
Training and
onboarding
developers on
GitHub Copilot

WR IT TEN BY GITHUB WITH

Written by GitHub with PAGE — 2

How to adapt your training for
generative AI tool adoption

GitHub Copilot can feel like magic, but at
its core it’s simply a tool—albeit a powerful
and versatile one. Unlike many tools
designed for specific tasks, languages,
or syntax, Copilot seamlessly integrates
into a developer’s workflow, spanning
various tasks, languages, and syntaxes.
Developers work alongside Copilot to
write code, generate tests, fix bugs, create
documentation, and much more. To fully
realize Copilot’s potential, entire teams,
not just individual developers, must adopt
new skills. While Copilot may be a tool like
any other, generative AI presents unique
adoption challenges that require specific
solutions.

As such, effective training and knowledge
transfer are key to a successful rollout.
This requires engaging the right people—
those who embody the traits of innovators
and early adopters, as defined by the
traditional “adoption curve”. They should
not only be excited about the technology’s
potential, having used it themselves, but
also motivated to teach others how Copilot
enables new or augmented workflows in
their daily flow.

To sufficiently bridge the gap between
those early adopters and the large swath of
more pragmatic, hesitant users, you’ll need
to create structured, repeatable onboarding
processes and provide clear, tangible
examples of how Copilot can solve real-
world problems.

In this white paper, we will
discuss:
•  How Copilot fundamentally differs from

other products
•  The four pillars for a successful rollout
•  Suggested methods for educating and

enabling developers to successfully
adopt Copilot

•  A sample 90-day onboarding plan
•  Resources for training developers to use

Copilot

This white paper assumes you’ve already
completed a pilot program and are looking
to roll out Copilot to the organization at
large. While we will talk about the various
roles people will play, managing the rollout,
and measuring success, the primary focus
of this resource will be on training. For more
details on running a pilot program and other
technical aspects of deploying Copilot,
refer to the Copilot Learning Pathway1 and
Copilot documentation2.

1:  Essentials of GitHub Copilot

2:  GitHub Copilot documentation

https://resources.github.com/learn/pathways/copilot/essentials/essentials-of-github-copilot/
https://docs.github.com/copilot
https://resources.github.com/learn/pathways/copilot/essentials/essentials-of-github-copilot/
https://docs.github.com/en/copilot

Written by GitHub with PAGE — 3

Four pillars of successful
product rollouts
There are four pillars to successfully
rolling out any new tool or product to an
organization:

1.	 Clearly defined goals: How can you
claim success if it’s not clearly defined?

2.	Champions: Excited early adopters can
influence users (developers in our case)
to successfully use and adopt the tool.

3.	Reminders: Periodic pings can
help remind developers to begin (or
continue) using the tool.

4.	Knowledge transfer: Guide developers
to resources on how best to use the
tool.

Let’s take a closer look at the first three,
before really diving into knowledge transfer,
which can take many forms.

What makes Copilot
(and generative AI) unique

Generative AI can be a challenge for
developers to work with, as it’s unlike most
tools they’ve used. Developers are used
to deterministic environments, where a
specific input always produces the same
specific output. Generative AI, however,
is probabilistic, meaning a specific input
can result in different outputs. This is
a fundamental shift, and getting the
most out of Copilot requires not only an
updated approach to coding, but also an
understanding of how best to work with a
probabilistic system.

Unlike other tools, GitHub Copilot will also
be pervasive throughout their development
process. A new automation tool, for
example, has a specific syntax and set
of use cases, while Copilot stretches
across languages and workloads. Copilot’s
use cases are varied and developers
will discover new practices and ways to
incorporate Copilot into their flow as they
keep working with it, too.

Written by GitHub with PAGE — 4

Clearly defined goals

It might seem obvious, but in order for a
project to succeed, success needs to be
clearly defined. When rolling out Copilot,
you’ll want to start by defining the changes
and improvements you’re targeting in
developer experience (DevEx), productivity,
time to market, and other criteria.

A good place to start is the SPACE
framework3, an industry standard for
gathering metrics.

Champions

Champions can be anyone in your
organization viewed as influential, from
manager to individual contributor. They are
key players who help generate excitement
and onboard developers to using new tools
and techniques, and they can be found
throughout the organization.

While there may be some overlap,
champions and executive sponsors play
different roles. Executive sponsors are
typically higher-level leadership who drive
adoption and decide the direction of the
organization, while champions interact
with developers on a daily basis, and are
who developers look to for guidance and
support.

At the same time, there are specific roles
you will want to focus on. For example, a
developer’s response to a new tool is often
reflective of the engineering manager’s
opinion. As such, it’s vital to ensure that
engineering managers have positive
feedback and expectations of Copilot,
because they can be some of your most
effective champions.

Every team also has senior level developers
who others look up to and emulate. These
developers define best practices, identify

3:  Measuring enterprise developer productivity

patterns, and drive how development takes
place on their team and often hold a large
amount of sway over teams.

Champions should be visible and involved
throughout the entire rollout process
and beyond. Champions need to have
the appropriate level of knowledge, skills,
and experience to advocate for other
developers. Champions can validate their
skills via the Copilot exam4 providing a clear
way to differentiate champions from users.
Champions can contribute in a variety of
ways from leading peer-to-peer learning
sessions to defining and documenting use
cases and best practices.

Reminders

After a developer gains access to Copilot,
they’ll receive an email with instructions
on how to install the extension into their
preferred IDE. Most developers are
extremely busy, though, and the most
common reaction to that initial ping is to
move on to the next task at hand. This is
where reminders come into play.

Periodically remind your developers to
install and begin using the tool. Reminders
can be as basic as periodic messages in
Slack channels or emails, and also provide
an opportunity to pass along additional
information. While it might feel like you’re
just bothering them, research shows that
reminders increase adoption5. They also
serve as great opportunities to share
resources, videos, and documentation
to help developers have a good first
experience.

4:  GitHub Certifications

5:  MIT GenAI, “Generative AI and the Future of Human Creativity,” 2023

https://github.blog/enterprise-software/devops/measuring-enterprise-developer-productivity/
 https://resources.github.com/learn/certifications/?utm_source=LinkedIn&utm_medium=Social&utm_campaign=DevRel
https://mit-genai.pubpub.org/pub/v5iixksv/release/2#n57o0aa6n95

Written by GitHub with PAGE — 5

Knowledge transfer: a multi-modal,
long-lasting strategy

Copilot will be pervasive in your developers’
workflows, so your training strategy cannot
be reduced to a single event or modality. As
your developers’ experience with Copilot
grows, they will discover new workloads and
approaches they can use to get the most
out of the tool. You’ll want to share these
learnings with others, so make your training
both multimodal and long-lasting.

Let’s look at how both formal and ad-
hoc training will help your developers
successfully adopt Copilot.

IMPORTANT: While “Don’t Repeat
Yourself” (DRY) is a common
methodology for writing code, the exact
opposite is true for training. Different
learners will connect with different
styles at different times throughout the
lifecycle. You’ll want to share information
in multiple locations and modes to meet
users where they’re at.

Formal training

Formal training is guided or shaped by
experts and has clearly defined learning
objectives and measurable outcomes. With
these goals in mind, formal training can
promote consistency and equity across
organizations.

When you build your formal training
plan, you’ll want to have an outline of the
desired outcome, the knowledge to be
transferred, and the skills your developers
will need to acquire. Take into account the

languages and frameworks they’re working
with, as lessons based on their day-to-
day environment will be more impactful.
Code used in training doesn’t need to be
production code or overly complex, but
it should be representative of their daily
work, and can require some team-by-team
customization.

Let’s look at a few types of formal training
that can help.

Workshops:

Workshops provide hands-on guided
instruction by someone experienced with
Copilot and are a great way to introduce
developers to Copilot. An expert leads
learners through a series of tasks, exploring
some of the common tasks Copilot can
assist with and best practices for getting
the most out of the tool. Workshops help
shape the skills developers need to learn
and gain confidence in their abilities to best
take advantage of the tools available to
them. Learners also have the opportunity
to ask questions, and explore in an
environment where they are set up for
success.

Hackathons:

To host a hackathon, give developers a
clearly defined task with limited guidance
on how to achieve it and high-level
instructions on how to use GitHub Copilot.
After that, it is up to them to determine how
best to resolve the issue. Many developers
prefer this type of approach as they tend to
want to “get their hands dirty.” Make sure to
have mentors available to answer questions

Written by GitHub with PAGE — 6

and point attendees in the right direction.

When planning a hackathon, ensure the
challenge presented is achievable in the
allotted time and has clearly defined goals.
Presenting a scenario at an afternoon
hackathon that would take multiple days to
complete only leads to frustration. Similarly,
you need clearly defined goals to help keep
developers focused on a path.

Backlog items like updating
documentation, handling library version
upgrades, and ensuring accessibility can
be good candidates for hackathon projects.
We also have a packaged hackathon6
organizations can use which provides a
series of challenges where learners explore
Copilot while building an application.

Asynchronous or on-demand training:

Build out a library of on-demand, curated
resources to support developers with
specific questions or looking for a
jumpstart. These resources can come
from a variety of sources including GitHub
Docs, the GitHub YouTube channel, the
GitHub Copilot Trust Center, and many
more, which are continually updated with
new content. To start, see the curated list of
resources included in the appendix.

Organize your list either by topic or by a
learner’s journey (moving from basics,
through intermediate content, and on to
advanced). Make it easily accessible to
developers from within their workflow, that
way it’s central to the onboarding process
of new developers as well as ongoing
development. Review resources regularly
and update them as new features roll
out or organizational changes are made.
Designate a core group of individuals
to keep this library up to date while also
allowing others to recommend artifacts
from other sources.

Ad-hoc and informal knowledge transfer:

6:  GitHub Copilot Hackathon Samples

While formal knowledge transfer covers the
information common to all organizations,
your ad-hoc and informal knowledge
transfer covers your organization’s unique
libraries, challenges, and approaches to
creating software. The workloads where
Copilot shines for you, and the approach
necessary to generate those quality
responses, will be particular to your
company, and even to individual teams. You
want to have a strategy for where and how
developers can share these lessons with
one another.

Encourage your teams and developers
to employ various knowledge sharing
methods to share learnings with one
another at all times. For example, if a
developer discovers that Copilot generates
higher quality suggestions when they have
the schema file for a database open as they
create a query, they don’t need to wait for
the next team call to share their experience.

We suggest some modes of ad-hoc
knowledge transfer below, but they are
illustrative, not exhaustive. Developers
could share their experiences during
standups, team meetings, or any other
medium where they engage with one
another.

Wikis and discussion forums:

Nearly every project and organization has
an informal platform for developers to
share and document their experiences with
the codebase. Encourage developers to
add their learnings and ask questions about
GitHub Copilot in these locations. You can
gamify sharing, especially as excitement
naturally wanes after the first few
months, to help keep your docs fresh and
continuing to grow and evolve. You could
also incentivize contribution by recognizing
groups, celebrating contributions, and even
providing swag to key contributors.

https://docs.github.com/en
https://docs.github.com/en
https://www.youtube.com/githubhttp://
https://github.com/trust-center
https://github.com/github-samples/copilot-hack

Written by GitHub with PAGE — 7

Roll out your
knowledge
transfer plan
Your organization’s approach to rolling
out your knowledge transfer plan should
meet developers where they’re at, across
various media and modes, and at various
points during their journey. There isn’t a
“one-size-fits-all” approach, as different
teams and even individual developers will
have varying responses and connection
points. Don’t limit your training options to a
single platform or modality, but ensure your
approach is pervasive and long lasting.

Contact your sales representative to
engage with GitHub about potential
opportunities to train and/or certify your
developers, or host hackathons and
workshops.

Recommended
training plan to
support adoption
Different types of training will be needed
at various stages, but the exact timing and
approach may vary between organizations.
The suggested calendar below should
provide insights as to how best to approach
this process.

Onboarding
(T-45 days to rollout)

Rolling out any product starts before
access is enabled for users. This includes
generating awareness and excitement
about the product, and the initial training.
Because your developers will likely have
limited experience with Copilot, training will
typically be more formal and higher level.

•  T-45 days: Determine how to measure
success and by what methods success
will be measured. This could be anything
from productivity increases, improved
code acceptance rates, and developer
satisfaction. For more information,
review this GitHub Blog article on
quantifying GitHub Copilot’s impact on
developer productivity and happiness7.

•  T-30 days: Identify and engage
champions. Ensure they’re onboard
and have received the proper training to
support their teams.

•  T-14 days: Send announcements and
a selection of asynchronous content
such as videos and blog posts. The goal
is to allow developers to have access to
resources and time to explore them in
advance.

•  T-7 days: Host a hands-on, instructor-
led workshop to answer user questions.

Adoption
(rollout to 90 days)

During the adoption period—the first 90
days—developers will begin regularly using
the product in real-world scenarios, where
they’ll need access to information quickly.
As they gain experience, they’ll start to have
more specific questions, which you’ll want
to plan for.

•  Launch day: Ensure the following
are created and accessible for all
developers:
•  	Slack channel for asking questions
•  Asynchronous resources, including

blog posts, videos, and online courses
•  A wiki for developers to share

learnings with their teams and the
broader organization

7:  Research: quantifying GitHub Copilot’s impact on developer productivity and
happiness

https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

Written by GitHub with PAGE — 8

•  T+14 days: Host a hackathon.
Once developers have gained a
little experience with Copilot, host a
dedicated session where they can
focus solely on using Copilot to solve a
problem representative of their day-to-
day work.

•  T+60 days: Host a lunch and learn
session where front-line developers
share their learnings about using Copilot
“in the real world.” These types of events
allow developers to learn best practices
for using Copilot from one another.

Optimization and
sustained efficiency
(90 days and beyond)

After the initial adoption phase, developers
will continue discovering new capabilities
and solutions unique to their scenarios as
they grow more comfortable using Copilot.
At the same time, tool adoption tends to
lose steam after initial launch, so make
sure to continue the knowledge sharing
and transfer process, especially as new
features are released.

Focus on the following efforts regularly:

•  Update wikis to ensure information is still
relevant and accurate.

•  Continue to host lunch and learns and
similar events on a quarterly basis.

•  During internal conferences, always
ensure there are sessions focused on
Copilot.

•  Have a process for training your
developers as new features are released.

Additional
resources

•  GitHub Trust Center
Answers to all your
questions about security,
privacy, compliance,
and transparency with
GitHub Copilot

•  Copilot Chat Cookbook
Curated examples of
prompts to use with
GitHub Copilot Chat

•  Copilot hackathon
Ready-to-use hackathon
to learn GitHub Copilot
that can be run locally or
in a codespace

•  Modernizing COBOL
with GitHub Copilot

•  Why developer
satisfaction is your best
productivity metric

•  Increasing collaborative
development with AI

•  Taking GitHub
Copilot to the stars,
not just the skies

https://github.com/trust-center
https://docs.github.com/en/copilot/example-prompts-for-github-copilot-chat
https://github.com/github/copilot-hack
https://resources.github.com/software-development/modernizing-cobol-with-github-copilot/
https://resources.github.com/software-development/modernizing-cobol-with-github-copilot/
https://resources.github.com/developer-productivity/why-developer-satisfaction-is-your-best-productivity-metric/
https://resources.github.com/developer-productivity/why-developer-satisfaction-is-your-best-productivity-metric/
https://resources.github.com/developer-productivity/why-developer-satisfaction-is-your-best-productivity-metric/
https://resources.github.com/innersource/increasing-collaborative-development-with-ai/
https://resources.github.com/innersource/increasing-collaborative-development-with-ai/
https://resources.github.com/artificial-intelligence/scaling-github-copilot-across-your-organization/
https://resources.github.com/artificial-intelligence/scaling-github-copilot-across-your-organization/
https://resources.github.com/artificial-intelligence/scaling-github-copilot-across-your-organization/

WR IT TEN BY GITHUB WITH

