

Bitwarden Marketing Website Security Report

ISSUE SUMMARIES, IMPACT ANALYSIS, AND RESOLUTION

BITWARDEN, INC

Table of Contents

Bitwarden Marketing Website Security Report 1
Table of Contents 2
Summary 3
Issues 4

Cryptography Implementation Issues with Public Demo Script (Low) 4
Use Sub-Resource Integrity for Externally Hosted Assets (Info) 4
Purify Strings Before Overwriting InnerHTML (Info) 4
Purify HTML Sourced from Contentful (Info) 5
Prevent the Installation of Insecure Composer Packages (Info) 5
Ensure Appropriate Use of Security Headers (Info) 5

 Page 2 of 5

Summary
In December 2024, Bitwarden engaged with cybersecurity firm Paragon Initiative Enterprises
(PIE) to perform a dedicated audit of the Bitwarden marketing website. A team of testers from
PIE were tasked with preparing and executing the audit over three business days to reach total
coverage of the system under review.

Six issues were discovered during the audit. Four issues were resolved post-assessment. Two
issues were accepted.

This report was prepared by the Bitwarden team to cover the scope and impact of the issues
found during the assessment and their resolution steps. For completeness and transparency, a
copy of the Findings section within the report delivered by PIE has also been attached to this
report.

 Page 3 of 5

Issues

Cryptography Implementation Issues with Public Demo Script

(Low)

Status: Issue was fixed post-assessment.

The public demo script showcasing cryptography features was out of date, no longer used, and
removed entirely from the system.

Use Sub-Resource Integrity for Externally Hosted Assets (Info)

Status: Issue was fixed post-assessment.

A resource missing Sub-Resource Integrity was removed and replaced with a new service that
can provide the security capability.

Purify Strings Before Overwriting InnerHTML (Info)

Status: Issue was fixed post-assessment.

Client and server-side content sanitization was applied using the SafeHTML library.

 Page 4 of 5

Purify HTML Sourced from Contentful (Info)

Status: Accepted.

Sanitization is already being applied in the rendering layer and additional work would be
unnecessary / duplicative.

Prevent the Installation of Insecure Composer Packages (Info)

Status: Accepted.

Bitwarden utilizes multiple layers of review and governance over the addition of new libraries
and packages, and alerting tools such as Dependabot and Renovate are in place to notify about
any risks in current source code.

Ensure Appropriate Use of Security Headers (Info)

Status: Issue was fixed post-assessment.

All appropriate security headers were added or confirmed working in responses.

 Page 5 of 5

Paragon Initiative Enterprises Source Code Review
Bitwarden December 2024

II. Security Issues

1. Cryptography Implementation Issues with Public Demo Script
Severity: Low

The web page public/crypto.html includes JavaScript code that demonstrates symmetric-

key encryption. This code is fine as a proof-of-concept but includes some design decisions
that could undermine security if implemented in the Bitwarden password manager.

Bitwarden confirmed via Slack that their implementation has evolved over time from what was
published on this web page. For completeness, here is a break-down of the issues identified.

MAC Tag Stripping

The biggest concern is the mixture of unauthenticated encryption and authenticated
encryption:

 const encTypes = {
 AesCbc256_B64: 0,
 AesCbc128_HmacSha256_B64: 1,
 AesCbc256_HmacSha256_B64: 2,
 Rsa2048_OaepSha256_B64: 3,
 Rsa2048_OaepSha1_B64: 4,
 Rsa2048_OaepSha256_HmacSha256_B64: 5,
 Rsa2048_OaepSha1_HmacSha256_B64: 6,
 }

An attacker can take a ciphertext encrypted under an encType of 2, change the type to 0, and
strip off the MAC.

Without any integrity guarantees, AES-CBC is vulnerable to Vaudenay's padding oracle
attack, in which an attacker can replay modified ciphertexts and learn the plaintext from
whether a padding error occurs on the decryption of a candidate message.

Concerns With Double HMAC

The way HMAC tags are compared is similar to the Double HMAC technique, but with the
same key that message authentication relies on.

Double HMAC with a random key is secure against side-channel leakage because the
operation is blinded by a random value.

https://github.com/bitwarden/bitwarden.com/blob/57c1687631ab2213470e26088c28f940afc35892/public/crypto.html#L149
https://github.com/bitwarden/bitwarden.com/blob/57c1687631ab2213470e26088c28f940afc35892/public/crypto.html#L149
https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-comparison-with-double-hmac-strategy

Paragon Initiative Enterprises Source Code Review
Bitwarden December 2024

Using the same key that calculated the original HMAC, to re-hash the authentication tag,
doesn't have the same blinding property as an ephemeral key. It is therefore possible that
some timing signal could still be leaking to an attacker, albeit over many thousands of
samples.

Additionally, the loop to compare the outer HMAC bytes fails fast on a mismatched byte,
which would be the prefect precondition for a timing leak if the static key permitted some
signal to leak.

Finally, this last comparison could be replaced with window.crypto.subtle.verify(),

which uses the built-in constant-time comparison functions.

 const importedMacKey = await window.crypto.subtle.importKey('raw', key, alg,
false, ['sign'])
 const mac1 = await window.crypto.subtle.sign(alg, importedMacKey, mac1Data)
- const mac2 = await window.crypto.subtle.sign(alg, importedMacKey, mac2Data)

- if (mac1.byteLength !== mac2.byteLength) {
- return false
- }
- const arr1 = new Uint8Array(mac1)
- const arr2 = new Uint8Array(mac2)
-
- for (let i = 0; i < arr2.length; i++) {
- if (arr1[i] !== arr2[i]) {
- return false
- }
- }
-
- return true
+ return await window.crypto.subtle.verify(alg, importedMacKey, mac1, mac2Data);

We disclosed this finding on the private bitwarden.com GitHub repository as issue 199.

https://github.com/bitwarden/bitwarden.com/issues/199
https://github.com/bitwarden/bitwarden.com/blob/57c1687631ab2213470e26088c28f940afc35892/public/crypto.html#L369-L373

Paragon Initiative Enterprises Source Code Review
Bitwarden December 2024

III. Additional Recommendations

1. Use Sub-Resource Integrity for Externally Hosted Assets
When ever an external resource (JavaScript, CSS) is loaded from a CDN, it’s highly
recommended to populate the integrity attribute with a SHA2 hash (i.e., SHA-384) of the

expected contents of this file.

This is not a widespread issue in the Bitwarden.com codebase, but was identified in the
public/crypto.html demo script.

Without this integrity check, if the CDN is compromised by an attacker, the scripts or
stylesheets could be replaced. If the asset in scope is a JavaScript file, it achieves the impact
as an unmitigated cross-site scripting exploit. If it it’s only a CSS file, they could still serve
malicious CSS that defaces the script and hurts your brand reputation.

2. Purify Strings Before Overwriting InnerHTML
There are two patterns throughout the codebase with similar consequences, but should be
largely mitigated by the Content-Security-Policy headers.

1. Setting the innerHTML property directly. For example: [1]

2. Using React’s dangerouslySetInnerHTML attribute. For example: [2]

Although we could not find any immediate means to introduce a cross-site scripting exploit
through either usage, we recommend building a robust mechanism for purifying strings before
including them in the inner HTML of a parent element.

Consider adopting the DOMPurify library, which sanitizes HTML strings to prevent XSS
without destroying the rich content.

3. Purify HTML Sourced from Contentful
Similar to Recommendation #2, except the best library for preventing XSS while allowing
HTML in PHP is HTMLPurifier. This is not considered a significant security risk, since the sync
process from Contentful includes an HMAC tag of the contents, which is verified at runtime.

https://github.com/ezyang/htmlpurifier
https://github.com/cure53/DOMPurify
https://github.com/bitwarden/bitwarden.com/blob/57c1687631ab2213470e26088c28f940afc35892/resources/js/components/ui/code/code.tsx#L124
https://github.com/bitwarden/bitwarden.com/blob/57c1687631ab2213470e26088c28f940afc35892/resources/js/components/ui/hubspot-form/hubspot-form.tsx#L84

Paragon Initiative Enterprises Source Code Review
Bitwarden December 2024

The current caching mechanisms should already mitigate any performance hit with
HTMLPurifier.

4. Prevent the Installation of Insecure Composer Packages
The Composer package, Roave/SecurityAdvisories, is a developer dependency that can be
added to your package to prevent any known-vulnerable components from being installed.

This is achieved by introducing a version conflict with any known-vulnerable versions of a
Composer package, sourced from various security advisory databases.

5. Ensure Appropriate Use of Security Headers
While the production environment was not in the scope of our investigation, we would be
remiss to not recommend using Security Headers to ensure you’re enabling and correctly
configuring the appropriate browser security protecting your visitors and your brand.

A few headers to look out for:

• Strict-Transport-Security: You always want this header.

• X-Frame-Options: Prevent clickjacking.

• X-Content-Type-Options: Disables MIME-sniffing, which is a feature that causes some
browsers to accidentally introduce client-side security vulnerabilities (i.e., XSS).

• Permissions Policy: Specifies which browser features (e.g., notifications) are requested
by the current web page.

Normally this list includes Content-Security-Policy, but they’re already implemented in the
application code.

https://securityheaders.com/
https://github.com/Roave/SecurityAdvisories?tab=readme-ov-file#purpose

	
	
	Bitwarden Marketing Website Security Report
	Table of Contents​
	Summary
	Issues
	Cryptography Implementation Issues with Public Demo Script (Low)
	Use Sub-Resource Integrity for Externally Hosted Assets (Info)
	Purify Strings Before Overwriting InnerHTML (Info)
	
	Purify HTML Sourced from Contentful (Info)
	Prevent the Installation of Insecure Composer Packages (Info)
	Ensure Appropriate Use of Security Headers (Info)

	insertPDFBuffer
	ï¿½ï¿½
	ï¿½ï¿½

	ï¿½ï¿½
	ï¿½ï¿½
	ï¿½ï¿½
	ï¿½ï¿½

	ï¿½ï¿½
	ï¿½ï¿½
	ï¿½ï¿½
	ï¿½ï¿½
	ï¿½ï¿½
	ï¿½ï¿½

