarden.com/#/sso?

Category CWE-204: Observable Response Discrepancy

Testing Method White Box

Tools Used Web Browser

Likelihood Low (2)

Impact Low (2)

Total Risk Rating Low (4)

Effort to Fix Low

CVSS 5.3 (Medium) - CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N

Threat and Impact

IDs. Once valid organization IDs are identified, the attacker could:
e Attempt brute-force attacks on user credentials within the organization.

e Exploit organization-specific configurations or vulnerabilities.

interface.

observing differences in error messages and behavior. Navigate to

messages.

An attacker can use differing error messages from the SSO login page to enumerate valid organization

e Conduct phishing attacks against members of known organizations by spoofing the SSO

The issue was identified by submitting random and known organization IDs to the SSO login form and

https://vault.bitwarden.com/#/login and follow the standard Enterprise Login procedure.

When prompted for an organization identifier, enter different values to observe different error

Confidential. Proprietary.

The below screenshots show the different error messages :

U

Enterprise single sign-on

Log in using your organization's single sign-on
portal. Please enter your organization's S5O
identifier to begin

S50 identifier (required)

| extrasecurity|

® Organization not found

X

U

Enterprise single sign-on

Log in using your organization's single sign-on
portal. Please enter your organization's 550
identifier to begin.

S50 identifier (required)

I google.com|

An error has occurred.
() s50is not allowed for

X

Recommendations

Standardize error messages:

e Return a generic error message regardless of the validity of the organization ID (e.g. "Invalid

organization or credentials").

e Avoid revealing whether the organization ID is valid or invalid.

Implement rate limiting or CAPTCHA to deter automated enumeration attempts.

Confidential. Proprietary.

#BITSR24-09 - Vault Timeout Options Modifiable via Local Storage

Host(s) / File(s) Local Storage Data

Category CWE-200: Exposure of Sensitive Information to an Unauthorized Actor
Testing Method White Box

Tools Used Web Browser

Likelihood Informational (1)

Impact Medium (3)

Total Risk Rating Low (3)

Effort to Fix Low

CVSS 5.1 (Medium) - CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:L/I:.L/A:N

Threat and Impact

Vault timeout settings dictate how and when a user's session times out and requires re-authentication.
If these settings are stored in modifiable locations:

e Attackers with access to the local environment can modify timeout settings to extend sessions
indefinitely, bypassing timeout policies.

e This increases the risk of sensitive data being exposed if the vault remains accessible without
proper re-authentication.

In compromised environments, unauthorized users could exploit this to maintain persistent access to
the vault.

Examine the local storage while logged into the vault. Change the
.._vaultTimeoutSettings vaultTimeout to an arbitrary number. The current session
reflects that change.

Recommendations

Use encrypted values to prevent tampering by unauthorized users.

Confidential. Proprietary. - [21]

Additional Information

During testing, it was discovered that the Organization rules were validated on each login. This means
that a bad actor would need to change that value during a current session. As a result, the severity of
the issue was reduced to low.

Confidential. Proprietary. . [22]

#BITSR24-03 - Warning on HTTPS downgrade (Positive-Finding)

Host(s) / File(s)

Browser Extension

Category

CWE-319: Cleartext Transmission of Sensitive Information

Testing Method

White Box

Tools Used Web Browser
Likelihood Informational (1)
Impact Informational (1)

Total Risk Rating

Informational (1)

Effort to Fix

Low

CVSS

0.0 (Informational) - CVSS:3.1/AV:N/AC:L/PR:N/UL:N/S:U/C:N/I:N/A:N

Threat and Impact

The browser extension appropriately detects when a site is downgraded from HTTPS to HTTP and
provides a warning to the user. This behavior helps protect users from inadvertently transmitting

sensitive data over an insecure connection.

The lack of such a warning would present a risk where users may unknowingly submit sensitive data
over an insecure channel (HTTP), leading to potential exposure of data during transit (e.g., passwords,
tokens, sensitive forms). This behavior mitigates the risk of man-in-the-middle (MiTM) attacks, where
an attacker intercepts data transmitted over an unencrypted connection.

Confidential. Proprietary.

o [23]

A test site was created that served a login page through HTTPS. Login, and save the credentials in the
browser extension, then reload the test site over HTTP. The browser extension will show a pop-up that
warns the users of the possible fake site.

r 127.0.0.1:5500 says 1

Warning: This is an unsecured HTTP page, and any information you
submit can potentially be seen and changed by others. This Login was
originally saved on a secure (HTTPS) page.

Do you still wish to fill this login?

Recommendations

Continue to provide warnings to users when a site downgrades from HTTPS to HTTP, emphasizing the
potential risks of data exposure.

Consider adding user-configurable options that allow the user/organization to define how the extension
handles mixed content scenarios, such as blocking auto-fill on insecure pages or providing additional
details about the risks.

Confidential. Proprietary.

#BITSR24-04 - No Warning for Auto-fill from Different Site

Host(s) / File(s)

Bitwarden Browser Extension

Category

CWE-601: URL Redirection to Untrusted Site ('Open Redirect’)

Testing Method

White Box

Tools Used Web Browser
Likelihood Informational (1)
Impact Informational (1)

Total Risk Rating

Informational (1)

Effort to Fix

Low

CVSS

0.0 (Informational) - CVSS:3.1/AV:N/AC:L/PR:N/UL:N/S:U/C:N/I:N/A:N

Threat and Impact

security.

The browser extension does not display a warning or prompt to the user when auto-filling credentials
on a site that differs from the one for which the credentials were originally saved. This behavior could
lead to unintended auto-filling on phishing or malicious websites that mimic the appearance of trusted
sites, potentially exposing sensitive information such as usernames and passwords.

This behavior introduces a potential risk that credentials could be leaked to malicious sites attempting
to impersonate trusted domains. Attackers can exploit this to harvest credentials by creating lookalike
sites that trigger auto-fill behavior, increasing the risk of user data theft and compromising account

Confidential. Proprietary.

Note that a warning is given to the user when they enable auto-fill on page-load:

Applies to all logged in accounts. Turn off your browser's
built in password manager settings to avoid conflicts. Edit
browser settings.

Autofill on page load
f a login form is detected, autofill when the web page

oads. WARNING: Compromised or untrusted websites can
| exploit autofill on page load. Learn more about autofill. [

™

Default autofill setting for login items

Do not autofill on page load v
You can turn off autofill on page load for individual login
item< fram the itemn's Fdit views

To reproduce this finding, save credentials for a test website, such as https://example. com. Visit a
visually similar but different domain, such as https://example-login.com, and use the

extension’s auto-fill feature. The extension will fill in the saved credentials without providing a warning
or prompt to the user.

Recommendations

While it is impossible to defeat user error, a user warning prompt could be used to help prevent users
from being phished.

Confidential. Proprietary. - [26]

#BITSR24-05 - Multi-Factor Authentication Not Enforced by Default

Host(s) / File(s) Bitwarden

Category CWE-306: Missing Authentication for Critical Function

Testing Method White Box

Tools Used Web Browser

Likelihood Informational (1)

Impact Informational (1)

Total Risk Rating Informational (1)

Effort to Fix Low

CVSS 0.0 (Informational) - CVSS:3.1/AV:N/AC:L/PR:N/UL:N/S:U/C:N/I:N/A:N

Threat and Impact

Multi-Factor Authentication (MFA) is an essential security control designed to enhance the protection of
user accounts by requiring additional verification beyond the primary password. Currently, the browser
extension allows users to enable or disable MFA at their discretion, and it is not enforced by default.
This could leave users' accounts more susceptible to unauthorized access if they choose not to enable
MFA, particularly if their primary credentials are compromised.

Without enforced MFA, user accounts are more vulnerable to attacks such as password breaches,
phishing, or credential stuffing. If a user's primary credentials are compromised, an attacker could gain
full access to their account and any associated sensitive data.

When creating an account, a user is just required to create a single master password.

Recommendations

Enforce MFA for all users during the account setup process, or strongly encourage it with repeated
prompts until enabled.

Additional Information

Implementing MFA in a way that aligns with a "secure by design" philosophy ensures that security is
built into the core of the user experience from the start. By enforcing or strongly encouraging MFA

during initial account setup, you reduce the risk of unauthorized access, making security an inherent
part of account usage rather than an optional feature. Secure by design principles prioritize proactive

Confidential. Proprietary. . [27]

measures, minimizing the attack surface and offering users the highest level of protection possible from
the moment they interact with the extension.

To further support this design philosophy, consider making MFA opt-out only under specific
circumstances, offering clear prompts about security risks when disabled, and providing robust options
for MFA methods to meet diverse user needs. This approach aligns with security best practices and
establishes a baseline level of trust and resilience for all users.

Confidential. Proprietary.

Appendix A: Overview of Detailed Findings

Host(s) / File(s)

This section includes a list of the assets affected by the finding.

Category

IOActive uses Common Weakness Enumeration (CWE ™)? identifiers to categorize each
finding. CWE is a community-developed list of software and hardware weakness types that
have security ramifications. This software assurance strategic initiative is sponsored by the
National Cyber Security Division of the U.S. Department of Homeland Security and
published by The MITRE Corporation.

Testing Method

The testing method captures the approach that the consultants used to discover the finding.

Table 2. Examples of testing methods

Method Description
The consultants had no internal knowledge of the target and were not
Black Box
provided with any information that was not publicly available.
The consultants had access and knowledge levels comparable to a
Grey Box user, potentially with elevated privileges. The consultants may also
have been provided documentation, accounts, or other information.
. The consultants had full access to the target’s source code,
White Box ;
documentation, etc.
Tools Used

The section lists the specific tools the consultants used to discover the finding.

! https://cwe.mitre.org/

Confidential. Proprietary. - [29]

Likelihood and Impact
IOActive assigns two ratings for each finding: one for likelihood and another for impact.
Each rating corresponds to a numeric score ranging from 5 (critical) to 1 (informational).

Table 3. Description of likelihood and impact

Rating (Score)

Likelihood

Impact

The finding is almost certain to be
exploited; knowledge of the issue

Extreme impact to the entire

Critical (5) and how to exploit it are in the public | organization if exploited
domain
The finding is relatively easy to Major impact to the entire
High (4) detect and exploit by an attacker organization or a single line of
with low skills business if exploited
. A knowledgeable ms_,lder or e>_<pert Noticeable impact to a line of
Medium (3) attacker could exploit the finding .) .
. e business if exploited
without much difficulty
Exploiting the finding would require Minor da_mag_e i ex_plom_ed or_could
. ; be exploited in conjunction with other
Low (2) considerable expertise and

resources

vulnerabilities as part of a more
serious attack

Informational (1)

The finding is not likely to be
exploited on its own but may be
used to gain information for
launching another attack

Does not represent an immediate
threat but may have security
implications if combined with other
vulnerabilities

Total Risk Rating

IOActive then calculates a total risk score by multiplying likelihood and impact.

Table 4. Total risk rating and corresponding aggregate risk scores

Total Risk Rating

Total Risk Score Range
(Likelihood X Impact)

High 12-19
Medium 6-11
Low 2-5
Informational 1

Confidential. Proprietary. . [30]

Effort to Fix
IOActive estimates the effort it will take to fix the finding based on our consultants’
experience. An organization’s actual effort may vary based on factors such as skill sets,
process efficiency, and available resources.

CVSS (Optional)

IOActive may also use the Common Vulnerability Scoring System (CVSS)? to capture the
principal characteristics of a finding and produce a humerical score reflecting its severity.
CVSS is used by organizations worldwide to supply a qualitative measure of severity;

however, CVSS is not a measure of risk.

IOActive assigns a value to each metric of the scoring system.

Table 5. CVSS metrics and selectable values

Metric

List of Values

Attack Vector (AV)

Network (N)
Adjacent (A)
Local (L)

Physical (P)

Attack Complexity (AC)

Low (L)
High (H)

Privileges Required (PR)

None (N)
Low (L)
High (H)

User Interaction (Ul)

None (N)
Required (R)

Scope (S)

Unchanged (U)
Changed (C)

Confidentiality (C)

None (N)
Low (L)
High (H)

Integrity (1)

None (N)
Low (L)
High (H)

Availability (A)

None (N)
Low (L)
High (H)

2 https://www.first.org/cvss/

Confidential. Proprietary.

These values translate to a base score® and severity rating.

Table 6. CVSS 3.1 base score and associated rating

Severity Rating

Base Score Range

Informational 0.0

Low 0.1-3.9
Medium 40-6.9
High 7.0-8.9
Critical 9.0-10.0

3 https://www.first.org/cvss/calculator/3.1

Confidential. Proprietary.

	
	
	Bitwarden Client Applications Security Report
	Table of Contents​
	Summary
	Issues
	BITSR24-06 - Open Redirect (Critical)
	BITSR24-11 - Master Password Input Not Cleared (Medium)
	BITSR24-10 - Account Lockout (Medium)
	BITSR24-02 - Denial of Service via Local File Permissions (Medium)
	BITSR24-01 - Denial of Service via Untrusted Search Path (Low)
	BITSR24-07 - Denial of Service via CSPRNG Code Flaws (Low)
	BITSR24-08 - SSO Organization Enumeration via Error Messages (Low)
	BITSR24-09 - Vault Timeout Options Modifiable via Local Storage (Low)
	BITSR24-04 - No Warning for Auto-fill from Different Site (Info)
	BITSR24-05 - Multi-Factor Authentication Not Enforced by Default (Info)

