
CertiK Assessed on Jul 28th, 2025

Lightchain
Preliminary Comments

Executive Summary

Vulnerability Summary

3 Centralization 3 Pending
Centralization findings highlight privileged roles &

functions and their capabilities, or instances where the

project takes custody of users’ assets.

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

4 Major 4 Pending
Major risks may include logical errors that, under specific

circumstances, could result in fund losses or loss of

project control.

4 Medium 4 Pending Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

4 Minor 4 Pending

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

4 Informational 4 Pending

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY LIGHTCHAIN

CertiK Assessed on Jul 28th, 2025

Lightchain

These preliminary comments were prepared by CertiK, the leader in Web3.0 security.

TYPES ECOSYSTEM

EVM Compatible

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 07/28/2025

KEY COMPONENTS

N/A

CODEBASE
Zip file hash:

openssl dgst -sha256 Smart-Contracts-main.zip

SHA2-256(Smart-Contracts-main.zip)=

View All in Codebase Page

23
Total Findings

0
Resolved

0
Partially Resolved

0
Acknowledged

0
Declined

23
Pending

4 Discussion 4 Pending The impact of the issue is yet to be determined, hence

requires further clarifications from the project team.

SUMMARY LIGHTCHAIN

TABLE OF CONTENTS LIGHTCHAIN

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

Core Contracts

External Dependencies

Privileged Functions

Findings

LIG-02 : Initial Token Distribution

LIG-03 : Centralized Control of Contract Upgrade

LIG-04 : Centralization Related Risks

LIG-05 : Incorrect Assembly Implementation

LIG-06 : Access Control Misalignment in Timelock Governance

LIG-17 : Slashing Bypass via Early Withdrawal Request of Stakes

LIG-18 : Improper Authorization Logic May Block `slash` Relevant Functions

LIG-07 : Potential Front-run on Permit Call to cause DOS

LIG-19 : Potential Delete Reports by Mistake

LIG-20 : Insufficient Quorum Threshold Allows Proposal Manipulation

LIG-23 : Uncoordinated Governance Parameter Management

LIG-08 : Usage of `transfer()` for sending Native Tokens

LIG-09 : No Way to Retrieve ETH from the Contract

LIG-10 : Potentially Unusable Function

LIG-11 : Potential Mismatch Between Delegated Votes and Token Balance

LIG-12 : Dead Code

LIG-13 : Risk of Insufficient Native Token Balance During Refunds

LIG-14 : Use of `code.length` Is No Longer a Reliable Contract Check

LIG-21 : Unnecessary Inheritance of `Ownable`

TABLE OF CONTENTS LIGHTCHAIN

LIG-01 : Discussion on Validator Removal Conditions

LIG-15 : Unclear Contract Design

LIG-16 : Concerns Regarding the Validator Mechanism

LIG-22 : Concerns Regarding the Staking Mechanism

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS LIGHTCHAIN

CODEBASE LIGHTCHAIN

Repository

Zip file hash:

openssl dgst -sha256 Smart-Contracts-main.zip

SHA2-256(Smart-Contracts-main.zip)= 8fc9d92f5480f90318f4b6ac6b528d9e05dd95644d0f75201a994b719f22ec92

CODEBASE LIGHTCHAIN

AUDIT SCOPE LIGHTCHAIN

9 files audited 9 files with Pending findings

ID Repo File SHA256 Checksum

MAC
CertiKProject/certik-

audit-projects

Smart-Contracts-main/ModelAcce

ssCredits.sol

74dcdf4396da7d11a9a417f91acd76d6f157

db9b843095cc5f8cd37e8be26184

MDA
CertiKProject/certik-

audit-projects

Smart-Contracts-main/ModelDA

O.sol

36f098cb6425a4127dc3d3fd86d2922cea55

7d4a55978f6b0ec7158d2ed45360

MRS
CertiKProject/certik-

audit-projects

Smart-Contracts-main/ModelRegi

stry.sol

90308b8171ddd4d217852d6211a7ad629b

c5cad2be859997f8c33fec3550253c

MRC
CertiKProject/certik-

audit-projects

Smart-Contracts-main/ModelRew

ard.sol

6e23bf213959fa11197fb4779cca01bb931e

074eb5b37b4057ff01aa0298ca5c

MSS
CertiKProject/certik-

audit-projects

Smart-Contracts-main/ModelSlas

her.sol

52f5dc47806fe1525ea2b071bc9f3fdfd505c

df446a6aca09eab36b46e158998

MTS
CertiKProject/certik-

audit-projects

Smart-Contracts-main/ModelToke

n.sol

2027701e5194f44313efbe929bcc9dd81dc5

46b5db0d61802e237481779612da

MUP
CertiKProject/certik-

audit-projects

Smart-Contracts-main/ModelUpgr

adeProxy.sol

641fa374c483c3edfbf81395026f5474cf1b7

e1877a2d9014aca3d3f3cca074d

MVR
CertiKProject/certik-

audit-projects

Smart-Contracts-main/ModelValid

atorRegistry.sol

cbd293912366a0331738dbfa4b739060f64

88fca164f1bae442c8f209b7adfa3

MVS
CertiKProject/certik-

audit-projects

Smart-Contracts-main/ModelValid

atorStakingPool.sol

f71d76e3896d369b4cb11b031b381c681a0

2edf196dfecfe368c562f0d38ce25

AUDIT SCOPE LIGHTCHAIN

APPROACH & METHODS LIGHTCHAIN

This report has been prepared for Lightchain to discover issues and vulnerabilities in the source code of the Lightchain

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Formal Verification, Manual Review, and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS LIGHTCHAIN

REVIEW NOTES LIGHTCHAIN

Overview

The Lightchain protocol aims to build a decentralized platform for AI model validation and management, covering key

functionalities such as model submission, validation, access control, and governance.

By introducing staking and slashing mechanisms, the protocol enforces responsible behavior among model validators to

ensure model quality and overall protocol security. Additionally, the system incorporates token-based governance and

economic incentives to support sustainable participation from both model contributors and validators.

Core Contracts

Governance Contracts

ModelDAO.sol : The core governance contract of the protocol, enabling proposal submission, voting, and parameter

adjustments. It works in conjunction with a Timelock contract to enforce delayed and transparent execution of approved

proposals, enhancing the security and auditability of protocol changes.

ModelToken.sol : The protocol's governance token (MODEL), implemented as an ERC20 token, used for voting and

participating in governance decisions.

ModelUpgradeProxy.sol : It's designed to handle validator reporting and penalty execution. It allows users to submit reports

against validators, which, upon validation, trigger corresponding punitive actions. Its functionality partially overlaps with

ModelSlasher.sol .

Model Management Contracts

ModelRegistry.sol : A registry contract for model submissions and validation records. It supports on-chain storage of

model hashes and related verification data to enable trustworthy model submission processes.

ModelValidatorRegistry.sol : Maintains a list of approved model validators within the protocol.

ModelValidatorStakingPool.sol : A staking pool where users can stake tokens to become validators. It also includes basic

slashing functionality to discourage dishonest behavior among validators.

Access Control and Incentive Contracts

ModelAccessCredits.sol : Implements a credit-based access control mechanism. Users can purchase access credits

using the native token, which are then consumed by designated operators during model inference.

ModelReward.sol : Handles reward distribution related to model contributions, including incentives for model submitters and

validators.

ModelSlasher.sol : A dedicated module for penalizing dishonest validators. It reduces the staked amount of validators

found to be misbehaving, thereby helping to maintain protocol integrity.

REVIEW NOTES LIGHTCHAIN

External Dependencies

The Lightchain protocol relies on a few external contracts or addresses to fulfill the needs of its business logic.

The following are third-party dependency contracts used within the contract:

@openzeppelin/contracts

@openzeppelin/contracts-upgradeable

The following are external addresses used within the contracts:

ModelAccessCredits:

_timelock

ModelDAO:

token_

rewardVault_

rewardToken_

timelock_

ModelRegistry:

_governance

ModelReward:

dao

_modelToken

ModelSlasher:

_dao

_pool

_treasury

ModelUpgradeProxy:

_dao

_pool

_treasury

ModelValidatorRegistry:

_dao

_stakingPool

REVIEW NOTES LIGHTCHAIN

ModelValidatorStakingPool:

_dao

_token

It is assumed that these contracts or addresses are trusted and implemented properly within the whole project.

Privileged Functions

In the Lightchain protocol, the admin roles are adopted to ensure the dynamic runtime updates of the project, which are

specified in the findings Centralization Related Risks and Centralized Control of Contract Upgrade.

The advantage of those privileged roles in the codebase is that the client reserves the ability to adjust the protocol according

to the runtime required to best serve the community.

It is also worth noting the potential drawbacks of these functions, which should be clearly stated through the client's

action/plan. Additionally, if the private keys of the privileged accounts are compromised, it could lead to devastating

consequences for the project.

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the community.

Any plan to invoke the aforementioned functions should also consider moving to the execution queue of the Timelock

contract.

REVIEW NOTES LIGHTCHAIN

FINDINGS LIGHTCHAIN

This report has been prepared to discover issues and vulnerabilities for Lightchain. Through this audit, we have uncovered

23 issues ranging from different severity levels. Utilizing the techniques of Formal Verification, Manual Review & Static

Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

LIG-02 Initial Token Distribution Centralization Centralization Pending

LIG-03 Centralized Control Of Contract Upgrade Centralization Centralization Pending

LIG-04 Centralization Related Risks Centralization Centralization Pending

LIG-05 Incorrect Assembly Implementation Logical Issue Major Pending

LIG-06
Access Control Misalignment In Timelock

Governance
Design Issue Major Pending

LIG-17
Slashing Bypass Via Early Withdrawal

Request Of Stakes
Logical Issue Major Pending

LIG-18
Improper Authorization Logic May Block

slash Relevant Functions
Access Control Major Pending

LIG-07
Potential Front-Run On Permit Call To Cause

DOS
Denial of Service Medium Pending

LIG-19 Potential Delete Reports By Mistake Logical Issue Medium Pending

LIG-20
Insufficient Quorum Threshold Allows

Proposal Manipulation
Governance Medium Pending

LIG-23
Uncoordinated Governance Parameter

Management
Logical Issue Medium Pending

FINDINGS LIGHTCHAIN

23
Total Findings

0
Critical

3
Centralization

4
Major

4
Medium

4
Minor

4
Informational

4
Discussion

ID Title Category Severity Status

LIG-08
Usage Of transfer() For Sending Native

Tokens
Coding Style Minor Pending

LIG-09 No Way To Retrieve ETH From The Contract Volatile Code Minor Pending

LIG-10 Potentially Unusable Function Design Issue Minor Pending

LIG-11
Potential Mismatch Between Delegated Votes

And Token Balance
Logical Issue Minor Pending

LIG-12 Dead Code Coding Issue Informational Pending

LIG-13
Risk Of Insufficient Native Token Balance

During Refunds
Logical Issue Informational Pending

LIG-14
Use Of code.length Is No Longer A Reliable

Contract Check
Design Issue Informational Pending

LIG-21 Unnecessary Inheritance Of Ownable
Design Issue, Logical

Issue
Informational Pending

LIG-01 Discussion On Validator Removal Conditions Logical Issue Discussion Pending

LIG-15 Unclear Contract Design Design Issue Discussion Pending

LIG-16
Concerns Regarding The Validator

Mechanism
Design Issue Discussion Pending

LIG-22 Concerns Regarding The Staking Mechanism
Logical Issue, Design

Issue
Discussion Pending

FINDINGS LIGHTCHAIN

LIG-02 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization Centralization Smart-Contracts-main/ModelToken.sol: 27 Pending

Description

All of the MODEL tokens are sent to the contract deployer or one or several externally-owned account (EOA) addresses.

This is a centralization risk because the deployer or the owner(s) of the EOAs can distribute tokens without obtaining the

consensus of the community. Any compromise to these addresses may allow a hacker to steal and sell tokens on the

market, resulting in severe damage to the project.

Recommendation

It is recommended that the team be transparent regarding the initial token distribution process. The token distribution plan

should be published in a public location that the community can access. The team should make efforts to restrict access to

the private keys of the deployer account or EOAs. A multi-signature (⅔, ⅗) wallet can be used to prevent a single point of

failure due to a private key compromise. Additionally, the team can lock up a portion of tokens, release them with a vesting

schedule for long-term success, and deanonymize the project team with a third-party KYC provider to create greater

accountability.

In order for CertiK to update the status of this finding during the remediation phase, please kindly provide the URL to the

published token distribution plan and the multi-signature wallet address that holds the undistributed tokens. We will verify the

information and update the report. Thank you.

Link to the token distribution plan: https://www…

Multi-sig wallet address: 0x…

Signer 1: 0x…

Signer 2: 0x…

Signer 3: 0x…

LIG-02 LIGHTCHAIN

LIG-03 CENTRALIZED CONTROL OF CONTRACT UPGRADE

Category Severity Location Status

Centralization Centralization Smart-Contracts-main/ModelSlasher.sol: 26 Pending

Description

In the contract ModelSlasher , the role admin has the authority to update the implementation contract behind the proxy

contract.

Any compromise to the admin account may allow a hacker to take advantage of this authority and change the

implementation contract which is pointed by proxy and therefore execute potential malicious functionality in the

implementation contract.

Recommendation

We recommend that the team make efforts to restrict access to the admin of the proxy contract. A strategy of combining a

time-lock and a multi-signature (⅔, ⅗) wallet can be used to prevent a single point of failure due to a private key

compromise. In addition, the team should be transparent and notify the community in advance whenever they plan to migrate

to a new implementation contract.

Here are some feasible short-term and long-term suggestions that would mitigate the potential risk to a different level and

suggestions that would permanently fully resolve the risk.

Short Term:

A combination of a time-lock and a multi signature (⅔, ⅗) wallet mitigate the risk by delaying the sensitive operation and

avoiding a single point of key management failure.

A time-lock with reasonable latency, such as 48 hours, for awareness of privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to a private key

compromised;

AND

A medium/blog link for sharing the time-lock contract and multi-signers addresses information with the community.

For remediation and mitigated status, please provide the following information:

Provide the deployed time-lock address.

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

LIG-03 LIGHTCHAIN

Provide a link to the medium/blog with all of the above information included.

Long Term:

A combination of a time-lock on the contract upgrade operation and a DAO for controlling the upgrade operation mitigate the

contract upgrade risk by applying transparency and decentralization.

A time-lock with reasonable latency, such as 48 hours, for community awareness of privileged operations;

AND

Introduction of a DAO, governance, or voting module to increase decentralization, transparency, and user involvement;

AND

A medium/blog link for sharing the time-lock contract, multi-signers addresses, and DAO information with the community.

For remediation and mitigated status, please provide the following information:

Provide the deployed time-lock address.

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Permanent:

Renouncing ownership of the admin account or removing the upgrade functionality can fully resolve the risk.

Renounce the ownership and never claim back the privileged role;

OR

Remove the risky functionality.

Note: we recommend the project team consider the long-term solution or the permanent solution. The project team shall

make a decision based on the current state of their project, timeline, and project resources.

LIG-03 LIGHTCHAIN

LIG-04 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Centralization

Smart-Contracts-main/ModelAccessCredits.sol: 120~124,

175, 180, 185, 190, 198, 232, 245, 251; Smart-Contracts-m

ain/ModelDAO.sol: 218; Smart-Contracts-main/ModelRegi

stry.sol: 117; Smart-Contracts-main/ModelReward.sol: 14

4, 194~198, 215, 234~240, 328, 335, 342, 349; Smart-Contr

acts-main/ModelSlasher.sol: 274~278, 372, 379, 390, 391;

Smart-Contracts-main/ModelToken.sol: 37; Smart-Contra

cts-main/ModelUpgradeProxy.sol: 149~153, 186, 193, 205,

206; Smart-Contracts-main/ModelValidatorRegistry.sol: 1

25, 135, 143, 150, 151; Smart-Contracts-main/ModelValida

torStakingPool.sol: 163~167, 182~186, 196, 207, 213

Pending

Description

ModelAccessCredits.sol

In the contract ModelAccessCredits , the role timelock has authority over the following functions.

updateCreditPrice

updateMinPurchase

updateMaxPurchase

updateExpirationPeriod

refundCredits

withdrawEth

addOperator

removeOperator

Any compromise to the timelock account may allow the hacker to take advantage of this authority and update the basic

configuration of the contract, extract the native token in the contract, or add or remove operators at will.

The role operators has authority over the following functions.

useCredits

Any compromise to the operators account may allow the hacker to take advantage of this authority and use the credits of

a specified user.

ModelDAO.sol

LIG-04 LIGHTCHAIN

In the contract ModelDAO , the role timelock has authority over the following functions.

updateProtocolParams

Any compromise to the timelock account may allow the hacker to take advantage of this authority and update protocol

parameters at will.

Additionally, the ModelDAO contract inherits the Ownable contract from OpenZeppelin, the owner has the following

authorities within the contract:

renounceOwnership() : Leaves the contract without owner;

transferOwnership() : Transfers ownership of the contract to a new account.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and renounce the

ownership status or transfer ownership to a new owner.

ModelRegistry.sol

In the contract ModelRegistry , the role governance has authority over the following functions.

validateModel

Any compromise to the governance account may allow the hacker to take advantage of this authority and modify the status

of a specified modelId at will.

ModelReward.sol

In the contract ModelReward , the role modelDAO has authority over the following functions.

withdrawModelToken

updateRewardParams

updateValidatorBonus

issueReward

addValidator

removeValidator

addInferencer

removeInferencer

Any compromise to the modelDAO account may allow the hacker to take advantage of this authority and change the

configuration of the contract at will, withdraw the model token in the contract, issue rewards to specified users, or add

validators and inferencers.

Additionally, the ModelReward contract inherits the Ownable contract from OpenZeppelin; the owner has the following

authorities within the contract:

renounceOwnership() : Leaves the contract without owner;

transferOwnership() : Transfers ownership of the contract to a new account.

LIG-04 LIGHTCHAIN

Any compromise to the _owner account may allow the hacker to take advantage of this authority and renounce the

ownership status or transfer ownership to a new owner.

ModelSlasher.sol

In the contract ModelSlasher , the role _dao or the owner (ownership is transferred to provided _dao` in the

constructor) has authority over the following functions.

resolveReport

signalBond

applyBond

pause()

unpause()

Any compromise to the _dao account may allow the hacker to take advantage of this authority and set any bond amount,

resolve the report to update the status of the report ID and fund, and modify the pause to affect the executable status of

some functions of the contract.

Additionally, the ModelSlasher contract inherits the Ownable2StepUpgradeable contract from OpenZeppelin, the owner

has the following authorities within the contract:

renounceOwnership() : Leaves the contract without owner;

transferOwnership() : Transfers ownership of the contract to a new account.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and renounce the

ownership status or transfer ownership to a new owner.

ModelToken.sol

In the contract ModelToken , the role _owner has authority over the following functions.

mint

Any compromise to the _owner account may allow the hacker to take advantage of this authority and mint tokens to specific

users under the MAX_SUPPLY limit.

Additionally, the ModelToken contract inherits the Ownable contract from OpenZeppelin; the owner has the following

authorities within the contract:

renounceOwnership() : Leaves the contract without owner;

transferOwnership() : Transfers ownership of the contract to a new account.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and renounce the

ownership status or transfer ownership to a new owner.

ModelUpgradeProxy.sol

LIG-04 LIGHTCHAIN

In the contract ModelUpgradeProxy , the role _dao or the role owner has authority over the following functions.

resolveReport

signalBond

applyBond

pause

unpause

Any compromise to the _dao account may allow the hacker to take advantage of this authority and set any bond amount,

resolve the report to update the status of the report ID and fund, and modify the pause status to affect the executable status

of some functions of the contract.

Additionally, the ModelUpgradeProxy contract inherits the Ownable contract from OpenZeppelin; the owner has the

following authorities within the contract:

renounceOwnership() : Leaves the contract without owner;

transferOwnership() : Transfers ownership of the contract to a new account.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and renounce the

ownership status or transfer ownership to a new owner.

ModelValidatorRegistry.sol

In the contract ModelValidatorRegistry , the role _dao has authority over the following functions.

toggleStatus

setMaxSilence

pause

unpause

Any compromise to the _dao account may allow the hacker to take advantage of this authority and modify the active state

of the validator, set a malicious maxSilence value, or modify pause status to affect the executable status of some functions

of the contract.

The role _owner has authority over the following functions.

setStakingPool

pause

unpause

However, according to the current logic, stakingPool has been set to a non-address (0) account in the constructor, so this

function will not be available after the contract is deployed.

Additionally, the ModelValidatorRegistry contract inherits the Ownable contract from OpenZeppelin; the owner has the

following authorities within the contract:

renounceOwnership() : Leaves the contract without owner;

LIG-04 LIGHTCHAIN

transferOwnership() : Transfers ownership of the contract to a new account.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and renounce the

ownership status or transfer ownership to a new owner.

ModelValidatorStakingPool.sol

In the contract ModelValidatorStakingPool , the role _dao has authority over the following functions.

slash

updateParams

pause

unpause

Any compromise to the _dao account may allow the hacker to take advantage of this authority and slash a specified

validator's active stake, update relevant configurations in the contract, and modify pause status to affect the executable

status of some functions of the contract.

The role _owner has authority over the following functions.

updateDAO

pause

unpause

Any compromise to the _owner account may allow the hacker to take advantage of this authority and update a new DAO

account in the contract or modify the pause status to affect the executable status of some functions of the contract.

Additionally, the ModelValidatorStakingPool contract inherits the Ownable contract from OpenZeppelin; the owner has

the following authorities within the contract:

renounceOwnership() : Leaves the contract without owner;

transferOwnership() : Transfers ownership of the contract to a new account.

Any compromise to the _owner account may allow the hacker to take advantage of this authority and renounce the

ownership status or transfer ownership to a new owner.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of short-

term, long-term and permanent:

LIG-04 LIGHTCHAIN

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

LIG-04 LIGHTCHAIN

LIG-05 INCORRECT ASSEMBLY IMPLEMENTATION

Category Severity Location Status

Logical

Issue
Major

Smart-Contracts-main/ModelSlasher.sol: 565; Smart-Contracts-main/Mod

elUpgradeProxy.sol: 248
Pending

Description

By design, the protocol uses Assembly to retrieve the byte length of a string (string) in memory.

ModelUpgradeProxy.sol:

library StrLib {

 /// @dev gas-cheaper than bytes(str).length in many cases

 function bytesLength(string memory s) internal pure returns (uint256 l) {

@> assembly { l := mload(add(s, 0x20)) }

 }

}

ModelSlasher.sol:

 function utf8Lengths(string memory str) internal pure returns (uint256

byteLength, uint256 charCount) {

 // Get raw memory pointer and length

 assembly {

@> byteLength := mload(add(str, 0x20))

 }

 ...

 }

In Solidity, strings are represented in memory as follows:

When a string (or byte array) is stored in memory, the first 32 bytes (0x20) store the byte length of the string (in bytes).

The actual string content (each character occupying 1 byte in UTF-8 encoding) begins at the subsequent 32-byte offset.

Therefore, the original code actually returns the first 32 bytes of the string's content instead of the correct length value.

Proof of Concept

LIG-05 LIGHTCHAIN

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";

library StrLib {

 /// @dev gas-cheaper than bytes(str).length in many cases

 function bytesLength(string memory s) internal pure returns (uint256 l) {

 assembly { l := mload(add(s, 0x20)) }

 }

}

contract CounterTest is Test {

 function setUp() public {}

 function test_string_length() external{

 string memory a = "test-lightchain";

 uint256 length = StrLib.bytesLength(a);

 console.log("length:", length);

 }

}

Output is:

Ran 1 test for test/Counter.t.sol:CounterTest

[PASS] test_string_length() (gas: 3764)

Logs:

 length:

49036020284759792915028833152838264576069831859944842693078476766562228371456

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 622.96µs (47.13µs CPU

time)

Recommendation

Recommend modifying the implementation to correctly return the string's length.

LIG-05 LIGHTCHAIN

LIG-06 ACCESS CONTROL MISALIGNMENT IN TIMELOCK
GOVERNANCE

Category Severity Location Status

Design Issue Major Smart-Contracts-main/ModelDAO.sol: 274, 293 Pending

Description

In the ModelDAO contract, a governance mechanism combining Governor and Timelock is used. As a result, all actions

that go through the full proposal lifecycle — including propose, vote, and queue — are ultimately executed by the pre-defined

Timelock contract.

@openzeppelin/contracts/governance/extensions/GovernorTimelockControl.sol:

 function _executeOperations(

 uint256 proposalId,

 address[] memory targets,

 uint256[] memory values,

 bytes[] memory calldatas,

 bytes32 descriptionHash

) internal virtual override {

 // execute

 _timelock.executeBatch{value: msg.value}(targets, values, calldatas, 0,

_timelockSalt(descriptionHash));

 // cleanup for refund

 delete _timelockIds[proposalId];

 }

However, the createRewardBatch() and distributeRewardBatch() functions include strict checks require(msg.sender

== address(this)) , allowing them to be called only by the contract itself. This restriction conflicts with the governance flow,

where execution is performed by the Timelock contract rather than the contract itself. As a result, if such functions are

executed via proposals or by any caller other than address(this) , they will fail and become permanently inaccessible.

In addition, some contracts transfer ownership or restrict access to specific functions in their constructors, assigning those

permissions to a provided dao address.

ModelReward.sol:

LIG-06 LIGHTCHAIN

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/extensions/GovernorTimelockControl.sol#L97-L108

 constructor(address dao, address _modelToken) Ownable(msg.sender) {

 require(dao != address(0), "DAO zero addr");

 require(_modelToken != address(0), "token zero addr");

 modelDAO = dao; // Now immutable

 rewardAddress = address(this);

 modelToken = IERC20(_modelToken);

 // Initialize protocol parameters

 baseReward = 1 ether;

 epochDuration = 1 days;

 maxRewardPerEpoch = baseReward; // 1× cap initially

 emit ContractInitialized(dao, _modelToken, baseReward, epochDuration);

 }

If the contract adopts the same governance model as ModelDAO , it is essential to ensure that the assigned dao address is

actually the Timelock contract instead of the Governor , since the Timelock is the component that performs the actual

execution. Failing to do so may result in governance proposals being unable to trigger critical functions as intended.

Proof of Concept

Simulate the execution of the createRewardBatch() function through governance and timelock mechanism.

LIG-06 LIGHTCHAIN

contract ModelDAOTest is ModelBaseTest {

 address public voter1 = makeAddr("voter1");

 address public voter2 = makeAddr("voter2");

 address public voter3 = makeAddr("voter3");

 function setUp() public override{

 super.setUp();

 timelock.grantRole(timelock.PROPOSER_ROLE(), address(dao));

 timelock.grantRole(timelock.EXECUTOR_ROLE(), address(dao));

 timelock.revokeRole(timelock.DEFAULT_ADMIN_ROLE(), address(this));

 // Setup initial token distribution

 vm.startPrank(initialVotingHolder);

 votingToken.transfer(voter1, 10_000 ether);

 votingToken.transfer(voter2, 8_000 ether);

 votingToken.transfer(voter3, 5_000 ether);

 votingToken.transfer(proposerA, 5_000 ether);

 vm.stopPrank();

 }

 function testCreateRewardBatchThroughGovernance() public {

 address[] memory recipients = new address[](2);

 recipients[0] = voter1;

 recipients[1] = voter2;

 uint256[] memory amounts = new uint256[](2);

 amounts[0] = 100 ether;

 amounts[1] = 200 ether;

 vm.startPrank(initialVotingHolder);

 votingToken.transfer(voter1, 1_000_000 ether);

 votingToken.transfer(voter2, 800_000 ether);

 votingToken.transfer(voter3, 500_000 ether);

 vm.stopPrank();

 vm.startPrank(voter1);

 votingToken.delegate(voter1);

 vm.stopPrank();

 vm.startPrank(voter2);

 votingToken.delegate(voter2);

 vm.stopPrank();

 vm.startPrank(voter3);

 votingToken.delegate(voter3);

 vm.stopPrank();

 vm.startPrank(proposerA);

LIG-06 LIGHTCHAIN

 votingToken.delegate(proposerA);

 vm.stopPrank();

 vm.roll(block.number + 1);

 // encode proposal parameters

 address[] memory targets = new address[](1);

 targets[0] = address(dao);

 uint256[] memory values = new uint256[](1);

 values[0] = 0;

 bytes[] memory calldatas = new bytes[](1);

 calldatas[0] = abi.encodeWithSelector(

 dao.createRewardBatch.selector,

 recipients,

 amounts

);

 vm.startPrank(proposerA);

 uint256 proposalId = dao.propose(

 targets,

 values,

 calldatas,

 "Create reward batch through governance"

);

 vm.stopPrank();

 vm.roll(block.number + dao.votingDelay() + 1);

 // voters vote for this proposal

 vm.startPrank(voter1);

 dao.castVote(proposalId, 1);

 vm.stopPrank();

 vm.startPrank(voter2);

 dao.castVote(proposalId, 1);

 vm.stopPrank();

 vm.startPrank(voter3);

 dao.castVote(proposalId, 1);

 vm.stopPrank();

 (, uint256 forVotes,) = dao.proposalVotes(proposalId);

 // console.log("Voting results - For:", forVotes);

 vm.roll(block.number + dao.votingPeriod() + 1);

 uint8 proposalState = uint8(dao.state(proposalId));

LIG-06 LIGHTCHAIN

 vm.startPrank(proposerA);

 bytes32 descriptionHash = keccak256(bytes("Create reward batch through

governance"));

 dao.queue(targets, values, calldatas, descriptionHash);

 vm.stopPrank();

 uint256 minDelay = timelock.getMinDelay();

 vm.warp(block.timestamp + minDelay + 1);

 proposalState = uint8(dao.state(proposalId));

 vm.startPrank(executorA);

 // execution will fail because of timelock != dao

 vm.expectRevert("governance only");

 dao.execute(targets, values, calldatas, descriptionHash);

 vm.stopPrank();

 }

}

[PASS] testCreateRewardBatchThroughGovernance() (gas: 840640)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 9.05ms (1.08ms CPU

time)

Recommendation

It is recommended to ensure that all governance-executed functions are compatible with being called by the Timelock

contract. Additionally, when configuring ownership or access control to a DAO address, make sure the designated address

matches the Timelock executor to avoid disabling critical functionality.

You may refer to OpenZeppelin’s documentation on GovernorTimelockControl for detailed guidance on correctly

configuring timelock-based governance.

LIG-06 LIGHTCHAIN

https://docs.openzeppelin.com/contracts/5.x/api/governance#GovernorTimelockControl

LIG-17 SLASHING BYPASS VIA EARLY WITHDRAWAL REQUEST OF
STAKES

Category Severity Location Status

Logical

Issue
Major

Smart-Contracts-main/ModelSlasher.sol: 292~303; Smart-Contracts-main/

ModelUpgradeProxy.sol: 163~167
Pending

Description

In the resolveReport function, if the uphold flag is set to true, it triggers a call to the slash() function in the staking

pool to penalize the validator by deducting a portion of their staked stakingToken .

 function resolveReport(bytes32 id, bool uphold, string calldata slashReason)

 external

 onlyOwner

 nonReentrant

 {

 ...

 if (uphold) {

 // Check current slashable amount

 uint256 slashableAmount = getSlashableAmount(r.validator, r.amount);

 // If any amount can be slashed, proceed with slashing

@> if (slashableAmount > 0) {

 // Attempt to slash what we can

 stakingPool.slash(r.validator, slashableAmount, slashReason);

 // If partial slash, emit event

 if (slashableAmount < r.amount) {

 emit PartialSlash(id, r.amount, slashableAmount);

 }

 }

 // Always refund reporter's bond for valid report

 payable(r.reporter).sendValue(bond);

 emit BondRefunded(id, r.reporter);

 } else {

 ...

 }

 emit ReportResolved(id, uphold);

 }

LIG-17 LIGHTCHAIN

However, if the staking pool shares the same logic as the ModelValidatorStakingPool contract, a validator could front-run

the call to invoke requestWithdraw() to withdraw all his staked tokens, which updates stakes.amount to 0.

ModelValidatorStakingPool.sol:

 function requestWithdraw(uint256 amount) external whenNotPaused {

 require(amount > 0, "zero");

 StakeInfo storage s = stakes[msg.sender];

 // disallow overlapping or cumulative requests

 require(s.pending == 0, "pending exists");

 require(amount <= s.amount, "exceeds stake");

 s.amount -= amount;

 s.pending = amount;

 s.unlockTime = uint64(block.timestamp + unstakeDelay);

 totalStaked -= amount;

 emit ModelUnstakeRequested(msg.sender, amount, s.unlockTime);

 if (s.amount < minStake && s.amount == 0) {

 _validators.remove(msg.sender);

 }

 }

As a result, the computed slashableAmount would be 0, causing the slash() function to be skipped and allowing the

validator to evade punishment.

 function getSlashableAmount(

 address validator,

 uint256 requestedAmount

) public view returns (uint256 slashableAmount) {

 (uint256 liveStake,,) = stakingPool.stakes(validator);

 return liveStake >= requestedAmount ? requestedAmount : liveStake;

 }

This issue also exists in the ModelUpgradeProxy contract, where validators can avoid being slashed in a similar way.

Proof of Concept

In this proof of concept, Alice first staked tokens in the staking pool, and later Bob submitted a report designating Alice as the

validator. However, Alice preemptively called requestWithdraw() , reducing her staked amount to zero. As a result, the

slashing logic was bypassed, and no penalty was applied.

LIG-17 LIGHTCHAIN

 function testSlashBypass() public {

 stakingToken.mint(Alice, 1_000 ether);

 vm.deal(Alice, 1 ether);

 vm.deal(Bob, 1 ether);

 uint256 alice_stakingToken_balance_before_ops =

stakingToken.balanceOf(Alice);

 uint256 bob_ETH_balance_before_ops = Bob.balance;

 vm.startPrank(Alice);

 stakingToken.approve(address(stakingPool), 1_000 ether);

 stakingPool.stake(1_000 ether);

 vm.stopPrank();

 // Bob submits a report, the validator is Alice

 vm.startPrank(Bob);

 bytes32 id = slasher.submitReport{value: 1 ether}(

 Alice,

 1 ether,

 "Just for testing",

 bytes32(uint256(1))

);

 vm.stopPrank();

 // Alice requests withdraw in advance

 vm.startPrank(Alice);

 stakingPool.requestWithdraw(1_000 ether);

 vm.stopPrank();

 // Reminder: The specific logic of the entire voting and timelock is not

simulated here, and dao is used directly to complete the call to this privileged

function

 vm.startPrank(address(dao));

 slasher.resolveReport(id, true, "Just for testing");

 vm.stopPrank();

 vm.warp(block.timestamp+7 days);

 vm.startPrank(Alice);

 stakingPool.withdraw();

 vm.stopPrank();

 uint256 bob_ETH_balance_after_ops = Bob.balance;

 uint256 alice_stakingToken_balance_after_ops =

stakingToken.balanceOf(Alice);

 // after all submit report or slash, Alice and Bob's balances remain the

same as at the beginning.

LIG-17 LIGHTCHAIN

 assertEq(alice_stakingToken_balance_before_ops,

alice_stakingToken_balance_after_ops);

 assertEq(bob_ETH_balance_before_ops, bob_ETH_balance_after_ops);

 }

[PASS] testSlashBypass() (gas: 564392)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 2.89ms (229.54µs CPU

time)

Recommendation

It is recommended to revisit the overall staking and slashing logic to ensure that a validator cannot evade punishment by

manipulating withdrawal timing.

LIG-17 LIGHTCHAIN

LIG-18 IMPROPER AUTHORIZATION LOGIC MAY BLOCK slash

RELEVANT FUNCTIONS

Category Severity Location Status

Access Control Major Smart-Contracts-main/ModelValidatorStakingPool.sol: 163~167 Pending

Description

The slash function is restricted to be callable only by the DAO account. If the current contract follows the same logic as the

stakingPool in the ModelSlasher and ModelUpgradeProxy , then both this contract and another one will fail to invoke

slash during the execution of resolveReport due to too strict access control issues.

 function slash(

 address validator,

 uint256 amount,

 string calldata reason

) external onlyDAO nonReentrant {

 ...

 }

As a result, even when upheld == true and slashableAmount > 0 , the resolveReport function will remain

unexecutable, preventing valid reports from being properly resolved.

LIG-18 LIGHTCHAIN

 function resolveReport(bytes32 id, bool uphold, string calldata slashReason)

 external

 onlyOwner

 nonReentrant

 {

 ...

 if (uphold) {

 // Check current slashable amount

 uint256 slashableAmount = getSlashableAmount(r.validator, r.amount);

 // If any amount can be slashed, proceed with slashing

 if (slashableAmount > 0) {

 // Attempt to slash what we can

@> stakingPool.slash(r.validator, slashableAmount, slashReason);

 ...

 }

 ...

 } else {

 ...

 }

 emit ReportResolved(id, uphold);

 }

Proof of Concept

LIG-18 LIGHTCHAIN

 function testSlashRevert() public {

 stakingToken.mint(Alice, 1_000 ether);

 vm.deal(Alice, 1 ether);

 vm.deal(Bob, 1 ether);

 vm.startPrank(Alice);

 stakingToken.approve(address(stakingPool), 1_000 ether);

 stakingPool.stake(1_000 ether);

 vm.stopPrank();

 // Bob submits a report, the validator is Alice

 vm.startPrank(Bob);

 bytes32 id = slasher.submitReport{value: 1 ether}(

 Alice,

 1 ether,

 "Just for testing",

 bytes32(uint256(1))

);

 vm.stopPrank();

 // Reminder: The specific logic of the entire voting and timelock is not

simulated here, and dao is used directly to complete the call to this privileged

function

 vm.startPrank(address(dao));

 vm.expectRevert("DAO only");

 slasher.resolveReport(id, true, "Just for testing");

 vm.stopPrank();

 }

[PASS] testSlashRevert() (gas: 544023)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 8.26ms (826.25µs CPU

time)

Recommendation

It is recommended to ensure that the authorization logic for slashing is compatible across contracts, or to separate slashing

execution from privileged access paths to avoid blocking report resolution under valid conditions.

LIG-18 LIGHTCHAIN

LIG-07 POTENTIAL FRONT-RUN ON PERMIT CALL TO CAUSE DOS

Category Severity Location Status

Denial of Service Medium Smart-Contracts-main/ModelValidatorStakingPool.sol: 86~88 Pending

Description

Contracts interfacing with ERC20 tokens may implement a feature in the stakeWithPermit function where users provide

signatures to approve ERC20Permit(address(stakingToken) transfers, subsequently invoking the permit function to

finalize the approval.

However, the contract fails to address the possibility of transaction front-running, where an unauthorized party could

preemptively execute the permit function before the intended transaction is processed.

If malicious actors observe this process, they can preemptively execute the permit function with the user's signature and

nonce. This unauthorized front-running as a griefing attack not only consumes the nonce, rendering the legitimate user's

intended transaction invalid but also can lead to a targeted Denial of Service (DOS) for the affected function, as the user's

approval process is effectively disrupted.

Recommendation

To mitigate the risk of a griefing attack, it is recommended to verify the current allowance for the token before invoking the

permit function, ensuring that the signature has not already been utilized by a malicious actor.

LIG-07 LIGHTCHAIN

LIG-19 POTENTIAL DELETE REPORTS BY MISTAKE

Category Severity Location Status

Logical Issue Medium Smart-Contracts-main/ModelSlasher.sol: 504~506, 504~506 Pending

Description

In the ModelSlasher contract, the leaveBatch() function allows users to batch cancel reports in a pending state. Users

can specify a starting index and the number of pending reports to cancel.

However, when startIndex + batchSize >= userIds.length , the function will remove all of the user’s reports, including

those not in a pending state, which contradicts the intended design of the function.

 function leaveBatch(

 uint256 startIndex,

 uint256 maxBatch

) external whenNotPaused nonReentrant returns (

 int256 nextIndex,

 uint256 processedCount,

 uint256 refundAmount

) {

 ...

 nextIndex = startIndex + batchSize < userIds.length ?

 int256(startIndex + batchSize) : -1;

 // If this was the last batch, clear the reports array

 if (nextIndex == -1) {

@> delete userReports[msg.sender];

 }

 return (nextIndex, processedCount, refundTotal);

 }

Recommendation

We recommend redesigning this logic to prevent such issues.

LIG-19 LIGHTCHAIN

LIG-20 INSUFFICIENT QUORUM THRESHOLD ALLOWS PROPOSAL
MANIPULATION

Category Severity Location Status

Governance Medium Smart-Contracts-main/ModelDAO.sol: 78 Pending

Description

In the governance mechanism, a proposal can only proceed if the combined number of forVotes and abstainVotes

meets or exceeds the quorum. However, in the constructor of the ModelDAO contract, the quorum is set to 4% of the current

votingToken total supply. If the token supply is relatively low, a single user or a small group of users could meet the quorum

requirement solely with their voting power, thereby influencing proposal outcomes and potentially executing malicious

actions.

Recommendation

It is recommended to set a higher quorum threshold at deployment or enforce additional safeguards, especially when the

system has low initial token distribution. Additionally, monitoring the total voting token supply and dynamically adjusting the

quorum requirement can further mitigate the risk of governance capture.

LIG-20 LIGHTCHAIN

LIG-23 UNCOORDINATED GOVERNANCE PARAMETER
MANAGEMENT

Category Severity Location Status

Logical Issue Medium Smart-Contracts-main/ModelDAO.sol: 93~103 Pending

Description

According to the protocol design, the ModelDAO contract defines a set of parameters intended to serve as global

configuration for the system.

 protocolParams = ProtocolParams({

 minStakeAmount: 1_000 ether,

 maxStakeAmount: 100_000 ether,

 rewardMultiplier: 100,

 slashingPenalty: 50,

 proposalThreshold: 1_000 ether,

 votingPeriod: MIN_VOTING_PERIOD,

 quorumNumerator: 4,

 minValidators: 3,

 minValidationScore: 80

 });

However, identical parameters are redefined and maintained independently across multiple contracts. This indicates that

each contract operates with its own configuration, rather than consistently referencing values from the central governance

source (ModelDAO).

Such an approach may deviate from the original design intent of centralized governance control and introduces potential

risks related to configuration inconsistency, upgrade complexity, and governance fragmentation.

Recommendation

Standardize critical parameter access by ensuring all relevant contracts reference configuration values directly from the

ModelDAO contract or a dedicated configuration module. This will enhance maintainability, consistency, and governance

transparency.

LIG-23 LIGHTCHAIN

LIG-08 USAGE OF transfer() FOR SENDING NATIVE TOKENS

Category Severity Location Status

Coding Style Minor Smart-Contracts-main/ModelAccessCredits.sol: 112, 226, 240 Pending

Description

After EIP-1884 was included in the Istanbul hard fork, it is not recommended to use .transfer() or .send() for

transferring native tokens as these functions have a hard-coded value for gas costs making them obsolete as they are

forwarding a fixed amount of gas, specifically 2300 . This can cause issues in case the linked statements are meant to be

able to transfer funds to other contracts instead of EOAs.

Recommendation

We recommend using the sendValue() function of Address contract from OpenZeppelin. See

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v5.4.0/contracts/utils/Address.sol.

LIG-08 LIGHTCHAIN

https://eips.ethereum.org/EIPS/eip-1884
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v5.4.0/contracts/utils/Address.sol

LIG-09 NO WAY TO RETRIEVE ETH FROM THE CONTRACT

Category Severity Location Status

Volatile

Code
Minor

Smart-Contracts-main/ModelReward.sol: 533; Smart-Contracts-main/Mod

elValidatorStakingPool.sol: 233
Pending

Description

The identified contracts have at least one payable function that does not utilize the forwarded ETH. Additionally, these

contracts lack a mechanism to withdraw ETH. As a result, any ETH sent to these contracts may become permanently

trapped.

Recommendation

Consider adding a withdraw function to contracts that are capable of receiving ether.

LIG-09 LIGHTCHAIN

LIG-10 POTENTIALLY UNUSABLE FUNCTION

Category Severity Location Status

Design Issue Minor Smart-Contracts-main/ModelValidatorRegistry.sol: 135~140 Pending

Description

In the ModelValidatorRegistry contract, because _stakingPool is validated to be a non-zero address during

deployment, stakingPool will never be the zero address.

 constructor(address _dao, address _stakingPool) Ownable(msg.sender) {

@> require(_dao != address(0) && _stakingPool != address(0), "zero addr");

 ...

 stakingPool = IModelValidatorStakingPool(_stakingPool);

 emit StakingPoolSet(_stakingPool);

 emit DAOChanged(address(0), _dao);

 }

However, the setStakingPool() function requires stakingPool to be zero, which makes setStakingPool()

permanently unusable.

 function setStakingPool(address pool) external onlyOwner {

@> require(address(stakingPool) == address(0), "already set");

 require(pool != address(0) && IModelValidatorStakingPool(pool).minStake() >

0, "bad pool");

 stakingPool = IModelValidatorStakingPool(pool);

 emit StakingPoolSet(pool);

 }

Recommendation

Recommend redesigning this function according to requirements.

LIG-10 LIGHTCHAIN

LIG-11 POTENTIAL MISMATCH BETWEEN DELEGATED VOTES
AND TOKEN BALANCE

Category Severity Location Status

Logical Issue Minor Smart-Contracts-main/ModelToken.sol: 42~44, 50~52 Pending

Description

When transferring tokens, if the to address has no delegatee (i.e., the delegatee is the zero address), then after the

transfer is completed, the delegated votes for the to address remain zero.

 function _update(address from, address to, uint256 value) internal

override(ERC20, ERC20Votes) {

 super._update(from, to, value);

 }

Although users can manually call the delegate() function to update their delegated votes, in some scenarios, the absence

of this step may cause the entire transaction to fail.

Additionally, this behavior is inconsistent with the design of the mint function.

 function mint(address to, uint256 amount) external onlyOwner {

 require(to != address(0), "zero addr");

 require(totalSupply() + amount <= MAX_SUPPLY, "cap exceeded");

 _mint(to, amount);

 if (delegates(to) == address(0)) {

 _delegate(to, to);

 }

 }

Proof of Concept

LIG-11 LIGHTCHAIN

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";

import "../src/Smart-Contracts-main/ModelToken.sol";

contract PoCTest is Test {

 ModelToken token;

 address owner = address(0x999);

 address alice = address(0x111);

 address bob = address(0x222);

 function setUp() public {

 token = new ModelToken(owner, 10000000e18);

 }

 function test_votes() external {

 uint256 aliceVotes;

 uint256 bobVotes;

 vm.startPrank(owner);

 token.mint(alice, 1000e18);

 aliceVotes = token.getVotes(alice);

 console.log("alice votes after mint:", aliceVotes/1e18);

 console.log("bob votes:", bobVotes/1e18);

 vm.startPrank(alice);

 token.transfer(bob, token.balanceOf(alice));

 aliceVotes = token.getVotes(alice);

 bobVotes = token.getVotes(bob);

 console.log("alice votes after transfer to bob:", aliceVotes/1e18);

 console.log("bob votes:", bobVotes/1e18);

 }

}

Output is:

LIG-11 LIGHTCHAIN

Ran 1 test for test/PoC.t.sol:PoCTest

[PASS] test_votes() (gas: 167242)

Logs:

 alice votes after mint: 1000

 bob votes: 0

 alice votes after transfer to bob: 0

 bob votes: 0

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 885.54µs (216.88µs CPU

time)

Ran 1 test suite in 128.45ms (885.54µs CPU time): 1 tests passed, 0 failed, 0

skipped (1 total tests)

Recommendation

It is recommended to modify the design so that the delegated votes of a user are updated in real-time along with token

transfers.

LIG-11 LIGHTCHAIN

LIG-12 DEAD CODE

Category Severity Location Status

Coding Issue Informational Smart-Contracts-main/ModelDAO.sol: 351~354 Pending

Description

One or more internal functions are not used.

351 function _afterExecute(uint256 id) internal {

Recommendation

We recommend removing those unused functions.

LIG-12 LIGHTCHAIN

LIG-13 RISK OF INSUFFICIENT NATIVE TOKEN BALANCE DURING
REFUNDS

Category Severity Location Status

Logical

Issue
Informational

Smart-Contracts-main/ModelAccessCredits.sol: 209; Smart-Contra

cts-main/ModelSlasher.sol: 306, 310
Pending

Description

ModelAccessCredits.sol

In the refundCredits function of the ModelAccessCredits contract, users are allowed to refund their credits, and the

contract calculates the amount of native token to be returned based on the current creditPrice . If the current

creditPrice is higher than the price at which the user originally purchased the credits, the contract will also refund the

difference. According to the comments, this appears to be the intended design.

However, it is important for the team to ensure that sufficient native tokens are replenished in the contract in a timely manner.

Otherwise, user operations might revert due to insufficient balance, or worse, result in one user unintentionally withdrawing

another user's native tokens.

ModelSlasher.sol

Additionally, in the resolveReport function of the ModelSlasher contract, the current bond value is used as the refund

amount returned to the reporter or treasury. However, since the bond can still be updated after contract deployment, if this is

the intended design, the team should ensure that the contract holds sufficient native tokens to cover the increased refund

amount when the bond is raised.

Recommendation

It is recommended to ensure that the contract maintains a sufficient balance of native tokens at all times.

LIG-13 LIGHTCHAIN

LIG-14 USE OF code.length IS NO LONGER A RELIABLE

CONTRACT CHECK

Category Severity Location Status

Design

Issue
Informational

Smart-Contracts-main/ModelAccessCredits.sol: 57~60; Smart-Cont

racts-main/ModelValidatorRegistry.sol: 67~71
Pending

Description

The constructor uses extcodesize(account) > 0 to validate the provided _timelock and _dao addresses as contracts.

However, following the introduction of EIP-7702, externally owned accounts (EOAs) can temporarily or permanently have

contract code, which may cause this check to succeed even if the address does not implement the expected interface. If

such an address is accepted, subsequent contract interactions may revert, potentially rendering the contract unusable.

Although these addresses are set by the admin during deployment, it is still important to alert the development team to this

potential issue.

Recommendation

It is recommended to use stricter validation methods or rely on extcodesize(account) > 0 only as a basic sanity check to

confirm that an input is not a plain EOA.

LIG-14 LIGHTCHAIN

https://eips.ethereum.org/EIPS/eip-7702

LIG-21 UNNECESSARY INHERITANCE OF Ownable

Category Severity Location Status

Design Issue,

Logical Issue
Informational

Smart-Contracts-main/ModelDAO.sol: 25; Smart-Contract

s-main/ModelReward.sol: 14
Pending

Description

The ModelDAO contract serves as the governance core of the protocol, aiming to support decentralized decision-making.

According to its design, proposals and voting are carried out by token holders, and proposal execution is managed by a

Timelock contract.

Given this decentralized governance structure, inheriting from the Ownable contract is unnecessary and contradicts the

intended trust-minimized design. The presence of an owner role introduces centralized control that should not exist in a DAO

context.

This issue also exists in the ModelReward contract, where all privileged functions are executed by the DAO account.

Recommendation

It is recommended to remove the inheritance of Ownable from the ModelDAO and ModelReward contracts to align with the

protocol’s decentralized governance principles.

LIG-21 LIGHTCHAIN

LIG-01 DISCUSSION ON VALIDATOR REMOVAL CONDITIONS

Category Severity Location Status

Logical Issue Discussion Smart-Contracts-main/ModelValidatorStakingPool.sol: 136 Pending

Description

According to the design, when the staked amount of the validator is 0, the validator will be removed from the validator set.

 function requestWithdraw(uint256 amount) external whenNotPaused {

 ...

@> if (s.amount < minStake && s.amount == 0) {

 _validators.remove(msg.sender);

 }

 }

However, since minStake is always larger than 0, the s.amount < minStake judgment is meaningless.

Based on the design, the user must stake an amount greater than minStake to qualify as a validator. In theory, when a

validator initiates a withdrawal or is penalized, causing their staked amount to fall below the minStake threshold (not zero

amount), they should be automatically removed from the validator set.

Recommendation

We would like the team to confirm the intended conditions and mechanisms for validator removal under such scenarios.

LIG-01 LIGHTCHAIN

LIG-15 UNCLEAR CONTRACT DESIGN

Category Severity Location Status

Design

Issue
Discussion

Smart-Contracts-main/ModelAccessCredits.sol; Smart-Contracts-mai

n/ModelRegistry.sol; Smart-Contracts-main/ModelUpgradeProxy.sol
Pending

Description

In the Lightchain protocol, some contract components appear to lack integration with each other or clear alignment with

practical use cases. We have identified the following contracts where the design raises questions:

ModelUpgradeProxy

Based on its name, this contract seems intended to serve as a proxy for an upgradeable contract. However, it does not

contain any functionality typically associated with upgradeable proxies. This raises the question: is the contract

misnamed, or has it been implemented incorrectly?

The contract’s actual function allows users to report validators, and if the report is validated, the validator is penalized.

This behavior closely overlaps with the functionality provided by the ModelSlasher contract. We recommend the team

re-evaluate whether the design and role of ModelUpgradeProxy are correctly defined and implemented.

ModelAccessCredits

This contract allows users to purchase credits using native tokens, which can then be consumed by operators. However,

the purpose and application of these credits are not clearly articulated within the protocol.

ModelRegistry

The submitModel() and storeResponse() functions allow any user to submit arbitrary hash strings. However, the real-

world use cases for these functions remain unclear.

Recommendation

We ask the team to provide a detailed explanation of these functions' roles within the broader protocol to help us better

understand the system's design rationale.

LIG-15 LIGHTCHAIN

LIG-16 CONCERNS REGARDING THE VALIDATOR MECHANISM

Category Severity Location Status

Design

Issue
Discussion

Smart-Contracts-main/ModelAccessCredits.sol; Smart-Contracts-mai

n/ModelDAO.sol; Smart-Contracts-main/ModelValidatorRegistry.sol; S

mart-Contracts-main/ModelValidatorStakingPool.sol

Pending

Description

The Lightchain protocol introduces a validator mechanism. In most blockchain systems, it plays a critical role in ensuring

protocol security and governance. However, in Lightchain , this mechanism is not centrally managed by a unified contract.

Instead, multiple contracts maintain separate validator or operator lists without explicit interaction or synchronization between

them. This fragmented design raises the following concerns:

ModelAccessCredits

This contract defines an operator role that can consume user-purchased credits. It is unclear whether this role is

functionally equivalent to a validator . Should validators be more responsible for this action than the operator role?

ModelDAO

In this contract, holders of ModelToken can submit proposals and vote. We would like to know whether such governance

rights should instead belong to the validators, given their presumed role in protocol security and decision-making.

ModelValidatorStakingPool

Users can stake to become validators. However, the validator role derived from staking is not reflected in any clear

responsibilities or interactions elsewhere in the system.

ModelValidatorRegistry

After becoming a validator via the ModelValidatorStakingPool , users can register again in this contract as validators. It

is unclear what distinction or additional responsibility this second layer of registration introduces.

Recommendation

We recommend the team conduct a thorough review of the validator design across all contracts and evaluate whether the

validator logic should be centralized and consistently managed within a single contract or module. This would help ensure

clarity, maintainability, and protocol integrity.

LIG-16 LIGHTCHAIN

LIG-22 CONCERNS REGARDING THE STAKING MECHANISM

Category Severity Location Status

Logical Issue,

Design Issue
Discussion

Smart-Contracts-main/ModelReward.sol: 234~240; Smart-Con

tracts-main/ModelValidatorStakingPool.sol: 107~108
Pending

Description

In the ModelValidatorStakingPool contract, users can stake tokens to become validators, with the allowed staking

amount ranging from 1,000 to 100,000 tokens. However, throughout the Lightchain protocol, we have not identified any

logic or mechanism that makes use of the validator’s staking amount.

Based on this observation, we would like to raise the following questions regarding the staking design:

1. Does the amount of tokens staked by a validator have any impact on their role or privileges within the protocol?

For instance, does a higher staking amount grant the validator more voting power, higher influence in validation, or

increased access to rewards?

2. In the ModelReward contract, the DAO can call issueReward() to distribute rewards. This function requires both

a user address and a validator address as inputs, but the reward is only transferred to the user. Is this behavior

consistent with the intended design? If so, what is the designated reward mechanism for validators?

Recommendation

We hope the team will provide clarification on these questions to help us better understand the intended role and incentive

structure of validators within the protocol.

LIG-22 LIGHTCHAIN

FORMAL VERIFICATION LIGHTCHAIN

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of Standard Ownable Properties

We verified partial properties of the public interfaces of those token contracts that implement the Ownable interface. This

involves:

function owner that returns the current owner,

functions renounceOwnership that removes ownership,

function transferOwnership that transfers the ownership to a new owner.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

ownable-renounceownership-correct Ownership is Removed

ownable-renounce-ownership-is-permanent Once Renounced, Ownership Cannot be Regained

ownable-owner-succeed-normal owner Always Succeeds

ownable-transferownership-correct Ownership is Transferred

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens to

another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

FORMAL VERIFICATION LIGHTCHAIN

Property Name Title

erc20-approve-never-return-false approve Never Returns false

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-allowance-correct-value allowance Returns Correct Value

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-allowance-succeed-always allowance Always Succeeds

erc20-approve-succeed-normal approve Succeeds for Valid Inputs

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-allowance-change-state allowance Does Not Change the Contract's State

Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract ModelReward (Smart-Contracts-main/ModelReward.sol) In SHA256
Checksum 89be0b23404dd5d4a4730bfdfb71dcafe20a3871

Verification of Standard Ownable Properties

Detailed Results for Function owner

Property Name Final Result Remarks

ownable-owner-succeed-normal True

FORMAL VERIFICATION LIGHTCHAIN

Detailed Results for Function renounceOwnership

Property Name Final Result Remarks

ownable-renounceownership-correct True

ownable-renounce-ownership-is-permanent True

Detailed Results for Function transferOwnership

Property Name Final Result Remarks

ownable-transferownership-correct True

Detailed Results For Contract ModelToken (Smart-Contracts-main/ModelToken.sol) In SHA256
Checksum 89be0b23404dd5d4a4730bfdfb71dcafe20a3871

Verification of ERC-20 Compliance

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-never-return-false True

erc20-approve-revert-zero True

erc20-approve-false True

erc20-approve-correct-amount True

erc20-approve-succeed-normal True

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

FORMAL VERIFICATION LIGHTCHAIN

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-correct-value True

erc20-allowance-succeed-always True

erc20-allowance-change-state True

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

In the remainder of this section, we list all contracts where formal verification of at least one property was not successful.

There are several reasons why this could happen:

False: The property is violated by the project.

Inconclusive: The proof engine cannot prove or disprove the property due to timeouts or exceptions.

Inapplicable: The property does not apply to the project.

Detailed Results For Contract ModelUpgradeProxy (Smart-Contracts-
main/ModelUpgradeProxy.sol) In SHA256 Checksum
89be0b23404dd5d4a4730bfdfb71dcafe20a3871

Verification of Standard Ownable Properties

Detailed Results for Function renounceOwnership

Property Name Final Result Remarks

ownable-renounceownership-correct True

ownable-renounce-ownership-is-permanent Inconclusive

FORMAL VERIFICATION LIGHTCHAIN

Detailed Results for Function owner

Property Name Final Result Remarks

ownable-owner-succeed-normal True

Detailed Results for Function transferOwnership

Property Name Final Result Remarks

ownable-transferownership-correct True

Detailed Results For Contract ModelValidatorRegistry (Smart-Contracts-
main/ModelValidatorRegistry.sol) In SHA256 Checksum
89be0b23404dd5d4a4730bfdfb71dcafe20a3871

Verification of Standard Ownable Properties

Detailed Results for Function renounceOwnership

Property Name Final Result Remarks

ownable-renounceownership-correct True

ownable-renounce-ownership-is-permanent Inconclusive

Detailed Results for Function owner

Property Name Final Result Remarks

ownable-owner-succeed-normal True

Detailed Results for Function transferOwnership

Property Name Final Result Remarks

ownable-transferownership-correct True

Detailed Results For Contract ModelValidatorStakingPool (Smart-Contracts-
main/ModelValidatorStakingPool.sol) In SHA256 Checksum
89be0b23404dd5d4a4730bfdfb71dcafe20a3871

FORMAL VERIFICATION LIGHTCHAIN

Verification of Standard Ownable Properties

Detailed Results for Function owner

Property Name Final Result Remarks

ownable-owner-succeed-normal True

Detailed Results for Function renounceOwnership

Property Name Final Result Remarks

ownable-renounceownership-correct True

ownable-renounce-ownership-is-permanent Inconclusive

Detailed Results for Function transferOwnership

Property Name Final Result Remarks

ownable-transferownership-correct True

FORMAL VERIFICATION LIGHTCHAIN

APPENDIX LIGHTCHAIN

Finding Categories

Categories Description

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Denial of

Service

Denial of Service findings indicate that an attacker may prevent the program from operating correctly

or responding to legitimate requests.

Access Control Access Control findings are about security vulnerabilities that make protected assets unsafe.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Governance Governance findings indicate issues related to the management of the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

APPENDIX LIGHTCHAIN

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition held

when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at every

observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is no

previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed ERC-20 Properties

Properties related to function approve

erc20-approve-correct-amount

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

requires spender != address(0);

ensures \result ==> allowance(msg.sender, \old(spender)) == \old(amount);

erc20-approve-false

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

APPENDIX LIGHTCHAIN

caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-approve-never-return-false

The function approve must never returns false .

Specification:

ensures \result;

erc20-approve-revert-zero

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

ensures \old(spender) == address(0) ==> !\result;

erc20-approve-succeed-normal

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

Specification:

requires spender != address(0);

ensures \result;

reverts_only_when false;

Properties related to function balanceOf

erc20-balanceof-change-state

Function balanceOf must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-balanceof-correct-value

APPENDIX LIGHTCHAIN

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

ensures \result == balanceOf(\old(account));

erc20-balanceof-succeed-always

Function balanceOf must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function allowance

erc20-allowance-change-state

Function allowance must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-allowance-correct-value

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

Specification:

ensures \result == allowance(\old(owner), \old(spender));

erc20-allowance-succeed-always

Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function totalSupply

erc20-totalsupply-change-state

The totalSupply function in contract ModelToken must not change any state variables.

APPENDIX LIGHTCHAIN

Specification:

assignable \nothing;

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract ModelToken.

Specification:

ensures \result == totalSupply();

erc20-totalsupply-succeed-always

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Description of the Analyzed Ownable Properties

Properties related to function renounceOwnership

ownable-renounce-ownership-is-permanent

The contract must prohibit regaining of ownership once it has been renounced.

Specification:

constraint \old(owner()) == address(0) ==> owner() == address(0);

ownable-renounceownership-correct

Invocations of renounceOwnership() must set ownership to address(0).

Specification:

ensures this.owner() == address(0);

Properties related to function owner

ownable-owner-succeed-normal

Function owner must always succeed if it does not run out of gas.

APPENDIX LIGHTCHAIN

Specification:

reverts_only_when false;

Properties related to function transferOwnership

ownable-transferownership-correct

Invocations of transferOwnership(newOwner) must transfer the ownership to the newOwner .

Specification:

ensures this.owner() == newOwner;

APPENDIX LIGHTCHAIN

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER LIGHTCHAIN

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER LIGHTCHAIN

Elevating Your Entire Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Lightchain Preliminary Comments CertiK Assessed on Jul 28th, 2025 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

