How does forest fire impact above ground tree biomass in Iceland? - a study of fire effects

PRIFYSGOL BANGOR UNIVERSITY

Rebekah D'Arcy - Forester & Wildfire Research Assistant MSc Forestry dissertation presentation - 21st March '24

Research importance

Global increase uncontrollable Wildfires/FF's : diverse & devasting <u>effects</u>

- Fire effects studies: readiness
- Increase understanding of fire in the landscape:
 - Factors of fire carrying fuels, topography, climate & weather
 - Fire ecology heat processes
 - Fire regime occurrence space/time
 - **Post-fire recovery** (Bennet et al., 2010)
- Inform management decisions: reduce fire risk severity local scale

GRID-Arendal/Studio Atlantis, 2021

What's the Icelandic situation?

- Management focus: intervention & response
- Documented since 2006 (IINH): limited occurrence (limited research opportunities)
- Increased risk: greening, afforestation, reduced grazing, warming

What's the Icelandic situation?

- <u>Research opportunity</u>: Collect Icelandic fire data for improved FF reporting, research & management:
 - Increase readiness
 - UN requirements
 - Icelandic Environment Agency

FF Heiðmörk (2021) - affected area: 56.46 ha of mixed density broadleaves, conifers, native birch woodland & open land

Fire effects study: Heiðmörk

- Study aim: evaluate & analyse how fire effects above ground tree biomass
- Data collected autumn '22: Heiðmörk
- ➤ 2 part analysis:
- Part 1, emissions estimates: Icelandic single tree biomass equations
- Part 2, factors & impacts analysis: Logistic regression modelling - test influence of 8 characteristics of fuels AND topography on tree burn damage & mortality

Post-fire image, taken summer 2023

Part 2 - research hypotheses

1. Tree burn damage increases with:	2. Tree mortality increases with:
1.1 Increased plant litter	2.1 Increased plant litter
1.2 Increased vegetation cover	2.2 Increased vegetation cover
1.3 Decreased bark thickness	2.3 Decreased bark thickness
1.4 Decreased tree height	2.4 Decreased tree height
1.5 Decreased stand age	2.5 Decreased stand age
1.6 Coniferous species	2.6 Coniferous species
1.7 South and south-	2.7 South and south-east facing
east facing slopes	slopes
1.8 Increased slope gradient	2.8 Increased slope gradient

Methods and materials

Study design

STUDY DESIGN

- Type: empirical
- Sampling: systematic sampling: representivity (32 100m2 plots)
- Data types:
- Primary: drone imagery, site inventory & tree survey (223 trees)
- Secondary: aerial images, in pers.com & weather data

Map with systematic plot scheme (data sources: IFR, 2022; image: Kjartansson et al., 2022)

Data collection

DATA COLLECTION – AUTUMN '22

- Parts 1&2: IFI inventory:
- Trees: DBH(mm), height(m)
- Surface vegetation: class & cover etc.
- Part 2 Tree survey:
- Factors, heat processes & impacts

Pole with reflector held by Osvaldo Borello, measuring pinus contorta

Detecting trees with the lazer range finder

Entering data and observations into the field computer with Bjarki Þor Kjartansson

Plot center marker

Field work autumn, '22. Image top right: Reykjavik forestry association (2022)

Post-stratification

<u>POST INVENTORY -</u> <u>STRATIFICATION</u>

- Part 1: poststratification: scaling biomass estimations
- OG/MF: 38.47 ha
- MB: 4.38 ha
- MC: 9.06 ha
- NBW: 4.55 ha

Analysis & statistical methods

BIOMASS EQUATIONS & LOGISTIC REGRESSION

- Part 1: emissions estimates
- Icelandic single tree biomass equations (Snorrason and Einarsson, 2006)
- Tree, plot & site level
- Conversion factors
- Part 2: factors & impacts
- Data preparation
- Summary statistics
- *k*-fold cross validation with multiple logistic regression model (LRM)
- R studio & Excel

Predictor variables	Variable levels
 Species (categorical) Height (m) (numeric) DBH (mm) (numeric) Stand age (mm) (numeric) Slope angle (numeric) Slope face (categorical) Vegetation cover (categorical) Plant litter (categorical) Plant litter (categorical) Other predictor variables (not included in the LRM) Ladder fuels (categorical) 	 broadleaf, conifer low to moderate, high plant litter, no litter
 DKH (mm) (numeric) 	
Outcome variables	Levels
 Tree status (categorical) Burn damage (categorical) Other outcome variables (not included in the LRM): 	 0 = dead, 1 = alive 0 = no damage, 1 = moderate to high
 Heat transfer & reaction (categorical) Regeneration type (categorical) Soil preparation (categorical) 	

Part 1 - Results & discussion

Results part 1: Above ground tree biomass loss & emissions

The biomass and neeronass (kg/ by species group								
Species	Populus	Betula	Salix		Pinus		Larix	Picea
group (N)	trichocarpa,	pubescens	myrsinifolia		contorta,		sibirica,	glauca&
	N = 1	&	&alaxensis,		N = 89		N = 2	sitchensis,
		Sorbus,	N = 32					N = 41
		N = 58						
Biomass (k	g)							
Sum	-	463.13	731.20		1431.24		37.16	315.62
Mean	-	21.05	30.47		26.02		18.58	19.73
±(SD)		±(27.93)	±(17.67)		±(26.86)		±(20.79)	±(18.61)
±SE	-	±5.95	±3.61		±3.62		±14.70	±4.65
Necromass	(kg)							
Sum	1.66	146.00	99.33		114.21		-	42.70
Mean	1.66	4.06	12.42		3.36		-	1.71
±(SD)	-	±(7.44)	±(14.96)		±(4.90)			±(1.81)
±SE	_	±1.24	±5.29		±0.84		-	±0.36

(N)number of trees/species group

Tree biomass and necromass (kg) by species grou

Sum of treeAGB/necromass (kg) by species group, mean (sum of treeAGB/necromass (kg) by species group), ±(SD), ±SE = standard deviation of the sample mean and standard error

Tree biomass&necromass/ ssp. group Species groups in sample:

 Low presence: Populus trichocarpa & Larix sibirica

Biomass equations:

- *Pinus contorta* highest amount of biomass
- Betula pubescens & Sorbus highest amount of necromass
- Salix myrsinifolia & alaxensis highest mean biomass and necromass

Results part 1: Above ground tree biomass loss & emissions

±SE of post stratification classification

Strata	N°plots	ha	±SE
MB	9	4.38	±0.08
MC	13	9.06	±0.08
NBW	1	4.55	±0.03
OG/MF	9	38.47	±0.08

Sum tree biomass, carbon CO₂-e and **emissions**, by stratum (t)

Strata	MC	MB	NBW	OG/MF
Tree biomass	120.90	60.53	-	-
Tree necromass	11.13	11.84	0.46	-
Tree Carbon	60.45	30.26	-	-
Tree Carbon loss	5.56	5.92	0.23	-
Tree CO ₂ -e	221.84	111.07	-	-
Tree CO ₂ -e loss	20.42	21.72	0.83	-
necromass:biomass	0.14	0.20	-	-

Post-stratification:

- 1 plot predominant stratum NBW
- MB, MC & OG/MF equally represented

- Necromass:biomass proportionally higher in MB, 0.20, vs MC, 0.14
 - NBW not present in this ratio

Discussion - results part 1: Above ground tree biomass & emissions

Part 2 - Results & discussion

Results part 2 - summary statistics: tree burn damage & mortality

Tree burn damage by Species or *ssp*. 70 62 60 50 Number of trees 40 32 27 30 26 23 20 20 10 2 Sorbus ssp. Picea ssp. Salix spp. Populus Larix Pinus Betula Betula sibirica pubescens pubescens trichocarpa contorta (native) (planted) Species or ssp. moderate to high damage no damage

Moderate (50-70%) or high damage (70-100%) 74% of trees

□ Almost even split of dead and living trees

Results & discussion part 2.1: Logistic regression model - tree burn damage

Tree burn damage final model, test data set – significant results

	Estimate	Std.	z value	Pr(> z)	Wald Test	Odds	95%	6 CI
		Error				Ratio	Lower	Upper
(Intercept)	-6.260	1.191	-5.256	0.000	-5.256	0.002	0.000	0.020
Height(m)	1.049	0.203	5.166	0.000	5.166	2.854	1.917	4.249
Vegetation Cover: high	-2.762	1.117	-2.472	0.013	-2.472	0.063	0.007	0.564
Slope angle	0.163	0.040	4.107	0.000	4.107	1.178	1.089	1.273

1.2: Increased vegetation cover did not increase damage
Fuel availability/continuity:

Plots w/ high cover: grassland VS
Plots low-med cover: ladder fuels

Post fire recolinisation: ground/surface fuels – filling post-fire space?

1:4: Shorter trees were not more

damaged than taller trees

Uneveness height: damaged trees

<ladder fuels: areas of damaged trees

 1.8, Tree burn damage increases with increased slope gradient - supported

Results & discussion part 2.2: Logistic regression - tree mortality

Tree status final model, test data set – significant results

	Estimate	Std.	z value	Pr(> z)	Wald	Odds	95%	6 CI
		Error			Test	Ratio	Lower	Upper
(Intercept)	3.926	0.674	5.823	0.000	5.823	50.725	13.530	190.172
Height(m)	-0.937	0.162	-5.790	0.000	-5.790	0.392	0.285	0.538
Slope angle	-0.062	0.031	-2.001	0.045	-2.001	0.940	0.884	0.999
Plant litter: Nolitter	-1.195	0.486	-2.461	0.014	-2.461	0.303	0.117	0.784

- Hypothesis 2.1, tree mortality increases with increased plant litter – supported as expected
- Plant litter would have been drier leading up to FF (no recorded rainfall prior) – fuel moisture is key!
- ✓ Hypothesis 2.4, tree mortality increases with decreased tree height supported - as expected –
- higher amount of ladder fuels in areas of increased tree mortality

2.8 Increased **slope gradient** does not increase tree mortality

- FF began below steepest section: limited intensity? Limited mortality
- Uneveness in tree height + patchy vegetation **mixed severity?**

Results part 2: Research implications

- Results contribute to knowledge about how FF impacts trees in Iceland
- Results provide basis for shaping future for forest fire research, analysis and management in Iceland

Implications:

Develop country specific integrated fire managemet at landscape scale

Integrated fire management – some examples

Conclusions

Conclusions & recommendations

Results		
	Research contributions & limit	itations
Part 1 - Emissions:		
- Low compared to other sectors	First study in Iceland:	Recommendations
- MB higher emissions than MC	>collect & apply field data:	1
Part 2 – factors & impacts:	estimate FF emissions	Anticipate & reduce Icelandic FF
- Increased slope angle increased damage	>analyse now characteristics of fuels & topography influence tree damage & mortality	risk > Increase data collection: reliability
- Shorter trees & litter increased mortality	>Study limitations => partially answered research questions	<pre>> Integrated fire management: limit risk/ increase resilience</pre>
		> Reunite/dedicate resources to

> Continue research

Thank-you

SKÓGRÆKTARFÉLAG REYKJAVÍKUR Stofnað 1901

