
Bitwarden Core App & Library Report
ISSUE SUMMARIES, IMPACT ANALYSIS, AND RESOLUTION

BITWARDEN, INC



Table of Contents

Bitwarden Core App & Library Report 1
Table of Contents 2
Summary 3
Issue 4

BWN-08-007 WP1: Open redirect on SSO via returnUrl parameter (Low) 4
BWN-08-010 WP1: Admin XSS via name of provider organization (Medium) 5
BWN-08-015 WP1: HTML injection in Freshdesk support tickets (Low) 5
BWN-08-018 WP1: User-hijacking via confusion in Sustainsys RelayState (Critical) 7
BWN-08-003 WP5: Insufficient minimum parameters for KDF (Medium) 8
BWN-08-004 WP5: Insecure storage of access and refresh tokens (Medium) 9
BWN-08-005 WP5: XXE declarations permitted on importing XML vaults (Info) 10
BWN-08-006 WP1: Access token in notification API URL (Info) 11
BWN-08-008 WP1: Unmaintained IdentityServer4 dependency (Info) 12
BWN-08-009 WP1: Excessive lifetime of refresh tokens for IdentityServer4 (Low) 13
BWN-08-012 WP1: HTML injection in passwordless login emails (Low) 14
BWN-08-016 WP1: DoS risk in attachments feature via max size (Info) 15
BWN-08-017 WP1: Leakage of encrypted private keys of organizations (Medium) 16

Page 2 of 16



Summary
In August 2023, Bitwarden engaged with cybersecurity firm Cure53 to perform penetration
testing and a dedicated audit of the Bitwarden core application and library. A team of two senior
testers from Cure53 were tasked with preparing and executing the audit over two days to reach
total coverage of the system under review.

Thirteen issues were discovered during the audit. Eleven issues were resolved
post-assessment. One issue was determined not feasible to address. One issue is under
planning and research.

This report was prepared by the Bitwarden team to cover the scope and impact of the issues
found during the assessment and their resolution steps. For completeness and transparency, a
copy of the report delivered by Cure53 has also been attached to this report.

Page 3 of 16



Issue

BWN-08-007 WP1: Open redirect on SSO via returnUrl parameter

(Low)

Status: Issue was fixed post-assessment.

Pull requests:
● https://github.com/bitwarden/server/pull/3696

The return URL had some susceptibility to undesired characters and paths being allowed. The
URL has been sanitized if it includes spaces, tabs, etc. to prevent phishing attempts.

Page 4 of 16

https://github.com/bitwarden/server/pull/3696


BWN-08-010 WP1: Admin XSS via name of provider organization

(Medium)

Status: Issue was fixed post-assessment.

Pull requests:
● https://github.com/bitwarden/server/pull/3218

The organization name was being placed into alerts as a variable. This injection – and therefore
the ability to send data into the alert – was removed to prevent HTML or anything else from
being added.

Page 5 of 16

https://github.com/bitwarden/server/pull/3218


BWN-08-015 WP1: HTML injection in Freshdesk support tickets
(Low)

Status: Issue was fixed post-assessment.

Pull requests:
● https://github.com/bitwarden/server/pull/3219

Organization names could contain an expanded character set. Organization names are now
sanitized and any HTML entities removed.

Page 6 of 16

https://github.com/bitwarden/server/pull/3219


BWN-08-018 WP1: User-hijacking via confusion in Sustainsys
RelayState (Critical)

Status: Issue was fixed post-assessment.

Pull requests:
● https://github.com/bitwarden/server/pull/3215

The maintainers of the vulnerable library were notified. As a temporary mitigation, a custom
handler for the SSO callback was written that validated the RelayState parameter until the
library was updated, and the Bitwarden reference then updated to use it.

Page 7 of 16

https://github.com/bitwarden/server/pull/3215


BWN-08-003 WP5: Insufficient minimum parameters for KDF
(Medium)

Status: Issue was fixed post-assessment.

Pull requests:
● https://github.com/bitwarden/clients/pull/6440

The minimum PBKDF2 iterations was updated to 600k. Previously, only a warning was shown to
users with low KDF iterations; now users are prevented from changing their settings to anything
less than 600k.

Page 8 of 16

https://github.com/bitwarden/clients/pull/6440


BWN-08-004 WP5: Insecure storage of access and refresh tokens
(Medium)

Status: Issue was fixed post-assessment.

Pull requests:
● https://github.com/bitwarden/clients/pull/7975

Secure storage for desktop and mobile clients is utilized when available according to platform.
This experience does differ depending on what the platform is capable of, but more secure
storage capabilities now exist and continue to make it more difficult for rogue processes to
capture contents on disk.

Page 9 of 16

https://github.com/bitwarden/clients/pull/7975


BWN-08-005 WP5: XXE declarations permitted on importing XML
vaults (Info)

Status: Issue was fixed post-assessment.

Pull requests:
● https://github.com/bitwarden/clients/pull/6918

Logic was added to detect if external entities exist within an XML upload. An error message is
displayed upon detection.

Page 10 of 16

https://github.com/bitwarden/clients/pull/6918


BWN-08-006 WP1: Access token in notification API URL (Info)

Status: Accepted as an upstream limitation.

Bitwarden must provide a SignalR authentication token in query strings for notifications over
WebSockets to work as expected. This cannot be avoided and is required by SignalR, as noted
in Microsoft documentation. Exposure is minimal and limited to basic information sent in the
push payload.

Page 11 of 16

https://learn.microsoft.com/en-us/aspnet/core/signalr/authn-and-authz


BWN-08-008 WP1: Unmaintained IdentityServer4 dependency (Info)

Status: Issue was fixed post-assessment.

Pull requests:
● https://github.com/bitwarden/server/pull/3185

The platform was upgraded to use IdentityServer v6, and later v7. Both are supported and
licensed.

Page 12 of 16

https://github.com/bitwarden/server/pull/3185


BWN-08-009 WP1: Excessive lifetime of refresh tokens for
IdentityServer4 (Low)

Status: Issue was fixed post-assessment.

Pull requests:
● https://github.com/bitwarden/server/pull/3697

Lifetimes of tokens were shortened. Furthermore, Bitwarden plans to implement improved
refresh token usage in clients in the future.

Page 13 of 16

https://github.com/bitwarden/server/pull/3697


BWN-08-012 WP1: HTML injection in passwordless login emails (Low)

Status: Issue was fixed post-assessment.

Pull requests:
● https://github.com/bitwarden/server/pull/3623

The return URL parameter of the passwordless admin login was encoded to prevent HTML injection.

Page 14 of 16

https://github.com/bitwarden/server/pull/3623


BWN-08-016 WP1: DoS risk in attachments feature via max size (Info)

Status: Issue under planning and research.

Bitwarden is already streaming large file uploads directly and securely to online storage systems. For
self-hosted installations, solutions are being assessed for improvements to the same streaming
capabilities, including a chunk-based upload mechanism.

Page 15 of 16



BWN-08-017 WP1: Leakage of encrypted private keys of organizations
(Medium)

Status: Issue was fixed post-assessment.

Pull requests:
● https://github.com/bitwarden/server/pull/3195

Encrypted private keys were removed from the API payload. Logic was adjusted for this to no longer be
needed.

Page 16 of 16

https://github.com/bitwarden/server/pull/3195


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during
the  testing  period.  Notably,  findings  are  cited  in  chronological  order  rather  than  by
degree of impact, with the severity rank offered in brackets following the title heading for
each vulnerability.  Furthermore,  each ticket  has been given a unique identifier  (e.g.,
BWN-08-007) to facilitate any future follow-up correspondence.

BWN-08-007 WP1: Open redirect on SSO via returnUrl parameter (Low)
During the examination of the server-side code, it was found that the returnUrl parameter
is insufficiently validated in the SSO component. Using an arbitrary domain inside this
parameter,  followed  by  tricking  a  victim  to  rely  on  the  seemingly  trustworthy  URL,
ultimately  leads  to  a  redirect  to  an  attacker-controlled  domain.  From that  domain  a
phishing attempt could be started. As a prerequisite for exploitation, the attacker must
know the scheme UUID of the SSO provider and the victim must be logged in to the IdP.
Further,  this  issue  is  only  exploitable  if  the  victim  uses  the  Chrome  browser.  The
following URL illustrates the injection point of the malicious parameter.

Affected URL:
https://bitwarden.example.com/sso/Account/ExternalChallenge?scheme=0498a4f8-
c173-44b6-85f9-b05700b2df21&returnUrl=%2F%09%2fexample.com%2Fconnect
%2Fauthorize%2Fcallback

The code excerpt demonstrates the insufficient validation at the point in question. This
issue  is  indirectly  caused  by  the  IsLocalUrl check  returning  true for  the  value
/%09/example.com, which the Chrome browser interprets as an absolute URL. To pass
the IsValidReturnUrl, it is sufficient to append the path /connect/authorize/callback to the
URL.

Affected file:
server-2023.7.1/bitwarden_license/src/Sso/Controllers/AccountController.cs

Affected code:
 if (!Url.IsLocalUrl(returnUrl) && !_interaction.IsValidReturnUrl(returnUrl))
    {

throw new Exception(_i18nService.T("InvalidReturnUrl"));
    }

Since a proper URL should only contain URL-encoded whitespaces, it is recommended
to include additional validation that fails if the user-supplied returnUrl parameter contains
plain whitespaces.

Cure53, Berlin · 08/18/23  1/19

https://cure53.de/
https://bitwarden.example.com/sso/Account/ExternalChallenge?scheme=0498a4f8-c173-44b6-85f9-b05700b2df21&returnUrl=%2F%09%2Fexample.com%2Fconnect%2Fauthorize%2Fcallback
https://bitwarden.example.com/sso/Account/ExternalChallenge?scheme=0498a4f8-c173-44b6-85f9-b05700b2df21&returnUrl=%2F%09%2Fexample.com%2Fconnect%2Fauthorize%2Fcallback
https://bitwarden.example.com/sso/Account/ExternalChallenge?scheme=0498a4f8-c173-44b6-85f9-b05700b2df21&returnUrl=%2F%09%2Fexample.com%2Fconnect%2Fauthorize%2Fcallback
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

BWN-08-010 WP1: Admin XSS via name of provider organization (Medium)
The  Bitwarden  admin  backend  utilizes  Razor  templates  to  render  HTML  code.  By
default, the rendering engine escapes HTML metacharacters to prevent the injection of
malicious HTML code. However, since single-quotes are not escaped, user-input within
the JavaScript context has to be handled with special care.

It  was found that  organization names are insecurely  embedded in the single-quoted
JavaScript  context  of  the  Resend  Setup  Invite feature,  leading  to  a  stored  XSS
vulnerability.  However, this issue can only be exploited by malicious or compromised
users  of  customer  support,  who  could  leverage  it  to  hijack  sessions  of  accounts
equipped with higher privileges. What is more, this vulnerability is limited to the  cloud
admin portal, since the required feature is not available in self-hosted environments.

Steps to reproduce:
1. Log in to the internal admin portal with a user who has the CS role.
2. Navigate to Providers and select a Reseller.
3. Click on New Organization and place the XSS payload (e.g.,  '-alert(1)'- ) in the

Organization Name field.
4. Fill in the required fields and click on Save.
5. Lure  a  higher-privileged  user  into  clicking  on  the  Resend  Setup  Invite (blue

envelope icon).
6. Observe that the XSS is triggered.

The  following  code  excerpt  illustrates  that  the  organization  name is  embedded  in
between single-quotes in the onclick event handler of an anchor tag, which essentially
allows escaping of the JavaScript string.

Affected file:
server-2023.7.1/src/Admin/Views/Providers/Organizations.cshtml

Affected code:
@if (org.Status == OrganizationStatusType.Pending)
  {
 <a href="#" class="float-right" onclick="return 
resendOwnerInvite('@org.OrganizationId', '@org.OrganizationName');">

<i class="fa fa-envelope-o fa-lg" title="Resend Setup Invite"></i>
   </a>  }

It is recommended to properly escape the organization name for the JavaScript context.
This could be done, for example, via the HttpUtility.JavaScriptStringEncode1 function.

1 https://learn.microsoft.com/en-us/dotnet/api/system.web.httputility.javascriptstringencode?view=net-7.0

Cure53, Berlin · 08/18/23 2/19

https://cure53.de/
https://learn.microsoft.com/en-us/dotnet/api/system.web.httputility.javascriptstringencode?view=net-7.0
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

BWN-08-015 WP1: HTML injection in Freshdesk support tickets (Low)
A  source  code  review  of  the  server-master  repository  revealed  that  the  Bitwarden
backend  contained  an  endpoint  for  creating  new  Freshdesk  support  tickets.  After
discussing this with the Bitwarden team, it became clear that the Freshdesk application
automatically  creates  a  new  support  ticket  on  each  new  email  to  the
support@bitwarden.com email address.

To that end, the Freshdesk application invokes an endpoint on the Bitwarden backend.
This endpoint of the Bitwarden backend looks up the  organization associated with the
sender’s email address within messages to  support@bitwarden.com and constructs a
HTML document  involving  the  organization  name  without  escaping  or  sanitizing  this
information.

As a result, an attacker who owns an organization on  vault.bitwarden.com can use an
organization  name  containing  HTML  tags.  For  instance,  the  attacker  could  craft  a
malicious name with a link, for example to attempt phishing attacks. However, dynamic
testing determined that no XSS attack was feasible as a consequence of this flaw.

Steps to reproduce:
1. Create a new account on vault.bitwarden.com.
2. Activate premium subscription for organizations.
3. Create a new organization with the name indicated below.

Organization name:
<a href="https://attacker.com">Click me</a>

4. Create a new support ticket for Bitwarden by sending a message using the email
address of the account at vault.bitwarden.com.

5. The operator at Bitwarden opening the ticket sees the link with the "Click me"
message, in accordance with the payload in the organization name item.

Affected file:
server-master/src/Billing/Controllers/FreshdeskController.cs

Affected code:
public async Task<IActionResult> PostWebhook([FromQuery, Required] string key,
    [FromBody, Required] FreshdeskWebhookModel model)
{
    [...]
    try
    {

[...]

Cure53, Berlin · 08/18/23 3/19

https://cure53.de/
mailto:support@bitwarden.com
mailto:support@bitwarden.com
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

if (user != null)
{

[...]
var orgs = await 

_organizationRepository.GetManyByUserIdAsync(user.Id);

foreach (var org in orgs)
{

var orgNote = $"{org.Name} ({org.Seats.GetValueOrDefault()}): " 
+
$"{_globalSettings.BaseServiceUri.Admin}/organizations/edit/{org.Id}";

note += $"<li>Org, {orgNote}</li>";
[...]

}
[...]
var noteBody = new Dictionary<string, object>

            {
{ "body", $"<ul>{note}</ul>" },
{ "private", true }

};
[...]

}
[...]

    }
    [...]
}

To mitigate this issue, Bitwarden should sanitize organization names fully, making sure
these items are free from all HTML tags.

BWN-08-018 WP1: User-hijacking via confusion in Sustainsys RelayState (Critical)
The Single  Sign-On logic  can be tricked into  accepting  the SAML assertion  for  one
organization of an identity provider belonging to a foreign organization.  This effectively
lets attackers with an enterprise organization authenticate as users of organizations that
have  Single  Sign-On enabled.  Moreover,  these  attackers  would  be  able  to  perform
arbitrary API calls. Thus, this issue was rated as Critical.

During the SSO login,  Bitwarden instructs the Sustainsys2 SAML library to relay the
targeted  organization through  the identity  provider  back  to  the login  callback  of  the
service provider. The library does so by associating the claim with a session cookie that
has a unique name which is relayed through the SAML2  RelayState parameter. Upon
receiving a successful authentication result, the library will determine the organization on
the basis of the RelayState parameter, so as to log the user in.

Cure53, Berlin · 08/18/23  4/19

https://cure53.de/
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

However, the problem lies in the fact that the Sustainsys2 library insufficiently validates
that the state identified by the RelayState parameter passed along a SAML assertion is
associated  with  the  authentication  request.  This  means  adversaries  can  swap  the
RelayState parameter with a SAML assertion, effectively getting the capacity to alter the
authenticated organization.

Steps to reproduce:
1. Log in as an organization administrator.
2. Setup a valid Single Sign-On SAML configuration for the attacker’s organization

and add a user to the attacker’s identity provider with the email address of the
targeted Bitwarden victim.

3. Using a suitable HTTP proxy software like Burp Suite, prepare to intercept all
HTTP requests containing either the parameter SAMLRequest or the parameter
SAMLResponse2. As such, the software should be capable of decoding SAML
traffic3.

4. Start an SSO authentication flow for the victim:
5. Visit the login at the web vault URL.
6. Enter the victim’s email address and proceed.
7. At the password prompt, click on Enterprise single sign-on.
8. Enter the identifier of the victim’s organization and click on Log in.
9. An HTTP request to the victim’s identity provider should be intercepted, like in

the following.

HTTP request:
GET /app/trial-1883647_bwn08samlidp_1/exk6wadvczGldAIiZ697/sso/saml?
SAMLRequest=jJJBb9swDIXv
%2FRWG7rZkRbUdIQlgNNgQoBuGdtuhl0KRaFSoLHmi3HT79VPdblgOG3Yl
%2BfHhPXKDanR8kv2cHvwNfJsBU%2FE8Oo%2FytbMlc
%2FQyKLQovRoBZdLytv9wLXnF5BRDCjo48ifzb0QhQkw2eFIc9ltiDWsEY9wMrdatqHW3NgNT
vAPR8VVrgJPiK0TMwJZkPlOIMxw8JuVTLjG
%2BKllX1uIz45IJuWJ3pNhnG9artFAPKU0oKU3RKlfWXbdqRFuFx6QqHUaqpum8dX88eda9WL
Fmuq8pPD82J2We9I
%2F3zvQHe9esW4oY6MsIKfpfhq6Cx3mEeAvxyWr4cnP9qp2l83R1tOmkogFfuaCVk5d1x
%2Fmyg1PdmI5xEKVSoi7FsG7L4yCa8sguNatzHII1tNdIdhdFsVkYueQQd%2F
%2BnsKFn0O8tk%2FyYL3TYfwrO6u
%2FFuxBHlf5%2BwLqql4o15bCMShiVdb0xERBzFs6F01UElWBLUpyBFHR38SZ%2B
%2FmW7nwAAAP%2F%2FAwA%3D&RelayState=jVUg1u1svLVT-prh310dYXg5 HTTP/2
[...]
Host: trial-1883647.okta.com

2 https://portswigger.net/burp/documentation/desktop/tutorials/using-interception-rules
3 https://portswigger.net/bappstore/c61cfa893bb14db4b01775554f7b802e

Cure53, Berlin · 08/18/23  5/19

https://cure53.de/
https://portswigger.net/bappstore/c61cfa893bb14db4b01775554f7b802e
https://portswigger.net/burp/documentation/desktop/tutorials/using-interception-rules
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

10. Note both the RelayState parameter and the ID attribute of the decoded SAML
authentication request before dropping the HTTP request.

Decoded SAML request:
<saml2p:AuthnRequest xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"
ID="id064002df7cc741c89df0a28e48237de2" Version="2.0" [...]>
  <saml2:Issuer>http://sso.bitwarden.local:51822/saml2</saml2:Issuer>
  <saml2p:NameIDPolicy Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:emailAddress" AllowCreate="true" />
</saml2p:AuthnRequest>

11. Use  the  same  browser  session  to  start  an  SSO  authentication  flow  for  the
attacker’s organization. This can be done by adding the Bitwarden SSO URL and
the attacker’s  organization GUID within the following URL template. The URL
should then be visited.

URL template:
<BitwardenSSOUrl>/Account/ExternalChallenge?scheme=<attackersOrgId>

12. An HTTP request to the attacker's identity provider should be intercepted. It
should look similar to the HTTP request from Step 5. Replace the RelayState
parameter and the ID attribute with the values from Step 5 and forward the HTTP
request to the attacker's identity provider.

13. The attacker should now be successfully authenticated as the victim-user, being
prompted for the master-password in order to decrypt it. The authenticated
attacker can perform any API actions in the name of the victim.

The following source code snippet shows that the Bitwarden account controller stores
the scheme parameter - which is equivalent to the organization ID - to the authentication
properties of the authentication challenge.

Affected file:
server/bitwarden_license/src/Sso/Controllers/AccountController.cs

Affected code:
public IActionResult ExternalChallenge(string scheme, string returnUrl, 

string state, string userIdentifier)
{
[...]
var props = new AuthenticationProperties
{

RedirectUri = Url.Action(nameof(ExternalCallback)),
Items =

Cure53, Berlin · 08/18/23  6/19

https://cure53.de/
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

{
// scheme will get serialized into `State` and returned back
{ "scheme", scheme },
{ "return_url", returnUrl },
{ "state", state },
{ "user_identifier", userIdentifier },
}

};

return Challenge(props, scheme);

It must be noted that this behavior is present in the latest version of the Sustainsys2
library and, therefore, cannot be addressed by simply updating the library. It is advisable
to hot-fix this issue by using the middleware class SsoAuthenticationMiddleware in order
to identify  the organization used during a successful  SAML authentication instead of
relying on the RelayState parameter.

The revised approach would prevent attackers from abusing this parameter to cause
confusion. As a long-term solution, it is advisable to wait until the issue is reported by
Cure53 and fixed by the maintainers of the Sustainsys2 library. Once this is done, the
patched release should be deployed by Bitwarden.

Cure53, Berlin · 08/18/23  7/19

https://cure53.de/
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of
these results are vulnerable code snippets that did not provide an easy method by which
to be called. Conclusively, whilst a vulnerability is present, an exploit may not always be
possible.

BWN-08-003 WP5: Insufficient minimum parameters for KDF (Medium)
Dynamic testing of the settings deployed for the encryption key of the Bitwarden web
application  revealed support  for  two KDF algorithms,  namely  PBKDF2 SHA-256 and
argon2id.

The  former  has  been  in  focus  of  recent  security  breaches  due  to  the  increase  of
computing power, and recommendations regarding the minimum number of iterations
have  increased  recently  to  600.0004.  It  must  be  noted  that  the  KDF  settings  page
provides the user with a warning:  "Higher KDF iterations can help protect your master
password from being brute forced by an attacker. We recommend a value of 600,000 or
more."

The  latter  KDF  algorithm,  namely  argon2id,  allows  the  user  to  adjust  three  values,
specifically  the  KDF iterations,  KDF memory  (MB) and  KDF parallelism parameters.
These three parameters determine, in an abstract sense, the security that the argon2id
KDF achieves. In the context of Bitwarden appt, it was found that the KDF settings could
be reduced to insecure values by the user.

Testing confirmed that the minimum number of iterations for PBKDF2 SHA-256 can be
reduced to  5000, whereas for the  argon2id KDF the  KDF memory (MB) value can be
decreased to 16 MiB. This is the case despite the officially recommended setting of 19
MiB for iterations set to 3 and 1 degree of parallelism.

Affected file:
clients-master/libs/common/src/platform/services/crypto.service.ts

Affected code:
async makeKey(
  password: string,
  salt: string,
  kdf: KdfType,
  kdfConfig: KdfConfig
): Promise<SymmetricCryptoKey> {

4 https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2

Cure53, Berlin · 08/18/23  8/19

https://cure53.de/
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

  let key: ArrayBuffer = null;
  if (kdf == null || kdf === KdfType.PBKDF2_SHA256) {
    if (kdfConfig.iterations == null) {

kdfConfig.iterations = 5000;
    } else if (kdfConfig.iterations < 5000) {

throw new Error("PBKDF2 iteration minimum is 5000.");
    }
    key = await this.cryptoFunctionService.pbkdf2(password, salt, "sha256", 
kdfConfig.iterations);
  } else if (kdf == KdfType.Argon2id) {
    if (kdfConfig.iterations == null) {

kdfConfig.iterations = DEFAULT_ARGON2_ITERATIONS;
    } else if (kdfConfig.iterations < 2) {

throw new Error("Argon2 iteration minimum is 2.");
    }

    if (kdfConfig.memory == null) {
kdfConfig.memory = DEFAULT_ARGON2_MEMORY;

    } else if (kdfConfig.memory < 16) {
throw new Error("Argon2 memory minimum is 16 MB");

    } else if (kdfConfig.memory > 1024) {
throw new Error("Argon2 memory maximum is 1024 MB");

    }
    [...]
}

To mitigate  this  issue,  Cure53  advises  making  it  impossible  for  the  user  to  provide
insecure KDF settings. These values affect the resulting security of the vaults, so it is
recommended to adjust the minimum values for KDF functions in a manner compliant
with the officially recommended values5.

BWN-08-004 WP5: Insecure storage of access and refresh tokens (Medium)
Dynamic tests of the Bitwarden web application revealed that the application persisted
both access and refresh tokens of a user for the Bitwarden backend to the local storage
and session storage of the browser. The web application utilizes these tokens to either
authorize access to the Bitwarden backend, or to acquire new access tokens by using
the refresh token.

Persisting sensitive information in the local storage of the browser is considered bad
practice from a security standpoint, since it fosters extraction of tokens and similar items
through XSS vulnerabilities in the affected application. For an attacker who manages to
mount an XSS attack against a victim, it means easier extraction of access and refresh
tokens.  Consequently,  the  attacker  can  impersonate  the  victim  with  regard  to  the
Bitwarden backend.

5 https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

Cure53, Berlin · 08/18/23  9/19

https://cure53.de/
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

Steps to reproduce:
1. Open the Bitwarden web application and complete the login.
2. Open the developer tools of the browser and navigate to the Application section.
3. Open the local storage of the web application. It can be seen that the entry with the

current  user  ID  contains  both  access and  refresh tokens  of  the  victim,  as
demonstrated by the figure below.

Fig.: The Bitwarden web application stores user-tokens in browser local storage

Affected file:
clients-master/libs/common/src/auth/services/token.service.ts

Affected code:
async setToken(token: string): Promise<void> {
  await this.stateService.setAccessToken(token);
}
[...]
async setRefreshToken(refreshToken: string): Promise<any> {
  return await this.stateService.setRefreshToken(refreshToken);
}

Cure53 advises keeping tokens in memory only, ceasing their persistence to the local
storage.  In  case the current  handling  is  absolutely  necessary,  the tokens should  be
encrypted with the user's password before being written to storage. Alternatively, tokens
could also be sent in via cookies with appropriate security flags.

Cure53, Berlin · 08/18/23  10/19

https://cure53.de/
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

BWN-08-005 WP5: XXE declarations permitted on importing XML vaults (Info)
The  Bitwarden  web  application  allows  its  users  to  import  vaults  from  other
password/secret manager applications. Moreover, the app supports a large number of
different vendors and their formats. The majority of such imports use either JSON or
CSV, but some vendors utilize HTML or XML as underlying data formats.

The import done with XML format allows usage of XML external entities (XXE). Such
entities pose an inherent security risk in server applications6, as they can lead to local
file disclosure, request forgery, Denial-of-Service situations or even RCE vulnerabilities.

Client-side XXE vulnerabilities are much less impactful due to the sandboxed nature of
browsers.  However,  the  exploitability  heavily  depends  on  the  browser  used.  Past
research  nevertheless  confirmed  that  such  vulnerabilities  also  affected  browsers7.
Cure53  confirmed  that  the  DOMParser class  used  by  the  tested  app  permitted
processing of simple XXE payloads.

Steps to reproduce:
1. Open the Bitwarden web application and log in.
2. Navigate to the Tools section and open the Import page.
3. Select Password Safe (xml) as input-type.
4. Paste the payload shown below in the text field for the import and complete the

import.

XXE payload:
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE replace [
  <!ELEMENT replace ANY>
  <!ENTITY xxe "External entity">
]>
<passwordsafe delimiter=";">
<entry><title>PoC XXE</title><username>&xxe;</username></entry>
</passwordsafe>

5. Navigate to the vault of the user. Open the new login entry called PoC XXE. The
Username field contains the external entity's value, as demonstrated in the figure
below.

6 https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
7 https://www.blackhat.com/docs/us-15/materials/us-15-Wang-FileCry-The-New-Age-Of-XXE.pdf

Cure53, Berlin · 08/18/23  11/19

https://cure53.de/
https://www.blackhat.com/docs/us-15/materials/us-15-Wang-FileCry-The-New-Age-Of-XXE.pdf
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

Fig.: XXE payload processed successfully by the web application.

Affected file:
clients-master/libs/importer/src/importers/base-importer.ts

Affected code:
protected parseXml(data: string): Document {
  const parser = new DOMParser();
  const doc = parser.parseFromString(data, "application/xml");
  return doc != null && doc.querySelector("parsererror") == null ? doc : null;
}

To mitigate this issue, Cure53 recommends disabling external entities unless they are
absolutely  required.  The NPM package  libxmljs appears to be a viable alternative to
XML parsing8.

BWN-08-006 WP1: Access token in notification API URL (Info)
After  successful  login,  the  Bitwarden  web  application  sends  a  request  to  the
/notifications/hub endpoint  of  the  Bitwarden backend.  This  request  corresponds to a
GET request and includes an HTTP parameter containing the access token of a user.
Providing  secret  information,  for  instance  access tokens  or  other  authorization
credentials through HTTP query parameters, is considered insecure, since many web
servers, proxies or similar components log URLs of requests by default.

In  case  there  are  any  of  such  components  between  the  victim's  browser  and  the
Bitwarden backend, and an attacker has access to them, the sensitive information from
within URLs could be leaked to the attacker. Such information could help adversaries in
mounting further, more sophisticated attacks, generally aiming at impersonation of the
victim.

8 https://www.npmjs.com/package/libxmljs

Cure53, Berlin · 08/18/23  12/19

https://cure53.de/
https://www.npmjs.com/package/libxmljs
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

Steps to reproduce:
1. Open an  interception  proxy  like  Burp  and  make  sure  all  traffic  between  the

browser and the Bitwarden backend is recorded by the interception proxy.
2. Open the Bitwarden  login web page and authenticate with an arbitrary account

known to the Bitwarden backend.
3. Observe the action triggering a request similar to the one shown below within

Burp.

Request:
GET /notifications/hub?access_token=eyJhbGc<REDACTED>oXqI HTTP/2
Host: localhost
[...]

4. From the URL path, it can be seen that the Bitwarden web application sends an
access token through the HTTP query  parameter  called  access_token to  the
Bitwarden backend.

To mitigate,  sensitive information like access tokens,  passwords or other  credentials
should exclusively be sent within request bodies or within HTTP headers.

BWN-08-008 WP1: Unmaintained IdentityServer4 dependency (Info)
While reviewing the dependencies utilized by the Bitwarden server component, it was
found  that  the  IdentityServer4 library  was  no  longer  being  maintained.  The  official
documentation  states  that  the  library  was  only  checked  and  equipped  with  security
updates until November 20229. This introduces the risk of potential future vulnerabilities
persisting in the Bitwarden application without any security patches available.

It is recommended to utilize the successor library, namely  Duende IdentityServer10, to
ensure that the application is provided with security patches in the future.

9 https://identityserver4.readthedocs.io/en/latest/index.html
10 https://duendesoftware.com/products/identityserver

Cure53, Berlin · 08/18/23  13/19

https://cure53.de/
https://duendesoftware.com/products/identityserver
https://identityserver4.readthedocs.io/en/latest/index.html
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

BWN-08-009 WP1: Excessive lifetime of refresh tokens for IdentityServer4 (Low)
In the Bitwarden backend application, it was noted that access and refresh tokens were
used to authorize requests after a successful login by a user. The backend relies on the
IdentityServer4 solution for handling tokens and their generation (see also issue BWN-
08-008).

The Bitwarden web application sets the HTTP  Authorization header for each request,
making sure it contains the currently valid access token of the user. The refresh token is
used to fetch new access tokens for a user in case the original access token expires.

It was found that access tokens expire after one hour, whereas the lifetime of a refresh
token depends on the application of the user. For example, for mobile applications the
refresh  token  expires  after  90  days,  a  cutoff  date  of  30  days  is  used  for  the  web
application.  Besides a long lifetime,  refresh tokens can be replayed multiple times to
acquire new access tokens.

As a result of the token settings, an attacker who has a  refresh token of a user can
impersonate the victim for a rather long time. The attacker can use the  refresh token
multiple times to acquire new access tokens upon their expiration, without being asked
to reauthenticate.

Affected file #1:
server-master/src/Identity/IdentityServer/StaticClientStore.cs

Affected code:
public StaticClientStore(GlobalSettings globalSettings)
{
    ApiClients = new List<Client>
    {

new ApiClient(globalSettings, BitwardenClient.Mobile, 90, 1),
new ApiClient(globalSettings, BitwardenClient.Web, 30, 1),
new ApiClient(globalSettings, BitwardenClient.Browser, 30, 1),
new ApiClient(globalSettings, BitwardenClient.Desktop, 30, 1),
new ApiClient(globalSettings, BitwardenClient.Cli, 30, 1),

      new ApiClient(globalSettings, BitwardenClient.DirectoryConnector, 30, 
24)
    }.ToDictionary(c => c.ClientId);
}

Affected file #2:
server-master/src/Identity/IdentityServer/ApiClient.cs

Cure53, Berlin · 08/18/23  14/19

https://cure53.de/
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

Affected code:
public ApiClient(
    GlobalSettings globalSettings,
    string id,
    int refreshTokenSlidingDays,
    int accessTokenLifetimeHours,
    string[] scopes = null)
{
    [...]
    RefreshTokenUsage = TokenUsage.ReUse;
    SlidingRefreshTokenLifetime = 86400 * refreshTokenSlidingDays;
    AbsoluteRefreshTokenLifetime = 0; // forever
    [...]
}

To mitigate  this  issue Cure53 advises  revisiting  the lifetime of  refresh tokens in  the
utilized  IdentityServer4 server.  Setting  the  RefreshTokenUsage parameter  to
TokenUsage.OneTimeOnly11 is advised.

BWN-08-012 WP1: HTML injection in passwordless login emails (Low)
While testing the application for HTML injections in emails, it was discovered that the
ReturnUrl parameter of the passwordless admin login was not being properly encoded.
As a result, HTML code can be injected into login emails. However, since the injection is
limited to certain characters, it was not possible to leak the login token via an additional
anchor or image tag. Therefore, this issue was rated as Low in terms of impact.

The following PoC request can be used to reproduce this issue. After submitting the
request, it  can be observed that the injected HTML code is rendered in the resulting
email.

PoC request:
POST /admin/login HTTP/2
Host: bitwarden.example.com
Content-Type: application/x-www-form-urlencoded
[...]
ReturnUrl="><s>test<style>&Email=johannes@cure53.de&__RequestVerificationToken=
[...]

11 https://identityserver4.readthedocs.io/en/latest/topics/refresh_tokens.html#additional-client-settings

Cure53, Berlin · 08/18/23  15/19

https://cure53.de/
https://identityserver4.readthedocs.io/en/latest/topics/refresh_tokens.html#additional-client-settings
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

Fig.: Rendered email with HTML code injected.

The affected parameter is being processed, as illustrated in the code excerpt below. The
code  exemplifies  that  the  URL  parameters  are  added  to  the  queryCollection which
properly URL-encodes the parameters. However, when building the final URL, the  Uri
constructor  removes  the  URL-encoding  of  certain  characters,  including  HTML
metacharacters such as  "<>.  The final  URL is then embedded in the email  template
without further encoding.

Affected file:
src/Core/Utilities/CoreHelpers.cs

Affected code:
var queryCollection = HttpUtility.ParseQueryString(queryString);
foreach (var kvp in values ?? new Dictionary<string, string>())
{

queryCollection[kvp.Key] = kvp.Value;
}

var uriKind = uri.IsAbsoluteUri ? UriKind.Absolute : UriKind.Relative;
if (queryCollection.Count == 0)
{

return new Uri(baseUri, uriKind);
}
return new Uri(string.Format("{0}?{1}", baseUri, queryCollection), uriKind);

It is recommended to ensure that all HTML metacharacters are properly URL-encoded in
the resulting URL. One possible solution could be to remove the Uri constructor, since it
is responsible for unnecessarily removing the encoding process for certain characters.

Cure53, Berlin · 08/18/23  16/19

https://cure53.de/
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

BWN-08-016 WP1: DoS risk in attachments feature via max size (Info)
During a source code review of the  server-master repository, it  was found that vault
entries in Bitwarden permit file attachments. The maximum file size of an attachment is
set to 500MB. The Bitwarden backend writes the entire file content through a stream on
the request’s body to a file for self-hosted backends in the API service. On downloading
such  an  attachment,  the  backend  responds  with  a  URL  from which  the  client  then
ultimately downloads the file.  The server responsible for providing the attachment on
downloading corresponds to a static file server, referred to as attachment service.

Given the large  maximum size  for  attachments,  it  is  reasonable  to  assume that  an
attacker could bring the API service down on upload. Same goes for the attachment
service which - upon download - could encounter out-of-memory situations caused by
running multiple uploads or downloads with files having a size close to the maximum.
Dynamic testing in a local environment confirmed that the memory consumption of the
Docker engine running the backend increases tremendously in such situations.

Affected file:
server-master/src/Api/Vault/Controllers/CiphersController.cs

Affected code:
[HttpPost("{id}/attachment/{attachmentId}")]
[SelfHosted(SelfHostedOnly = true)]
[RequestSizeLimit(Constants.FileSize501mb)]
[DisableFormValueModelBinding]
public async Task PostFileForExistingAttachment(string id, string attachmentId)
{
    if (!Request?.ContentType.Contains("multipart/") ?? true)
    {

throw new BadRequestException("Invalid content.");
    }
    [...]
    await Request.GetFileAsync(async (stream) =>
    {

await _cipherService.UploadFileForExistingAttachmentAsync(stream, 
cipher, attachmentData);
    });
}

To mitigate this issue, Cure53 advises revisiting the maximum file size available for the
attachments.  A  chunk-wise  transfer  approach  should  be  implemented  for  both  the
upload and download processes concerning attachments.

Cure53, Berlin · 08/18/23  17/19

https://cure53.de/
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

BWN-08-017 WP1: Leakage of encrypted private keys of organizations (Medium)
A source code review of the  server-master repository points to a flaw in the controller
responsible for serving requests concerning  organizations.  This controller contains an
endpoint for querying the keypair of an organization. The keypair essentially gets used in
the admin password reset feature for enterprise organizations.

To protect the organization's private key, Bitwarden applies a symmetric cipher using a
symmetric  organization key to the private key of the organization. This symmetric key
gets encrypted in a user-specific way for each user of the organization. The endpoint for
reaching  the  encrypted  private  key  of  an  organization fails  to  apply  proper  access
control.  Moreover,  it  lets every user of the Bitwarden backend acquire the encrypted
private key of an organization.

An attacker who has the organization ID can download the encrypted private key of that
organization. In case the attacker was a former member of the organization, they would
know the symmetric organization key. As such, they could decrypt the private key of the
organization,  even  after  rotation.  However,  it  was  not  possible  to  use  these
circumstances to mount a successful attack in the context of this project. Therefore, this
issue can be considered as a weakness rather than a vulnerability.

Steps to reproduce:
1. Open an  interception  proxy  like  Burp  and  make  sure  all  traffic  between  the

browser and the Bitwarden backend is recorded by the interception proxy.
2. Create a new account that is not associated with any organization.
3. With that account, log in to the Bitwarden web application.
4. Pick any  GET  request that includes an  authorization header to the Bitwarden

backend from Burp’s history and send it to Burp’s repeater functionality.
5. Modify the request as shown below.

Request:
GET /api/organizations/118fcb55-5e0c-4759-bd1a-b058010687ed/keys  HTTP/2
Host: localhost
[...]
Authorization: Bearer eyJhb<REDACTED>GJoy4
[...]

6. The  organization  with  the  ID  118fcb55-5e0c-4759-bd1a-b058010687ed was
chosen for these reproduction steps. Sending the request to the backend reveals
the encrypted private key in its response, as demonstrated by the excerpt shown
below.

Cure53, Berlin · 08/18/23  18/19

https://cure53.de/
mailto:mario@cure53.de


 Dr.-Ing. Mario Heiderich, Cure53
  Bielefelder Str. 14
  D 10709 Berlin
  cure53.de · mario@cure53.de 

Response:
HTTP/2 200 OK
Server: nginx
[...]

{"publicKey":"MIIB[...]","privateKey":"2.2/
AIjDq[...]","object":"organizationKeys"}

Affected file:
server-master/src/Api/Controllers/OrganizationsController.cs

Affected code:
[HttpGet("{id}/keys")]
public async Task<OrganizationKeysResponseModel> GetKeys(string id)
{
    var org = await _organizationRepository.GetByIdAsync(new Guid(id));
    if (org == null)
    {

throw new NotFoundException();
    }

    return new OrganizationKeysResponseModel(org);
}

To mitigate this issue, Cure53 recommends deploying a check as to whether the caller
of the {id}/keys endpoint in the OrganizationsController is a member of the organization
or not. If they cannot be confirmed as members, the request should be denied.

Cure53, Berlin · 08/18/23  19/19

https://cure53.de/
mailto:mario@cure53.de

	a6f8f5ef-9ea9-4db1-99ff-e3d7b5b7be2d.pdf
	Pentest-Report Bitwarden Core App & Library 08.2023
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	BWN-08-007 WP1: Open redirect on SSO via returnUrl parameter (Low)
	BWN-08-010 WP1: Admin XSS via name of provider organization (Medium)
	BWN-08-015 WP1: HTML injection in Freshdesk support tickets (Low)
	BWN-08-018 WP1: User-hijacking via confusion in Sustainsys RelayState (Critical)

	Miscellaneous Issues
	BWN-08-003 WP5: Insufficient minimum parameters for KDF (Medium)
	BWN-08-004 WP5: Insecure storage of access and refresh tokens (Medium)
	BWN-08-005 WP5: XXE declarations permitted on importing XML vaults (Info)
	BWN-08-006 WP1: Access token in notification API URL (Info)
	BWN-08-008 WP1: Unmaintained IdentityServer4 dependency (Info)
	BWN-08-009 WP1: Excessive lifetime of refresh tokens for IdentityServer4 (Low)
	BWN-08-012 WP1: HTML injection in passwordless login emails (Low)
	BWN-08-016 WP1: DoS risk in attachments feature via max size (Info)
	BWN-08-017 WP1: Leakage of encrypted private keys of organizations (Medium)

	Conclusions


	db95c670-f6de-4b31-bba2-c877cd3c5b53.pdf
	a6f8f5ef-9ea9-4db1-99ff-e3d7b5b7be2d.pdf
	Pentest-Report Bitwarden Core App & Library 08.2023
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	BWN-08-007 WP1: Open redirect on SSO via returnUrl parameter (Low)
	BWN-08-010 WP1: Admin XSS via name of provider organization (Medium)
	BWN-08-015 WP1: HTML injection in Freshdesk support tickets (Low)
	BWN-08-018 WP1: User-hijacking via confusion in Sustainsys RelayState (Critical)

	Miscellaneous Issues
	BWN-08-003 WP5: Insufficient minimum parameters for KDF (Medium)
	BWN-08-004 WP5: Insecure storage of access and refresh tokens (Medium)
	BWN-08-005 WP5: XXE declarations permitted on importing XML vaults (Info)
	BWN-08-006 WP1: Access token in notification API URL (Info)
	BWN-08-008 WP1: Unmaintained IdentityServer4 dependency (Info)
	BWN-08-009 WP1: Excessive lifetime of refresh tokens for IdentityServer4 (Low)
	BWN-08-012 WP1: HTML injection in passwordless login emails (Low)
	BWN-08-016 WP1: DoS risk in attachments feature via max size (Info)
	BWN-08-017 WP1: Leakage of encrypted private keys of organizations (Medium)

	Conclusions






