Bitwarden Mobile App Security Report

ISSUE SUMMARIES, IMPACT ANALYSIS, AND RESOLUTION

BITWARDEN, INC

Table of Contents

Bitwarden Mobile App Security Report

Table of Contents

Summary

Issues
M.1: Insufficient Package Name Validation Allows TOTP Secret Harvesting (Medium)
L.1: Inconsistent TOTP Input Validation via Deep Links (Low)

AP A ODN-=-

Page 2 of 4

Summary

In September 2025, Bitwarden engaged with cybersecurity firm Unit 42 by Palo Alto Networks to
perform a dedicated audit of the Bitwarden mobile and mobile authenticator applications. A team
of testers from Unit 42 were tasked with preparing and executing the audit over two weeks to
reach total coverage of the system under review.

Two issues were discovered during the audit. Both issues were resolved post-assessment.
This report was prepared by the Bitwarden team to cover the scope and impact of the issues

found during the assessment and their resolution steps. For completeness and transparency, a
copy of the Findings section within the report delivered by Unit 42 has also been attached to this

report.

Page 3 of 4

Issues

M.1: Insufficient Package Name Validation Allows TOTP Secret
Harvesting (Medium)

Status: Resolved post-assessment.

Pull requests:
e https://github.com/bitwarden/android/pull/6126

Cryptographic certificate signature verification was added to the Authenticator Bridge library to
ensure that only officially signed Bitwarden applications can connect and access TOTP secrets.
The change replaces package-name based trust with certificate fingerprint validation, introduces
protections against signature rotation and multi-signer scenarios, and enforces fail-closed
behavior to prevent unauthorized access by spoofed or tampered applications. Note that the
Password Manager application already had this verification in place and the implementation is
now bidirectional.

L.1: Inconsistent TOTP Input Validation via Deep Links (Low)

Status: Resolved post-assessment.

Pull requests:
e hitps://github.com/bitwarden/android/pull/6119
e https://github.com/bitwarden/android/pull/6122

TOTP parsing and validation logic was refactored into a centralized module to consolidate
behavior and reduce duplication across the app. The module was expanded to more robustly
handle malformed or edge case TOTP URIs, improve validation accuracy, and return clearer,
more actionable error states to the user. Together, these changes harden TOTP handling while
improving maintainability and user feedback.

Page 4 of 4

https://github.com/bitwarden/android/pull/6126
https://github.com/bitwarden/android/pull/6119
https://github.com/bitwarden/android/pull/6122

Bitwarden, Inc.

Mobile Application Penetration Test Report
October 23, 2025

Confidential

Report submitted by:

Brandon Peterson
Consulting Director
brpeterson@paloaltonetworks.com

% paloalto’ | FuNITa2

HETWORKS ¥ RELO AL 7O HITRIRE

#%spaloalto’ cuniTa2

NETWORKS

I

Table of Contents
EXECULIVE SUIMIMAIY.....uciiiiiiiissinismsissasssssssssssss s s sas s asssms s s sas s s n s e e ms£e e an A £ RS £ £ AR RS EA R AR AR AR R R AR RRE AR R AR ERARRRRRRRRRER SRR RRRRRRRR RS 1
FiNAINGS SUMIMAIY.....eiiiiiiie ettt e e e e e e s st e e e sae e e e e be e e s see e e seeeaeas et e saneeesaseeeeaabeeeeaneeesaneeesanneesennes 1
ReCOMMENAALIONS SUMMIAIY ...ttt e e s e e e e ae e s e s e e e s ane e e e ne e e s anne e e eaneeesneeesanneeennnees 2
B = e T T o= T L= = 1 3
F ST T o A0 YT o 1= R 3
3 = o2 AV N @7 a1 o) [PPSR 3
[0 77 = T =Y o B T3 o [T T T 5
T [T 0 o =] e o] o TSP 5
M.1 Insufficient Package Name Validation Allows TOTP Secret Harvesting........ccccveceereerieeniensee e 5
CVSS 3.1 / AV:L/AC:H/PR:N/ULR/S:U/CiH/EIN/AIN. ..ttt 5
[N] QT [T o PRSP 10
L.1 Inconsistent TOTP Input Validation via Deep LiNKS.........cooioeeiiimeeriieeeciee e 10
CVSS 3.1/ AV:L/AC:L/PR:L/ULR/S:IU/C:N/EL/AL. .ttt st 10
Appendix: Risk Rating MethodolOgy......uuuuiiiiiiiimmiimisisssssssssssssmsmmmmmmmmmmmmmmmmmmmssssssssssssssssssssssssssssssssssnssnsmsseesssssssssssssnnnn 15
(GAVASISISToTeTq1aTe 1Y/ [1 1 g oTo [o] oo | 2SS SPR 15
Qualitative Severity RatiNg SCaI........uiiiiiieiiiie et e e s e e e s e nn e s e e e e anreenenne 15
(N[Es] v= TaTo F=Tgo I o F= 111V R RPN 15

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

%y paloalto’ = funiTa2

NETWORKS

Executive Summary

Unit 42 by Palo Alto Networks, Inc. (“Unit 42”) was engaged by Bitwarden, Inc. to perform a security assessment of
their mobile applications, with the primary goal of evaluating the protection of sensitive authentication data and
identifying potential attack vectors against the password management ecosystem. To deliver this specialized technical
assessment, Unit 42 partnered with Praetorian, leveraging its deep subject matter expertise to execute the assessment.
The engagement was executed between September 2, 2025, and September 16, 2025. The assessment focused on
people, processes, and technology to validate the security controls protecting user vault data and authentication
mechanisms within the mobile application suite.

Through systematic testing of the primary Bitwarden Password Manager and Bitwarden Authenticator application, two
notable findings were identified demonstrating input validation and authentication weaknesses. One of these
vulnerabilities was concluded to be of medium severity and the second to be of low severity. Unit 42 recommends that
Bitwarden address these validation inconsistencies and inter-application authentication weaknesses, so that their
mobile applications will be secure from data integrity attacks and credential theft by malicious applications.

Findings Summary

Vulnerabilities identified during the engagement were categorized based on their severity and potential impact on the
organization. The following table provides a comprehensive breakdown of findings by engagement phase and risk level,
enabling Bitwarden to prioritize remediation efforts effectively. Each finding has been thoroughly documented with
technical details, business impact analysis and actionable remediation steps. The distribution of vulnerabilities across
different severity levels provides insight into Bitwarden's current security posture. It highlights areas where security
controls and processes can be strengthened to protect Bitwarden's assets and operations better.

Insufficient Package Name Validation Allows
M1 TOTP Secret Harvesting Remediation underway

Inconsistent TOTP Input Validation via Deep
L1 Links Remediation not started

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

#%spaloalto’ cuniTa2

NETWORKS

Recommendations Summary

Robust and Consistent Input Validation

Implement strict, centralized, and consistent input validation across all potential data entry points (e.g., user interface
fields, deep links, QR codes, application programming interfaces [APIs]).

Secure Inter-Process and Network Communication

Implement and enforce robust mechanisms to verify the authenticity of connected applications and services. This
includes the following:

e Certificate and signature verification: Rigorously verify the signing certificate or signature of any external or
peer application before establishing a connection or initiating sensitive data exchange.

e Certificate pinning: Utilize certificate pinning for critical network connections (e.g., bridge services) to ensure
that only legitimate, trusted servers or services can establish a connection.

Defense-in-Depth and Error Handling

Adopt defense-in-depth principles by validating and sanitizing input at multiple layers (e.g., parsing, storage, and usage)
to prevent a single point of failure. Additionally, implement the following:
¢ Improved error management: Replace generic or technical error messages with user-friendly alerts,
preventing attackers from gaining insight into internal application logic or architecture.
e Security monitoring: Develop mechanisms to detect and potentially alert on suspicious activities, such as
multiple applications falsely claiming the same package name on a device.

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

#%spaloalto’ cuniTa2

NETWORKS

Technical Details

This security assessment, executed by Unit 42 in partnership with Praetorian, focused on the Bitwarden primary mobile
application and the Bitwarden Authenticator application, targeting the overall security architecture. Testing was
conducted between September 2, 2025, and September 16, 2025, and involved systematic probing of inter-application
communication, data validation, and core authentication mechanisms.

Assessment Scope

The scope of this security assessment focused on a pair of Bitwarden mobile applications, covering both the Android
and iOS platforms. Specifically, the engagement included the Bitwarden Password Manager applications (Android
Version 2025.8.1 and iOS Version 2025.8.0), and Bitwarden Authenticator standalone applications (Android Version
2025.8.1 and iOS Version 2025.8.1), which are responsible for generating time-based one-time passwords (TOTPs) and,
notably, the bridge synchronization mechanism used to communicate and exchange data between the primary
Password Manager and the Authenticator applications across both mobile operating systems.

Bitwarden Password com.x8bit.bitwarden, Version Password management application providing

Manager for Android 2025.8.1 secure vault storage, password generation,
and autofill services; downloaded from Google
Play Store

Bitwarden com.bitwarden.authenticator, Standalone TOTP/two-factor authentication

Authenticator for Version 2025.8.1 (2FA) application generating TOPTs with bridge

Android synchronization to the main password

manager; downloaded from Google Play Store

Bitwarden Password com.x8bit.bitwarden, Version Password management application providing
Manager for iOS 2025.8.0 secure vault storage, password generation,
and autofill services for iOS devices

Bitwarden com.bitwarden.authenticator, Standalone TOTP/2FA application generating
Authenticator for iOS Version 2025.8.1 TOTPs with bridge synchronization to the main
password manager for iOS devices

Effective Controls

Effective controls are components of Bitwarden's people, processes, or technology that mitigate security risks. The
following effective controls were particularly beneficial and warrant special recognition.

e Hardware-backed key storage: The Bitwarden mobile applications effectively utilized Android Keystore and
iOS Secure Enclave for storing biometric authentication keys and sensitive cryptographic material. This
hardware-backed storage provides strong protection against key extraction even on compromised devices,
significantly raising the bar for attackers attempting to retrieve encryption keys.

e Certificate pinning implementation: The applications implemented robust certificate pinning for all API
communications with Bitwarden back-end services. This control effectively prevents machine-in-the-middle
attacks by validating server certificates against pinned values, ensuring that sensitive vault data cannot be
intercepted during synchronization.

e Biometric authentication integration: The integration with platform biometric authentication APIs was
properly implemented with appropriate fallback mechanisms. The use of cryptographic keys bound to

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

s paloalto ' uNiITa2

NETWORKS

Detailed Findings

Medium Risk Findings

M.1 Insufficient Package Name Validation Allows TOTP Secret
Harvesting

A successful exploit undermines the security benefits of multi-factor

Impact authentication by allowing a malicious local application to harvest TOTP secrets,
which can then be used to gain unauthorized, persistent access to protected user
accounts.

.. Exploitation requires the user to first install a malicious application on the same

Exploitability

device, which limits the practical ease of attack but does not eliminate the severe
consequence of compromised secrets.

Description

Android inter-application communication security architecture can be circumvented when applications do not enforce
strong cryptographic validation, such as certificate signature verification, and instead rely on easily spoofed identifiers
like package names to establish trust with other local applications. This flawed trust mechanism allows a malicious local
application to impersonate a trusted service and intercept sensitive data. When this affects components managing
TOTP secrets, it directly undermines the core security benefit of multifactor authentication (MFA) by exposing the very
codes intended to secure user accounts. The fundamental weakness is the lack of robust identity and authenticity
checks during the critical synchronization or bridge connection phase.

Recommendations
Implement proper certificate validation for bridge connections to prevent package name spoofing attacks:

Immediate Remediation

e \Verify certificate signatures when establishing bridge connections in the Authenticator application.
e Implement the knownSigner validation logic that checks against the expected certificate hashes.
e Add certificate pinning for bridge service connections to ensure only legitimate Bitwarden applications can
connect.
Additional Security Enhancements

e Ensure that both applications mutually verify each other's signing certificates before any key exchange occurs.

e Consider adding a user-visible notification when bridge synchronization is active, showing the verified
application name.

e Implement detection for multiple applications claiming the same package name on the device.

e Add bridge connection audit logging to help users identify when synchronization occurs.

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:H/PR:N/UI:R/S:U/C:H/I:N/A:N

#%spaloalto’ cuniTa2

NETWORKS

Code-Level Fix

packageInfo = packageManager.qgetPackageInfo(packageName,
PackageManager.GET SIGNATURES)
val signatures = packagelnfo.signatures

signatures)) {
throw SecurityException(“Invalid certificate for bridge connection")

Technical Details

The Bitwarden Authenticator application validates only package names but not certificate signatures when establishing
bridge connections with the main Bitwarden password manager application. This allows malicious applications to spoof
the “com.x8bit.bitwarden” package name and intercept TOTP secrets during the synchronization process between the
two applications. The Authenticator application's bridge connection logic in “AuthenticatorBridgeManagerimpl”
validates the “applicationld” (package name) but bypasses certificate validation when connecting to bridge services.
While the main application properly enforces signature-level permissions
(android:protectionLevel="signaturelknownSigner"), the Authenticator application does not verify these permissions
before establishing connections.

Affected Systems

e Bitwarden Authenticator Android application (all versions supporting bridge synchronization)
e TOTP secrets synchronized between Bitwarden applications

Attack Methodology

The vulnerability was identified by analyzing the bridge connection implementation in the Bitwarden Authenticator
source code. The vulnerability was confirmed through development of a proof-of-concept malicious application that
successfully harvested TOTP secrets. The attack flow operates as follows:

A malicious application is installed with the package name “com.x8bit.bitwarden.”

The application implements the “AuthenticatorBridgeService AIDL” interface.

When the user opens Bitwarden Authenticator, it attempts to connect to the bridge service.

The Authenticator validates only the package name, not the certificate signature.

The malicious service provides an Advanced Encryption Standard (AES) encryption key during the key
exchange.

When users add TOTP codes to the Authenticator, the secrets are sent to the malicious application.

e The malicious application decrypts and harvests the TOTP secrets.

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

paloalto: < unNiTaz

NETWORKS

Running Devices [, Pixel 7a API 35 ...le API

Verification codes

Local codes (1) A

&) foo (2) esasar

john.novak+user2@praetorian.com | bitwarden.com (12) A

©€) abci2s @) 213523
(5] () 812622
@) 310508

qwerty1234 () esasa7
SpecialTest1 () 396038

OversizedTest @ 715 578
+

InvalidBase32Test @) 849026

) ©

Verification codes Settings

adb uninstall com.x8bit.bitwarden
Running Devices [2 Pixel 7a API 35 ...le API

b install -r bitwarden_spoof/c

OHDd MM <00 B @

| grep -E _
MALICIO GE: B MA S D
MALIC f thenticator app...

Bitwarden (SPOOF)

The malicious application was installed with Android Debug Bridge (ADB) to mimic an attacker's positioning and
behavior

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

Z» paloalto @ unNiITa2

NETWORKS

Running Devices [, Pixel 7a API 35 ..

O Db

Verification codes

Local codes (1) A

606 598

&) foo

attacker@praetorian.com | bitwarden.com (4) A

&) harvest-code-1 668177

@ harvest-code-2 606 598

&) harvestcode-3 127578

US BRIDG
PEHPK3PXY

PZZ&issu

&) harvest-code-4 606 598

5]

Verification codes. Settings

Running Devices

O» e OO

1:44 9

X Create Verification code

Enter key manually
Name

test123

Save to B
allbacks$
4

Save here

Cannot add authenticator key?

Scan QR code

JS BRIDGE
PEHPK3PX'

) JBSWY3DPEHPKI..
QWERTYU (0]
A SDFGHUJKIL
4 Z XCVBNMG®

7123

RIDGE: - If
RIDGE: - Try
BRIDGE

MALICIOUS_|
MALICIOUS_|
MALICTOUS

& N
Inte

MALICIOUS_BRIDGE
MALICIOUS_BRIDGE

- Look fo
E: - TOTP

no TOTP data comes through
y manually triggering sync
any error

sharing only works

NG TO MAL
x8bit

UTHENTICATOR BINDI!
nt: Intent

Expected fingerprint

Match result: false

, the sync may not be

in Auth

messages in Authe

both apps are

1CI0
bitwarden,

0f585ba06809e463

A PP PROVIDING MALICIOUS AES KEY 200
K 2

RI
BRIDGE :
BRIDGE: @
BRIDGE

1 MALICIOU!
5542 T MALICIOUS

I MALICIOUS_BRIDGE
T MALICIOUS_BRIDGE:

BRIDGE

1 MALICIOUS_BRIDGE
6 T MALICTOUS_BRIDGE:
I MALICIOUS_BRIDGE:
I MALICIOUS_BRIDGE:
BRIDGE:

RIDGE

S_BRIDGE

6 T MALICIOUS_BRIDGE:

T MALICIOUS_BRIDGE: -
BRIDGE: -

I MALICIOUS_BRIDGE: -
US_BRIDGE: -

I

T MALICIOUS_BRIDGE
T MALICIOUS_BRIDGE :
T MALICIOUS_BRIDGE

T MALICIOUS.

I MALICIOUS_BRIDGE
I MALICIOUS_BRIDGE
T MALICIO :

I MALICIOUS_BRIDGE :
T MALICIOUS_BRIDGE :
I MALT!

T MALICIOUS_BRIDGE

I MALIC

totp,
?secre

T MALICIOUS_BRIDGE :

MALICIOUS_BRIDGE
I MALICIOUS_BRIDGE
T MALICIOUS_BRIDGE :
I MALICIOUS

US_BRIDGE

US_BRIDGE
BRIDGE:

RIDGE

T MALICIOUS_BRIDGE :
T MALICIOUS_BRIDGE
T MALICIOUS_BRIDGE
I MALT

T MALICIOUS_BRIDGE :

FEP

221058¢02b4367d67
uthentic
ALL

B Real by

B PoC: Just s
syncAccounts() calle

Real bridge: async operati

ed
[ASYNC] Getting shared ac
[ASYNC] Generated JS|
[ASYNC] Encrypting
,"environmentLabel
PEHPK3PXPEL
PXP&issuer

ng random

suer=har

nticator

on that encrypts getSharedA

(445 bytes)
38-5300-4f
["otpauth:

,"otpauth

t-cod

pting data - plaintext

[ASYNC] @ IV contain

ntainer

[ASYNC] @ Ei
[ASYNC] Calling
[ASYNC]

0

[ASYNC] @ Callback m
[ASYNC] & Account sync ¢
[ASYNC] B Authenticator
[ASYNC] # Bridge

If no TOTP data comes thr
Try manually triggering sy
Look for any error mess

TOTP

: & AUTHENTICATOR BINDI!

ntent: In

ricEncryptionk
d fingerprint

d fingerprint
Match result: false

PROVIDING MALT

221058ef02 d
Authenticator will

® ALL future TOTP data can
registerBridgeServiceCal
Callb

acks

ata container - data length: 448

549a

251F

- result

length: 16
sfully
ated successfully
ountData
- IV container bytes: 16
- Data container bytes: 448

tion
A reated

AccountData

pleted successfully
Authenticat
t data and s UCC

for TOTP

ompleted r should process data
should decry
fully

ss state
harvesting

c in Authenticator settings

s in Authentic:

sful - returning AIDL binder
/Fingerprint() called
8f 505444

c1c350e

588beal

56f1fbaba6
encryption
decrypted with this ke
lback() called
bitwarden.authent

regi

: Just storing callback, no immediate data sending

) called

async o

v
[ASYNC] Gettin

] Generated JSON

] Encrypting accol

rId"

SWY3DPEHPK3PXP&is:
YNC] Using random I
& Encrypting data

@ Encrypti.
[ASYNC] Creating Byte
[ASYNC] Creating IV co
ntain

unts (simulating r
size: 441 by

"50fbb338-53

‘totp/?secret=IBSHY3D
et=IBSNY3DPEHPK

v
- plaintext

ntainer

NC] Creating ypt:

[ASYNC] Pre-send verific

[ASYNC] Pre-send veri
[ASYNC] @@ Encryp
[ASYNC] Callin
[ASYNC] ding to 1
[ASYNC] Invoking
[ASYNC] @ Call

Authenticator

[ASYNC] 5 Bridge shou

container bytes
container bytes

ata created

untsSync callback

egistered callbacks

allback 0. .

sthenticator should process data
a and set Success state

ted TOTP harvesting

uld decrypt da

uld now be fully conn

ridgeServ

For demonstration purposes, a new key was added in the Authenticator application and the first "Save to
Bitwarden" option was chosen

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

#/» paloalto

NETWORKS

UNIT 42

Running Devices [Pixel 7a API 35 ...le API

ONd DWW <« 00 B @

Verification codes

Local codes (1) A

&) foo 10)

attacker@praetorian.com | bitwarden.com (4) A

@ harvest-code-1
@ harvest-code-2
@ harvest-code-3

@ harvest-code-4

Verification codes Settings

177 962

306 598

177962

928947

177 962

15 13:43:

iceCallback

PZZ&issue
09-15 13:43

09-15 13
15 13
15

09-15 13:
09-15 13:
09-15 13:
09-15 13:
09-15 13
09-15 13
09-15 13
09-15 13
09-15 13:

31.853

3 26523 26542

harves:

.880
31.881

:59.514
:59.514

55D

26523 26544
9

MALICIOUS_BRIDGE:

MALICIOUS_BRIDGE:
0US_|
OUS_BRIDGE:

MALICIOUS_BRIDGE:

26523 26542

MALT |
MALICIOUS_BRID!
MALICIOUS_BRIDG

attacker@praetorian. con

autt
otpauth://totp/?
76 I MALICIOUS_
OUS_BRID

//totp

_BRIDGE:
MALICIOUS_BRIDGE
MALICI _BRIDGE

OUS_BRIDGE:
MALICIOUS_BRIDG!
MALICIOUS_BRIDGE:
MALICIOUS_BRIDGE

_BRIDGE:

2652 MALICIOUS_BRIDGE:
MALICTOUS_BRIDGE:

MALICIOUS_BRIDGE

MALICIOUS_BRIDGE :
_BRIDG!
54c691db2b86458e7c3|
MALICIOUS_BRIDGE

MALICIOUS_BRIDGE: S

OUS_BRIDG

MALICIOUS_|
MALICI BRIDGE:
MALICIOUS_BRIDGE
MALICIOUS_BRIDGE:
MALICIOUS_BRIDG

MALICIOUS_BRIDGE:
MALICIOUS_BRIDG

26523
26523
26523
26523
26523
26523
26523
26523
26523

26542
26542
26542
26542
26542
26542
26542
26542
26542

MALICIOUS_BRIDG
MALICIOUS_BRIDG
MALICIOUS_BRIDG

Callback registered: com.bitwarden.au nticatorbridge.IAuthenticatorBridgeSer

s re rations

async o

B Real brid, Callback ered for future
B ding

C: Ju callback, no immediate data
@ syncAccounts() call
Real bridge: a op and calls onAcco

tion that enc ounts()

async account sync op:

-b347010
["otpauth
uth://totp/

a","name":" # MALICI
totp JBSWY3D
et=JBSWY3DPEHPK

2704

aine .
Creating IV container - iv length: 16
® 1V container created

ting data container - data length:

[ASYNC]
[ASYNC]

[ASYNC] iccessfully
c

[ASYNC]
[ASYNC]

to 1 regist
g callback
@ Callback @ completed successfully
[ASYNC u ! to
[ASYNC]
[ASYNC]

data
state
ting

should pr
N

e'e'e” TOTP DATA RECEIVED - HARVESTING TOTP S
EE® THIS IS THE MAIN ATTA

S VULNERABILITY EXPLOITATIC

Encrypted Dat eb2778
42d71588991b57fde@1857

Iv: 3 4565323045

ze: 80 bytes

RET e'e’'e
ET BEING EXTR

9abc3103a3e
fe8b49aa

n with malicious key...

@ Attempting decrypti
® DECRYPTION SUCCESSFUL!
Decrypted JSON: {"

otpUri": "otpauth://totp. 3DPEHPK3PXP&i

¥ ¥ ¥ TOTP SECRET HARVESTED ¥ ¥ ¥

Complete TOTP URI: otpauth://totp/?secret=IBSWY3DPEHPK3PXP&issuer=test123
TOTP Secret: JBSWY3DPEHPK3PXP

Issuer: testl23

@ ATTACK SUCCESSFUL - TOTP SECRET COMPROMISED

B NOTE: Harvested TOTP doesn't appear in POC UL (not implemented)
B Real attacker would store/display harvested codes properly
Returning TRUE to maintain connection

The malicious application captured the credentials as shown in "adb logcat" output

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

% paloalto | FuNiTa2

NETWORKS

Low-Risk Findings

L.1 Inconsistent TOTP Input Validation via Deep Links

Bypasses established security validation and potentially enables users to save
invalid entries that could lead to authentication issues or unexpected application

Impact
states.
L Exploitable by any entity capable of tricking a user into clicking a specially crafted
Exploitability “otpauth://totp” Uniform Resource Identifier (URI).
Description

Input validation is a foundational security measure designed to ensure that all data provided by a user or external
system is safe, expected, and correct before the application processes it. This involves rigorously checking that the
input conforms to the defined format, type, length, and range required for the intended operation. When input validation
is inadequate, missing, or inconsistently applied across all input channels, the application becomes critically vulnerable
to attacks.

Recommendations
Implement consistent validation across all TOTP input methods:

1. Add Base32 validation to deep link handler:

3l secret = this.getQueryParameter(PARAM NAME SECRET)?.trim() ?: return null
if ('secret.isBase32()) return null id this validation

2. Implement early URI length validation:

if (this.toStrinc length = MAX TOTP URI LENGTH) return null

3. Improve error handling:
e Replace generic "model state is invalid" errors with user-friendly messages.
e |Log validation bypass attempts for security monitoring.
e Handle software development kit (SDK) validation failures gracefully without exposing internal states.

4. Apply defense-in-depth principles:
e Validate input at multiple layers (parsing, storage, and usage).
e Ensure all input methods enforce the same security policies.
e Consider implementing a centralized validation service for TOTP data.

Technical Details

The Bitwarden application implemented inconsistent validation for TOTP entries between different input methods. While
the QR code scanning functionality properly validated TOTP secrets for Base32 encoding compliance, the deep link
handler (“otpauth://totp”) bypassed this validation entirely. Additionally, the application accepted oversized TOTP URIs

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential 10

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:R/S:U/C:N/I:L/A:L

s paloalto: @unNiTa2

NETWORKS

up to 687 characters through deep links before failing with an internal SDK error, exposing implementation details about
the application's validation pipeline.

Affects Systems

Bitwarden Android application

TOTP deep link handler: “otpauth://totp”
TotpUriUtils.kt parsing logic

Bitwarden SDK encryption layer

Attack Methodology

Comparative analysis of input validation between QR code scanning and deep link processing led to the identification
of the vulnerability. The QR code path (“QrCodeScanViewModel.kt:60 “) enforced strict Base32 validation:

if (!secretValue.isBase32()) { return error }

However, the deep link path (“TotpUriUtils.kt:24”) performed no such validation:

val secret = this.getQueryParameter(PARAM NAME SECRET)?.trim() ?: return null // No
Base32? validation performed

Multiple potential attack vectors:

1. Web-based attack vector: Create a malicious webpage demonstrating real-world exploitation:

// Attack payload that bypasses Lidationwindow. location.href = otpauth //totp/
InvalldBaSEBZTest'?secret-ThlsshnuldFaﬂBaseBEUalldatmn'@#5" 22!

2. Invalid Base32 character injection via ADB:

adb shell am start -W -a android.intent.action.VIEW %\
-d "otpauth://totp/Test?secret=INVALID BASE32 CHARS '@#3$" \
com.x8bit.bitwarden

Result: Successfully stored in vault (would fail via QR code)

3. Oversized payload attack:

659-character secret succeeds

adb shell am start -W -a android.intent.action.VIEW %\
-d "otpauth://totp/Test3?secret=%(python -c 'print("B"*659)"')" \
com.x8bit.bitwarden

660-character secret fails with "model state is invalid" error
adb shell am start -W -a android.intent.action.VIEW \
-d "otpauth://totp/Tst3?secret=%(python -c 'print("B"*660}"')" \
com.x8bit.bitwarden

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

%y paloalto | s uNiITaz

NETWORKS

Running Devices [, Pixel 7a API 35 ...le API

O PP DO 4 © kb @@

2:04 9 .

> A 192.168.1.102:8000/toty +

Bitwarden TOTP Deep Link
Injection Tests

VULNERABILITY: Deep links bypass
Base32 validation that QR codes
enforce.

TARGET: Bitwarden Android app with
malformed TOTP URIs

METHOD: JavaScript-triggered deep
links to demonstrate validation bypass

SETUP: Ensure Bitwarden app is
installed and accessible. Monitor with
Frida using vault_decrypt_hooks.js to
see what gets saved.

Attack 1: Invalid Base32 Characters
Injection

Attack 2: Oversized Secret (500 chars)

Attack 3: Maximum Length Test (659
chars)

Attack 4: Over Limit Test (670 chars)

Target: Exceed 687 character limit
Expected: Should trigger "model state is
invalid" error

Attack 5: Special Character Injection

The web-based attack used a simple web page, which served up "totp://" URI links

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

12

s paloalto: @unNiTa2

NETWORKS

O
Running Devices [Pixel 7a API 35 ...le API

O D

An error has occurred

The model state is invalid.

Oversized TOTP values received this error in the Bitwarden application

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

13

paloalto

NETWORKS

UNIT 42

Running Devices [, Pixel 7a API 35 ...le API DECRYPTED ITEM NAM

Ttem ID: 89b19c69-709 9f3f-b35400f ce4 0
O DO < 00 B @ : IN DATA AVAILABLE
TOTP Secret: otpauth://totp/SpecialTest1?secret=ABC123!@#$%25%5E&*()_+
TOTP Length: 59 ct
DECRYPTED ITEM NAME: SpecialTestl
Item ID: 89b19
LOGIN DATA AVAILABLE

.ge . AB(C123!@#$%25%SE&* ().
& Verification codes 3 O

ITEMS (12) Ttem I
OGIN DATA AVAILABLE
TOTP S 0 //totp/InvalidBase32Test?secret=ThisShouldFailBase32Validation!@#s)
© TOTP Length: 83 chars
DECRYPTED ITEM NAME: InvalidBase32Test
bb67-0b8f-469-86d5-b35400f ca8s3
LOGIN DATA AVAILABLE
TOTP Secret: otpauth://totp/InvalidBase32Test?secret=ThisShouldFailBase32Validation!@#5%2
TOTP Length: 83 chars
DECRYPTED ITEM NAME: OversizedTest
Item ID: f25fldbc-6 ad-b35400fcc498
1] LOGIN DATA AVAILABLE
P et: otpautl
AAAAAAAAAAAAAAAAAAAAAAA

AAAN
1| AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
P Length: 536 chars
InvalidBase32Test D] OVERSIZED TOTP DETECTED =
'] VULNERABILITY CONFIRMED: Oversized TOTP saved to vault
versizedTest?secret=AAA

OversizedTest

AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
This proves validation bypass!

J AAAN
17

D 17 DECRYPTED ITEM NAME: OversizedTest
Ttem ID: f25fldbc-6e7e-4987-91ad-b35400fcc498
17 LOGIN DATA AVAILABLE
TOTP Secret: otpauth://totp/OversizedTest?secret=AA
AAA
AA
\AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
TOTP Length: 536 chars
RSIZED TOTP DETECTED
1 VULNERABILITY CONFIRMED: Oversized TOTP saved to vault
Full TOTP: otpauth://totp/OversizedTest?s =AAA
AARAAAAAAAAAAA
AA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
This pro 1 on bypass!

qwerty1234

SpecialTestl

1]
Generator Settings !] DECRYPTED ITEM NAME
Item ID: f25fldbc-6e
'] LOGIN DATA AVAILABLE
TOTP Secret: otpauth://totp/OversizedTest?secret=AAN
AAA,

A frida script that hooked the application showed that the TOTP secrets stored for several secrets contained
invalid characters and oversized lengths

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential 14

s paloalto ' uNiITa2

NETWORKS

Appendix: Risk Rating Methodology

The risk level for vulnerabilities has been calculated using the Common Vulnerability Scoring System (“CVSS”)
standardized framework. This formulaic approach ensures consistency in vulnerability scoring, thereby allowing system
owners to accurately prioritize response efforts.

CVSS Scoring Methodology

A CVSS score is calculated using several metrics that are divided into three groups: Base, Temporal, and
Environmental. The Base Score represents the intrinsic qualities of a vulnerability and has the greatest influence on the
cumulative risk rating. To ascertain this foundational score, a series of characteristics are assigned pertaining to
exploitability and impact. The Base Score is then derived via standardized formula which converts the assigned
characteristics into a single quantitative value.

EXAMPLE Base Score Calculation for CVSS

Exploitability Metrics Impact Metrics
Attack Vector Scope
Unchanged] Changed
Confidentiality
Integrity
User Interaction Availability
—

SRR
EEE
4.3 (MEDIUM)

Depicts an example of the CVSS scoring methodology used to assess each vulnerability. This does not reflect any specific
finding(s) for the event affiliated with this report.

While the Base Score represents the intrinsic characteristics of a vulnerability, the Temporal and Environmental scores
allow this rating to be adjusted based on a variety of external factors. Temporal scores can change over time (like the
availability of exploits). Whereas Environmental scores influence risk calculation based on the target environment (like
mitigations in place).

Qualitative Severity Rating Scale

CVSS also defines a Qualitative Severity Rating Scale for a corresponding quantitative risk rating. This qualitative value
(informational/low/medium/high/critical) is the final product of the risk evaluation process.

Informational (0.0): No impact or perhaps is not even a vulnerability

Low (0.1-3.9): Minimal impact and perhaps requires specific conditions to be exploited

Medium (4.0-6.9): Might affect a larger range of components or have a more significant impact

High (7.0-8.9): Potentially leads to impacts like significant data loss, data breach, or extensive downtime
Critical (9.0-10.0): Often allows for network-wide impacts, data breaches, complete system or data
compromise, and other critical impacts

Nonstandard Rating

CVSS cannot quantify risk for every category of vulnerability. For example, the CVSS base-scoring characteristics are
not readily applicable to the types of issues identified during a physical penetration test. In these scenarios, Unit 42 will
leverage recommendations from in-house subject matter experts to determine risk severity ratings.

Bitwarden, Inc. | Mobile Application Penetration Test | October 23, 2025 | Confidential

15

	
	
	Bitwarden Mobile App Security Report
	Table of Contents​
	Summary
	Issues
	M.1: Insufficient Package Name Validation Allows TOTP Secret Harvesting (Medium)
	L.1: Inconsistent TOTP Input Validation via Deep Links (Low)

	14e60d39-c679-41b8-8e53-c89f5f707997.pdf
	Bitwarden, Inc.
	Executive Summary
	Findings Summary
	
	Recommendations Summary

	Technical Details
	Assessment Scope
	​Effective Controls

	Detailed Findings
	Medium Risk Findings
	M.1 Insufficient Package Name Validation Allows TOTP Secret Harvesting
	CVSS 3.1 / AV:L/AC:H/PR:N/UI:R/S:U/C:H/I:N/A:N

	
	Low-Risk Findings
	L.1 Inconsistent TOTP Input Validation via Deep Links
	CVSS 3.1 / AV:L/AC:L/PR:L/UI:R/S:U/C:N/I:L/A:L

	Appendix: Risk Rating Methodology
	CVSS Scoring Methodology
	Qualitative Severity Rating Scale
	Nonstandard Rating

	14e60d39-c679-41b8-8e53-c89f5f707997.pdf
	Bitwarden, Inc.
	Executive Summary
	Findings Summary
	
	Recommendations Summary

	Technical Details
	Assessment Scope
	​Effective Controls

	Detailed Findings
	Medium Risk Findings
	M.1 Insufficient Package Name Validation Allows TOTP Secret Harvesting
	CVSS 3.1 / AV:L/AC:H/PR:N/UI:R/S:U/C:H/I:N/A:N

	
	Low-Risk Findings
	L.1 Inconsistent TOTP Input Validation via Deep Links
	CVSS 3.1 / AV:L/AC:L/PR:L/UI:R/S:U/C:N/I:L/A:L

	Appendix: Risk Rating Methodology
	CVSS Scoring Methodology
	Qualitative Severity Rating Scale
	Nonstandard Rating

