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Abstract

Addiction is a chronic relapsing disorder with devastating personal, societal, and economic 

consequences. In humans, early-life adversity (ELA) such as trauma, neglect, and resource 

scarcity are linked with increased risk of later-life addiction, but the brain mechanisms 

underlying this link are still poorly understood. Here, we focus on data from rodent models 

of ELA and addiction, in which causal effects of ELA on later-life responses to drugs and 

the neurodevelopmental mechanisms by which ELA increases vulnerability to addiction can be 

determined. We first summarize evidence for a link between ELA and addiction in humans, 

then describe how ELA is commonly modeled in rodents. Since addiction is a heterogeneous 

disease with many individually varying behavioral aspects that may be impacted by ELA, we 

next discuss common rodent assays of addiction-like behaviors. We then summarize the specific 

addiction-relevant behavioral phenotypes caused by ELA in male and female rodents and discuss 

some of the underlying changes in brain reward and stress circuits that are likely responsible. By 

better understanding the behavioral and neural mechanisms by which ELA promotes addiction 

vulnerability, we hope to facilitate development of new approaches for preventing or treating 

addiction in those with a history of ELA.
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Introduction

Substance use disorder (SUD) is characterized by loss of control over increasingly harmful 

substance use, often leading to physical dependence, as well as by persistent drug cravings 

and risk of relapse, which can last for years (Hasin et al., 2013). Addictive drugs are thought 

to hijack brain reward circuits that normally mediate seeking of and pleasure from natural 

rewards (Nesse & Berridge, 1997), thereby eliciting subjectively pleasurable experiences 

and continued recreational use (i.e. positive reinforcement) in some individuals. In others, 

initial drug use may instead result in relief of an underlying negative affective state (i.e. 

negative reinforcement), a process that is further exacerbated by subsequent escalating drug 

use and the affective dysregulation it causes (Koob & Le Moal, 1997). Moreover, continued 

chronic drug use may also promote excessive learning or inflexible drug habits (Berke & 

Hyman, 2000; Everitt & Wolf, 2002). The relative roles of positive or negative reinforcement 

to an individual’s drug use likely differ based on the abused drug of choice, specific drug 

availability, as well as one’s sex and heritable or environmental risk or resilience factors. 

In other words, there is more than one way to be at risk for addiction, and more than one 

manifestation of the disorder once it emerges (Fig. 1). Understanding how these complex 

factors interact to put individuals at risk of SUD and the contribution of ELA to these factors 

and mechanisms is essential for developing new ways to treat and prevent SUD.

Many factors contribute to the risk for developing SUD, including developmental 

experiences such as stress or insecure social relationships, drug availability, genetic 

predisposition and biological sex differences (Schuckit, 2002; Dube et al., 2003; Sinha, 

2008; Volkow et al., 2011; Kreek et al., 2012; Wright et al., 2014; Becker & Chartoff, 2019; 

Crist et al., 2019; Jiang et al., 2019). Moreover, these factors may also interact in important 

ways. Here we will focus on ELA, an important environmental risk factor for SUD. We will 

describe the association of ELA with addiction in humans, then concentrate on preclinical 

research showing long-lasting, causal effects of ELA on addiction-related behaviors and aim 

to elucidate the brain mechanisms that may be involved.

Association of ELA with Addiction in Humans

ELA related to poverty, trauma and chaotic environment affects over 30% of children in 

the U.S. (American Psychological Association, 2018). When adversity occurs during critical 

neurodevelopmental stages, it can impact cognitive and emotional processing long into 

adulthood (Callaghan & Tottenham, 2016; Chen & Baram, 2016; Short & Baram, 2019). 

A classic psychological mechanism by which this occurs involves potential disruption of 

the attachment of infants to their primary caregivers (Ainsworth, 1969; Bowlby, 1974; 

2008); such disruption may have long-lasting effects on social and emotional development. 

From a neurobiological perspective, ELA perturbs numerous neurodevelopmental processes, 

including the development and maturation of brain circuits involved in cognition and 

emotion. In this review, we consider how adverse sensory signals from the environment (i.e., 

early life experiences), especially during critical developmental periods, can disturb synaptic 

strengthening or pruning in reward and stress circuits (Korosi et al., 2010; Singh-Taylor et 
al., 2017; Bolton et al., 2018a; Granger et al., 2020). By impacting the maturation of brain 
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circuits, adverse early-life experiences lead to long-lasting changes in the function of these 

circuits, potentially impacting vulnerability to the addictive effects of drugs.

Indeed, adverse early life experiences are robustly associated with later-life substance 

addiction in humans (Nurco et al., 1996; Simpson & Miller, 2002; Dube et al., 2003; 

Widom et al., 2006; Gershon et al., 2008; Sinha, 2008; Enoch, 2011; Shand et al., 2011; 

Stein et al., 2017; Marsh et al., 2018; Levis et al., 2021). The landmark Adverse Childhood 

Experiences study found that in addition to increasing the likelihood of early initiation of 

drug use (Dube et al., 2003), a risk factor for addiction in itself (Grant & Dawson, 1997; 

McCabe et al., 2007; Chen et al., 2009), ELA increases risk for smoking up to 2-fold, 

alcoholism up to 7-fold, injected drug use up to 11-fold, and other illicit drug use up to 

4-fold (Anda et al., 2006). Yet, ELA does not inevitably lead to substance use disorder 

in all individuals. Reasons for this may be that specific long-term outcomes of ELA vary 

based on type of adversity experienced (Sheridan & McLaughlin, 2014; Dennison et al., 
2019), the age of exposure to adversity (Luby et al., 2020), individual variability in traits 

associated with resilience to stress (Fergusson & Horwood, 2003; Hartmann & Schmidt, 

2020; Zinn et al., 2020; Méndez Leal & Silvers, 2021), and societal factors such as the 

availability of specific drugs (Wright et al., 2014) or access to supportive interpersonal 

relationships and community resources (Daskalakis et al., 2013; Gartland et al., 2019; Liu et 
al., 2020). Additionally, sex and gender differences may play a role in these outcomes. For 

example, in women, a history of neglect predicts a higher probability of opioid dependence, 

while dependence in men is instead better predicted by acute traumatic experiences and 

concomitant post-traumatic stress symptoms (Shand et al., 2011). In fact, women with a 

history of ELA appear to be particularly predisposed to substance use disorders relative to 

men and to individuals with no history of ELA (Widom et al., 1995; Najavits et al., 1997; 

Hyman et al., 2006; Gershon et al., 2008; Hyman et al., 2008; Lansford et al., 2010; Shand 

et al., 2011; Marsh et al., 2018; Peltier et al., 2019; Capusan et al., 2021). Notably, this 

sex-dependent relationship may be partially explained by the fact that girls and boys tend to 

be exposed to different types of adversities (Short & Baram, 2019; Haahr-Pedersen et al., 
2020).

Although clinical studies strongly support an association of ELA with later-life SUD, it is 

challenging to establish causality in human studies. Therefore, animal models are essential 

for parsing the mechanisms by which ELA impacts neurodevelopment and characterizing 

the resulting differences in behavioral responses to drugs of abuse. In the following sections, 

we 1) describe two of the most commonly used rodent models of ELA, 2) overview common 

rodent tests used to model addiction-relevant behavioral processes, 3) describe how rodent 

ELA models impact addiction-relevant behaviors, and 4) discuss known effects of ELA upon 

brain reward and stress circuit development in rodents which may underlie this association.

Animal Models of Early Life Adversity

Several animal models have been developed to study the effects of ELA on brain 

development and behavior in rodents as well as nonhuman primates [For comprehensive 

reviews of these models see (Molet et al., 2014; Nishi et al., 2014; Doherty et al., 2017; 

Walker et al., 2017; Wakeford et al., 2018; Brenhouse & Bath, 2019)]. Here, we focus on 
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two of the most commonly used rodent models; maternal separation (MS) and limited 

bedding and nesting (LBN). Notably, as in humans (Shand et al., 2011; Sheridan & 

McLaughlin, 2014; Strathearn et al., 2020), the outcomes of ELA in rodents varies based on 

such factors as the type and timing of adversity, as well as on the animal species and strain 

used, the outcome measures assayed, sex, and other factors (van Oers et al., 1998; Pryce & 

Feldon, 2003; Moffett et al., 2007; Schmidt et al., 2011; Kundakovic et al., 2013; Andersen, 

2015; Di Segni et al., 2018; Bonapersona et al., 2019; Brenhouse & Bath, 2019; Walters & 

Kosten, 2019; Bath, 2020; Demaestri et al., 2020; Lundberg et al., 2020). It is important to 

be aware of this diversity and embrace the notion that different rodent models of ELA may 

lead to different neurodevelopmental changes and ultimately to distinct addiction-relevant 

phenotypes.

A number of studies examining the effects of ELA on reward-seeking behavior employ 

a version of the maternal separation (MS) procedure, first introduced by Seymore Levine 

(1957). Pups are separated from their mother daily during the first 1–2 weeks of life, 

for a period of time ranging between 15 minutes and 24 hours. This causes an acute, 

predictable daily stressor accompanied by transient corticosterone elevations during the 

period of separation (McCormick et al., 1998). Notably, the duration of separation period 

itself (minutes vs. hours) and resulting impact on maternal behavior is a crucial variable 

that determines the nature of long-term outcomes (Fenoglio et al., 2006; Korosi et al., 
2010; Tractenberg et al., 2016; Orso et al., 2019). For example, following 15 minutes of 

separation, pups typically receive augmented care when returned to their mother (Pryce 

et al., 2001; Orso et al., 2019). Some have found that this augmented care following 

15-minute separations (“handling”) promotes resilience and improve long-term outcomes 

(Levine, 1957; Korosi & Baram, 2009), whereas daily MS of three hours, the most 

common approach, tends to lead to more detrimental outcomes (Tractenberg et al., 2016; 

Bonapersona et al., 2019). However, some apparent contradictions in the literature exist, and 

others have observed that brief (minutes) or long (hours) maternal separation can in some 

cases result in reward-related outcomes that are similar to non-handled controls (Meaney 

et al., 2002; Schmidt et al., 2011; Nylander & Roman, 2013; Bian et al., 2015). These 

apparent inconsistencies highlight the complexities of the model, as well as the need for 

appropriate experimental controls (e.g., handled vs. non-handled conditions). In addition, 

the age of separation critically influences the outcomes of MS (van Oers et al., 1998; Peña 

et al., 2019). Relatedly, sex mediates MS effects on neurodevelopment in a manner that is 

still incompletely understood, but which may involve sex differences in neurodevelopmental 

sensitive periods, hormonal interactions, and other factors (Flagel et al., 2003; Bath, 2020).

A more recently developed model of ELA involves simulating chronic resource poverty by 

limiting bedding and nesting materials (LBN) from a postpartum rodent dam and her litter. 

This procedure has been adopted widely in rats and mice (Gilles et al., 1996; Wang et al., 
2012; Molet et al., 2014; Bath et al., 2017; Walker et al., 2017) in original or modified 

formats (Walker et al., 2017; Opendak et al., 2019). In this model, most of the bedding and 

nesting materials are removed from the home cage environment, causing in the mother a 

mild, chronic stress that leads to unpredictable and fragmented maternal care (Ivy et al., 
2008; Rice et al., 2008; Molet et al., 2014) and a transient increase in basal corticosterone 

levels in both dam and pups (Brunson et al., 2005; Ivy et al., 2008). Importantly, the total 
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quantity of care received by pups is unaffected by LBN (Molet et al., 2016a). Instead, the 

quality of care is disrupted by LBN, such that dams more frequently and unpredictably 

switch between care elements (licking, feeding, etc). This chaotic patterning of care leads 

to pronounced long-term cognitive and affective deficits in rodents (Ivy et al., 2010; Molet 

et al., 2016a; Bolton et al., 2017; Short & Baram, 2019). Notably, unpredictable parental 

care is also a strong predictor of negative cognitive and emotional outcomes in humans and 

nonhuman primates (Rosenblum & Paully, 1987; Coplan et al., 1996; Davis et al., 2017; 

Wakeford et al., 2018; Davis et al., 2019; Glynn & Baram, 2019).

In both MS and LBN models of ELA, the developmental stage(s) at which adversity occurs 

is important for determining the long-term behavioral and neural outcomes. In rodents, early 

postnatal life, a period roughly analogous to the first year of life in humans (Avishai-Eliner 

et al., 2002; Birnie et al., 2020), seems to be a sensitive period for long-term negative 

outcomes of ELA. This may be because this period is especially important for organizing 

brain reward and stress circuits (Molet et al., 2014; Birnie et al., 2020; Luby et al., 2020), 

leaving them susceptible to perturbation by ELA. When adverse events or chaotic parental 

care occur during this sensitive period, circuits are impacted in a manner that may be 

irreversible once the sensitive window is closed, analogous to how sensory systems are 

shaped by appropriate environmental stimuli occurring at the necessary developmental stage 

(Hubel et al., 1977; Zhang et al., 2001; Hensch, 2004; Li et al., 2006; Espinosa & Stryker, 

2012). Just as sensory systems require regular inputs at specific times during development 

to mature properly, these reward and stress circuits may be similarly “tuned” by factors 

like acute stressors or the predictability of parental care patterning (Hane & Fox, 2016; 

Davis et al., 2017; Andersen, 2018; Glynn & Baram, 2019), thereby permanently impacting 

reward and stress circuit function (Baram et al., 2012; Glynn & Baram, 2019; Birnie et al., 
2020; Luby et al., 2020). Of note, the ability of brains to postnatally “tune” development 

of survival-critical reward and stress circuits may be an adaptive feature. By responding to 

environmental signals conveying information about the safety or predictability of the world 

in which one is born, circuits may develop in a manner that could promote survival and 

evolutionary fitness (Schmidt, 2011). Yet in our modern world, circuits developing under 

adversity seem too often to lead to unwanted adverse outcomes, such as vulnerability to 

SUD.

Modeling Behavioral Aspects of Addiction in Rodents

In order to understand how ELA may cause susceptibility to addiction-like outcomes later in 

life, it is essential to be precise about what is meant by “addiction-relevant behavior.” Drug 

addiction is a chronic, relapsing disorder characterized a heterogeneous set of maladaptive 

drug-seeking behaviors. It has been conceptualized as a “downward spiral” beginning with 

cycles of binging and intoxication motivated by positive reinforcement from pleasurable 

drug effects or by negative reinforcement due to drug-induced relief of negative affective 

states. Subsequently, drug abuse can transition into uncontrolled use, when discontinuation 

of use results in highly aversive withdrawal symptoms, drug cravings, persistent and 

invasive thoughts about drugs, and impaired cognitive control that can lead to relapse 

(Koob & Le Moal, 1997). However, trajectories through these stages are not uniform; 

individuals with SUD may present with different combinations of symptoms or reasons for 
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seeking treatment, and relapse may be triggered by a variety of emotional, physiological, 

and environmental factors. Consideration of these potential individual differences will be 

important for understanding the neural mechanisms underlying the various factors associated 

with risk for SUD, as well as for developing effective prevention and treatment strategies. 

Accordingly, when using animal models to investigate the brain mechanisms by which 

ELA leads to SUD vulnerability, it is essential to consider the specific addiction-related 

behavioral processes being modeled.

The initial phases of SUD typically involve acute, repeated, pleasurable intoxication that 

is liable to be repeated (i.e. it is positively reinforcing). These reinforcing drug effects, 

as well as their potential alterations by ELA, can be assessed through several different 

behavioral measures. For example, conditioned place preference (CPP) models measure 

an animal’s ability to associate the pleasurable effects of a drug with a specific place, 

which can be recalled later in a drug-free state, causing the animal to return to that 

place. The reinforcing (or rewarding) effects of addictive drugs might also be inferred by 

measuring effects of acute drug exposure on intracranial self-stimulation (ICSS), or operant 

responding by an animal to receive increasingly intense patterns of rewarding electrical 

brain stimulation (Olds & Milner, 1954; Carlezon & Chartoff, 2007). Abused drugs tend 

to reduce ICSS threshold, which has been interpreted to result from the pleasurable 

effects of the drug substituting for pleasure derived from intracranial stimulation (Negus 

& Miller, 2014), though this interpretation has been questioned (Smith et al., 2010). Another 

behavioral model that may measure the addiction-promoting effects of drugs is locomotor 

sensitization, or an increase in the locomotor-activating effects of abused drugs after 

repeated experimenter administration. In addiction, desire for drugs increases markedly with 

repeated use (sometimes called incentive sensitization). Therefore, locomotor sensitization 

has been interpreted as a proxy for incentive motivational processes that fuel addiction-

like drug seeking behaviors (Robinson & Berridge, 2008). In this manner, locomotor 

sensitization may model the excessive motivation to take drugs that characterizes addiction. 

ELA may impact any or all of these behavioral responses to experimenter-administered 

drugs, each of which may rely on distinct underlying brain circuits.

The aforementioned models involve non-voluntary administration of drug to experimental 

animals; yet, drug effects on the brain and behavior in both humans and rodents differ 

markedly based on whether they are experimenter- or self-administered (Robinson et al., 
2002; Jacobs et al., 2003; Steketee & Kalivas, 2011). Researchers have therefore created 

models in rodents which measure voluntary drug use, for example via oral ingestion or 

intravenous self-administration. Voluntary consumption approaches can be used to model 

recreational drug-taking over short periods of time or escalating and compulsive use over 

more extended access periods (Markou et al., 1993; Ahmed et al., 2000; Ward et al., 2006; 

Rogers et al., 2008). ELA may therefore impact initial acquisition of drug taking, short-term 

“recreational” drug use, or escalation of use over extended periods, each implying impact on 

distinct neural substrates.

Drug self-administration models can also be adapted to measure several distinct types of 

drug intake, such as highly motivated, effortful drug seeking as opposed to drug taking under 

free access conditions. This is important, because these types of drug taking behaviors have 
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different underlying neural mechanisms (Berridge & Robinson, 2003; Di Ciano & Everitt, 

2005; Baldo & Kelley, 2007; Bentzley et al., 2013; Salamone et al., 2016; Volkow et al., 
2017) that may be differentially affected by ELA. Analyses of high- versus low-effort drug 

seeking can capitalize on behavioral economic theory, which stipulates that consumption 

of any commodity is sensitive to increasing price, and that some commodities are more 

sensitive to price than others. This concept is referred to as “demand elasticity” (Hursh, 

1980). Inelastic demand, or relative insensitivity to price, is a feature of SUD, in that 

addiction can be characterized as an excessively inelastic demand for a drug (Bickel et 
al., 2014). In other words, addicted individuals will pay higher prices (financial or in life 

consequences) for drugs than will non-addicted individuals. Importantly, demand elasticity 

for drugs is distinct from preferred drug intake when the drug is free or cheap, in which case 

consumption is governed instead by “hedonic setpoint” (Hursh & Silberberg, 2008; Bickel 

et al., 2014; Strickland et al., 2019). In rodents, demand elasticity and hedonic setpoint for 

abused drugs can be modeled by examining intake at different “prices,” operationalized as 

the amount of effort required to receive a unit of drug (Hursh & Silberberg, 2008; Oleson 

& Roberts, 2009). Recently, a version of this protocol was developed in which both demand 

elasticity and hedonic setpoint can be determined in a single ~2hr test session (Oleson & 

Roberts, 2008; Bentzley et al., 2013; Bentzley et al., 2014; Levis et al., 2019; Newman & 

Ferrario, 2020). Notably, the neural substrates of demand elasticity and hedonic setpoint 

for abused drugs including cocaine and opioids are distinct (Bentzley & Aston-Jones, 2015; 

Bolton et al., 2018b; Mahler et al., 2018; Salamone et al., 2018; Levis et al., 2019), meaning 

that ELA could alter one or both of these processes, leading to distinct addiction-relevant 

behavioral phenotypes.

Negative reinforcement, or reinforcement motivated by elimination of an unpleasant 

stimulus, is often endorsed by individuals with SUD, and likely contributes to addiction 

in several ways. One of these serves as the basis for “self-medication” theories of substance 

use, in which drugs are used to relieve pre-existing negative affective states. Self-medication 

likely plays a major role in addiction for some individuals (Khantzian, 1987; Markou et 
al., 1998), especially for pain-relieving or anxiolytic drugs like opioids or alcohol. Use of 

drugs to relieve negative states can be measured in animals, for example by examining 

how pain impacts seeking of analgesic opioid drugs (Martin & Ewan, 2008; Evans & 

Cahill, 2016). When drug use becomes chronic and escalating, negative reinforcement also 

underlies continued use in order to reverse withdrawal-induced sickness and negative affect. 

In rodents, somatic symptoms of acutely aversive withdrawal such as piloerection, “wet 

dog” shakes, and rapid weight loss can be measured (Gellert & Holtzman, 1978; Hildebrand 

et al., 1997; Becker, 2000), as can acute or persistent affective dysregulation occurring 

after cessation of drug exposure (Malin et al., 2000; Malin & Goyarzu, 2009; Rothwell et 
al., 2012). It is possible that ELA impacts one or more of these negative reinforcement 

processes, for example by inducing negative affective states that are relieved by initial drug 

use, by impacting physiological dependence upon drug with chronic use, or by influencing 

the severity of acute and/or protracted withdrawal symptoms.

Another important aspect of addiction is its chronic, relapsing nature. Indeed, risk for 

relapse often continues to be significant even after years of abstinence. Relapse is often 

precipitated by specific environmental triggers, such as experiencing drug-associated cues, 
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acute stressors, or ingestion of small, “priming” doses of drug. Each of these factors can be 

modeled in rodents by imposing abstinence following a period of drug self-administration, 

then introducing one or more relapse triggers, causing animals to reinstate their drug seeking 

(Stewart & de Wit, 1987; Shaham et al., 2003). Adaptations of these models have also 

been recently developed in which animals voluntarily abstain from drug, a behavior that is 

characteristic of humans attempting to cease or curtail their drug use. This can be achieved 

in rodents by imposing punishments (e.g. shocks) along with drugs, or by forcing a choice 

between drugs and highly salient rewards such as palatable foods or social interactions 

(Panlilio et al., 2003; Ahmed, 2018; Farrell et al., 2018; Marchant et al., 2019; Venniro 

et al., 2019). Individual differences in these choice behaviors potentially represent one 

aspect of an individual’s risk for addiction that might be influenced by ELA, though choice 

behaviors have not been thoroughly examined in the context of ELA. Indeed, it is estimated 

that only a subset of outbred rats exhibit “compulsive” drug seeking (Belin et al., 2008; 

Flagel et al., 2009; Belin et al., 2011; George & Koob, 2017; Farrell et al., 2018), and it is 

possible that developmental environment manipulations such as ELA could alter this ratio. 

Given the variability in behavioral traits, ELA might therefore affect the manifestation of 

addiction-like drug-seeking behaviors by influencing reactivity to potential relapse triggers, 

the sensitivity to factors that suppress drug intake, or both.

It is also important to recognize that addiction-related behaviors in the models discussed 

above and their underlying neural substrates may vary based on the studied drug of abuse 

(Schuster & Thompson, 1969; Thompson & Pickens, 1970; Shalev et al., 2002; Meyer et 
al., 2016). Likewise, humans may have specific vulnerabilities only to certain drug classes 

(e.g. stimulants vs. depressants), and the mechanisms driving specific drug choices (beyond 

immediate drug availability) are not well understood. Furthermore, although some addiction-

related drug effects are common to all major abused drugs (Wise & Rompré, 1989; Saal 

et al., 2003; Nestler, 2004; Scofield et al., 2016), there are also major differences in the 

neural mechanisms by which different classes of drugs act. Therefore, it is possible that the 

neurodevelopmental changes in brain reward and stress circuits caused by ELA will lead to 

susceptibility to addiction to specific classes of drug, and more work is required to test this 

possibility.

In sum, addiction is a heterogeneous disorder. Its multiple and interacting features and 

components can be impacted by ELA in complex ways. These facts necessitate sophisticated 

and precise modeling in rodents. Understanding exactly which addiction-relevant behaviors 

are affected by ELA will be essential for understanding the nature of the risk ELA imposes 

on individuals with SUD. In the next sections we review evidence that ELA in rodents leads 

to a variety of changes in addiction-relevant behaviors (summarized in Table 1), and discuss 

salient modulating factors including the specific ELA model, sex, and abused drug which 

contribute to these relationships.

Early Life Adversity Effects on Responses to Addictive Drugs

Effects of Maternal Separation ELA

Numerous studies have shown that MS impacts later-life responses to addictive drugs, and 

these effects may differ by drug class as well as sex.
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While work on effects of ELA on opioid-seeking is still limited, evidence suggests that MS 

may augment opioid drug addiction-relevant behaviors. In male rats and mice, MS enhances 

morphine reward across multiple behavioral tests, including CPP, locomotor sensitization, 

and voluntary oral consumption (Kalinichev et al., 2002; Vazquez et al., 2005; Vazquez et 
al., 2006; Michaels & Holtzman, 2008). In females, effects of MS depend on the opioid 

response being measured. MS yields similar pro-opioid outcomes in females as in males on 

morphine CPP and oral intake tasks (Abad et al., 2016; Mohammadian et al., 2019), yet 

MS led to a heroin-induced increase in ICSS threshold in females at a dose of heroin that 

reduces ICSS threshold in controls, suggesting a potential MS-induced blunting of heroin’s 

hedonic effects in that sex (Matthews & Robbins, 2003).

Effects of MS on psychostimulant responses have been consistently reported, and these 

also appear to differ in males and females. In male rats and mice, MS increases oral 

and intravenous self-administration of the psychostimulants cocaine and methamphetamine, 

and both the locomotor sensitizing and place preference-inducing effects of stimulants are 

stronger in MS males than in females (Kosten et al., 2000; Brake et al., 2004; Marquardt 

et al., 2004; Kikusui et al., 2005; Zhang et al., 2005; Moffett et al., 2006; Lewis et al., 
2013; Lewis et al., 2016; Castro-Zavala et al., 2020a; Castro-Zavala et al., 2020b). Indeed, 

some evidence suggests that MS females may in fact have blunted cocaine sensitization 

compared to control-reared females (Li et al., 2003). MS also enhances the “pro-hedonic” 

properties of amphetamine, as indicated by a larger reduction in ICSS threshold in male 

rats relative to control-reared males (Der-Avakian & Markou, 2010). However, the degree to 

which this psychostimulant-prone MS effect is specific to males is still unclear. Though 

some studies show a male-specific enhancement of psychostimulant responses by MS 

(Hensleigh & Pritchard, 2014; Ganguly et al., 2019; Castro-Zavala et al., 2020b), other 

reports suggest that MS also has similar effects in females (Matthews et al., 1999; Kosten 

et al., 2004), and others still show instead a blunting of psychostimulant reward in MS 

males relative to controls (Matthews et al., 1999; Matthews & Robbins, 2003; O’Connor et 
al., 2015), an effect also seen after short (15-minute) periods of MS (Campbell & Spear, 

1999). The reason for these apparently conflicting findings is unclear, but could depend 

upon differences in the precise protocol used, timing of MS, species/strain differences, or 

other experimental differences. For example, Hensleigh and Pritchard (2014) and Ganguly et 

al (2019) separated pups individually, Castro-Zavala et al (2020b) included early weaning, 

whereas Matthews et al (1996; 1999; 2003) and O’Connor et al (2015) all separated pups in 

a group by litter. Investigation into whether these or other procedural differences might be 

causally related to the variability observed drug-related outcomes is needed.

MS also affects responses to alcohol in a persistent, and potentially sex-dependent manner. 

MS-reared male but not female rats, show greater voluntary oral alcohol consumption 

than their control counterparts (Ploj et al., 2003a; Roman et al., 2004), and MS increases 

preference for alcohol over water in male mice and rats (Huot et al., 2001; Cruz et al., 
2008; Romano-López et al., 2012; Amancio-Belmont et al., 2020). Male MS mice also 

consume more alcohol when it is intermittently available in a “drinking in the dark” protocol 

(Portero-Tresserra et al., 2018). Although these effects were shown in male animals, other 

studies have shown that MS increases operant self-administration of alcohol in both male 

and female rats (Gondré-Lewis et al., 2016; Bassey & Gondré-Lewis, 2019), and MS 
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increases the locomotor sensitizing effects of alcohol only in females (Kawakami et al., 
2007).

In sum, MS clearly impacts behavioral effects of several classes of addictive drugs, 

potentially in a sex-dependent manner. Most likely, methodological differences such as 

duration and timing of the MS protocol, potential species and strain differences, drug of 

abuse tested, and the aspect of addiction-like behavior measured explains the complex 

pattern of findings using the MS ELA manipulation (Jaworski et al., 2005; van der Veen et 
al., 2008; Orso et al., 2019). More work is also required to understand how factors like sex, 

hormonal influences, and others affect how MS alters responses to addictive drugs.

Effects of Limited Bedding and Nesting ELA

Several groups have examined how chronic ELA in the limited bedding and nesting model 

affects later-life responses and addiction vulnerability to opioids, cocaine, and alcohol.

Our group has recently begun to examine how LBN affects opioid addiction-related 

behaviors. In female LBN rats, we found a striking increase in addiction-like behaviors in 

pursuit of opioid drugs (Levis et al., 2019). LBN-reared females had stronger reinstatement 

of heroin seeking triggered by either heroin priming injections or heroin cues than female 

controls. In addition, when we examined demand elasticity for the short-acting fentanyl-

derivative opioid drug remifentanil, LBN females showed relatively inelastic, addiction-like 

demand, without measurable changes in hedonic setpoint. A similar decreased sensitivity 

to price of a highly palatable food reward was observed in LBN females, though no such 

effect was seen for a less palatable chow reward. Our recent unpublished observations 

indicate that these pro-opioid effects of LBN in females may not occur to the same extent 

in males. Notably, Ordoñes Sanchez et al. (2021) also observed sex differences in the effects 

of ELA on opioid addiction-like behaviors. In this study, male LBN rats self-administered 

less morphine and were less impulsive than their control counterparts, whereas females 

did not show LBN-induced changes in these behaviors. LBN also induced sex-specific 

changes in NAc gene expression. The differences in opioid reward-related effects of LBN 

between studies might involve procedural differences such as rat strain (Sprague-Dawley 

vs. Long-Evans), opioid drugs tested (heroin/remifentanil vs. morphine), or differences 

in prenatal handling procedures between the studies (shipping timed-pregnant dams vs. 

in-house breeding) (Levis et al., 2019; Ordoñes Sanchez et al., 2021). Regardless, the clear 

sex differences in ELA effects on susceptibility to OUD-related behaviors seem likely to 

have important implications for understanding human opioid use and addiction. Indeed, 

it is notable that women addicted to heroin have a much greater prevalence of adverse 

experiences during development than heroin-addicted men, and the association between 

ELA and substance abuse appears also to be stronger in women than in men (Hyman et al., 
2006; Hyman et al., 2008; Shand et al., 2011).

In contrast to our opioid-related findings, our group recently found that LBN facilitates 

acquisition of cocaine self-administration in male rats, though stable intake of the drug 

was equivalent in LBN and controls. However, when we subsequently measured cocaine 

behavioral economic demand elasticity, we found no change in sensitivity of cocaine intake 

to price (elasticity), though there was a decrease in cocaine hedonic setpoint, or intake 
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when price was very low (Bolton et al., 2018b). We interpreted this result as LBN-induced 

“anhedonia” for cocaine, similar to the reduced engagement with natural rewards like 

sucrose solution or social play observed in LBN males (Molet et al., 2016a; Yan et al., 
2017; Bolton et al., 2018a). In male mice, LBN also leads to blunted cocaine locomotor 

sensitization (Mitchell et al., 2018), suggesting reduced cocaine reward. While LBN did not 

seem to increase addiction-like cocaine seeking in our study of male rats, this more general 

anhedonic phenotype could still impact addiction susceptibility, perhaps especially for other 

classes of drugs (like opioids) that could more effectively “self-medicate” this underlying 

affective dysregulation.

In a model of alcohol dependence in adult mice, males that have experienced LBN develop 

excessive alcohol drinking more rapidly than control-reared mice (as measured by escalation 

of voluntary alcohol consumption), an effect not seen in LBN females (Okhuarobo et al., 
2020), suggesting that LBN may confer a specific vulnerability to alcohol reward in males. 

Further exploring sex differences in the effects of LBN on addiction and determining how 

LBN females respond to other classes of addictive drugs are important questions that remain 

open.

In summary, clinical and pre-clinical evidence, including some congruent findings from 

nonhuman primate models suggesting that ELA enhances drug abuse in adolescents 

(Wakeford et al., 2018), suggest that ELA can increase vulnerability to addiction to a 

wide range of drugs. This may occur by enhancing the rewarding or motivating effects of 

drugs themselves, by impacting factors like susceptibility to relapse triggers, or perhaps by 

inducing a state of affective dysregulation that may be self-medicated with certain drugs. 

Understanding the specific addiction-relevant behaviors which are most impacted by ELA 

may help elucidate causal mechanisms, such as changes in neural circuit structure and 

function caused by developmental adversity. We review some of these circuit and substrate-

level ELA-induced changes in the following section.

Does ELA “Rewire” Brain Reward and Stress Circuits?

Considerable evidence links dysfunction of brain reward and stress circuits with addiction 

vulnerability and severity. These circuits undergo substantial maturation in the first weeks 

(rodents) or year (humans) of life, and mounting evidence supports the notion that ELA 

induces long-lasting developmental changes, leading to addiction-relevant neuroadaptations 

in brain reward and stress circuits and increased vulnerability to SUD (Koob, 2008; Sinha, 

2008; Koob & Volkow, 2016; Ironside et al., 2018).

Here, we will focus specifically on the roles of specific brain systems for which a large body 

of evidence exists on the effects of ELA in mediating their function. We will first provide 

an overview of the behavioral functions of key reward-related systems, namely dopamine 

and opioid signaling molecules and receptors in mesolimbic circuits, as well as stress-related 

systems, specifically corticotropin releasing hormone (CRH) and dynorphin/kappa opioid 

receptors in extended amygdala. We then summarize findings about the specific changes in 

these molecules and circuits which may underlie ELA effects on addiction susceptibility. 

Notably, the effects of ELA are not limited to classical stress and reward circuits, as 
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pronounced effects on memory-linked regions like hippocampus are also seen (Ivy et al., 
2010; Chen & Baram, 2016; Molet et al., 2016b), which may lead to cognitive deficits or 

other psychiatric symptoms that may indirectly affect drug seeking. Likewise, the neural 

substrates altered by ELA that might mediate reward seeking are not limited to the dopamine 

and opioid systems (Forster et al., 2018).

Roles for Mesolimbic Opioids and Dopamine in “Reward Circuits”

Addictive drugs are thought to “hijack” neural circuits of reward, pharmacologically 

engaging the neural mechanisms responsible for registering pleasurable experiences, and 

generating motivation to pursue these rewards again in the future. These mechanisms 

normally operate in service of learning about and pursuing natural rewards like food, 

water, and sex, but repeated drug use may cause them to be specifically, and excessively, 

centered on drugs instead. The neural mechanisms by which drugs cause pleasurable states 

and/or states of compulsive seeking and desire are the subject of much study, and involve 

complex circuit, synaptic, and molecular mechanisms. Here we concentrate on two such 

mechanisms that are particularly strongly linked to drug reward: dopamine and opioids 

within “mesolimbic reward circuit” nodes like ventral tegmental area (VTA), prefrontal 

cortex (PFC), and nucleus accumbens (NAc).

Similar to other rewards, drugs of abuse are thought to generate pleasurable subjective 

states via actions in mesolimbic circuits. Reward-induced pleasure is complex, but a role 

for endogenous opioid signaling in nucleus accumbens seems to be particularly important. 

Endogenous opioid systems involve at least 3 opioid peptides (endorphin, enkephalin, and 

dynorphin), acting via three primary g-protein coupled receptors (mu, delta, and kappa 

opioid receptors) to modulate neural activity (Kieffer et al., 1992; Chen et al., 1993; Minami 

et al., 1993). Endogenous and exogenous ligands engage inhibitory intracellular signaling 

cascades, inhibiting neural firing postsynaptically, and suppressing neurotransmitter release 

from axon terminals (Mansour et al., 1995; Valentino & Volkow, 2018). Opioid receptors 

are densely expressed in NAc, where they are localized both pre- and post-synaptically 

(Mansour et al., 1994). Of particular relevance, opioid receptors in an anatomically 

segregated “hedonic hotspot” within the nucleus accumbens dorsomedial shell subregion 

play a major role in registering affective pleasure from food reward, in a manner suggesting 

that this restricted anatomical zone is of special importance for registering the pleasurable 

aspects of food or other types of rewards (Peciña & Berridge, 2005; Thompson & Swanson, 

2010; Zahm et al., 2013; Castro & Berridge, 2014). Given this link between NAc opioids 

and pleasure, it is not surprising that addictive opioid drugs generate highly euphoric 

states. However, other major drugs of abuse also engage accumbens opioidergic signaling 

(Kreek, 1996; Olive et al., 2001; Gerrits et al., 2003; Yoo et al., 2012), which may likewise 

contribute to euphoric and pleasurable responses to these drugs.

Dopamine signaling within mesolimbic circuits, and especially in NAc, are another crucial 

mechanism by which drugs engage reward circuits to promote addiction. The mesolimbic 

dopamine circuit entails projections from VTA to NAc, PFC, and other forebrain limbic 

sites, which are thought to mediate multiple addiction-related behavioral processes (Kalivas 

& Volkow, 2005; Salamone et al., 2007; Kalivas, 2008). Addictive drugs, regardless of class 
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and mechanism of action, engage the mesolimbic dopamine system, as do natural rewards 

of various types (Wise & Bozarth, 1987). The precise roles played by dopamine neurons is 

still debated, but it likely involves addiction-relevant psychological processes such as reward 

prediction (Schultz, 1998), inflexible habitual aspects of drug taking (Everitt & Robbins, 

2005), and highly effortful drug seeking, especially when triggered by drug-associated cues 

(Shaham et al., 2003; Robinson & Berridge, 2008; Mahler et al., 2018).

In sum, mesolimbic opioids and dopamine play critical and nuanced roles within brain 

circuits that mediate pleasure, motivation, learning, and habits. Depending on precisely how 

ELA impacts these circuits, we may therefore see consequences on a range of SUD-relevant 

behaviors, any of which could lead to an addiction-vulnerable phenotype via distinct neural 

mechanisms.

“Stress Circuits” in Addiction

Stress also plays a key role in addiction, and ELA effects on stress circuits is likely to 

contribute to ELA-induced addiction risk. Physiologically, stress can be defined as activation 

of the hypothalamic-pituitary-adrenal (HPA) axis leading to release of CRH from the 

hypothalamus into the bloodstream, as well as directly into brain emotional systems via 

neural projections (Joëls & Baram, 2009; Koob & Zorrilla, 2010; McEwen & Gianaros, 

2011). Brain circuits in which CRH is synthesized locally and acts to promote stressful and 

aversive states include extended amygdala regions such as central amygdala (CeA) and bed 

nucleus of the stria terminalis (BNST), as well as the dorsal raphe, the paraventricular and 

lateral hypothalamic nuclei.

Stress may impact addiction risk via the ability of some drugs to counteract negative 

emotional or affective states. Many users of anxiolytic drugs such as opioids, 

benzodiazepines, and alcohol report that when they began using these drugs, their 

underlying anxieties and negative emotions suddenly lifted. In this way, drug use may 

provide relief to an already suffering person, resulting in strong negative reinforcement, or 

“self-medication.” This may occur via direct or indirect recruitment by drugs of endogenous 

opioids such as enkephalin and beta-endorphin, which counteract neural responses to stress 

and help promote recovery from stressful events (Cohen et al., 1983; Curtis et al., 2001; 

Bowers et al., 2012; Valentino & Van Bockstaele, 2015; Valentino & Volkow, 2018). CRH 

and opioid receptors co-localize in regions related to stress and reward (Van Bockstaele 

et al., 2010; Williams & Milner, 2011; Reyes et al., 2017; Castro & Bruchas, 2019), and 

neuroadaptations induced by chronic opioid exposure in stress and reward regions appear 

to be modulated by glucocorticoids as well (García-Pérez et al., 2012), further supporting a 

link between opioid transmission and self-medication of negative affect with abused drugs.

Stress also plays an important role in maintaining compulsive substance use, particularly 

of drugs that cause physiological dependence and severe withdrawal symptoms, such as 

opioids and alcohol (Bruchas et al., 2010; George & Koob, 2017). Stress circuits and 

molecules play a key role in mediating these highly aversive acute withdrawal symptoms 

(Koob, 2008; Logrip et al., 2011; Gilpin & Roberto, 2012; Chartoff & Carlezon, 2014). 

For example, CRH is released in the extended amygdala structures CeA and BNST during 

alcohol withdrawal (Olive et al., 2002), and blockade of CeA CRH receptors prevents acute 
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withdrawal-enhanced consumption of ethanol in dependent rats (Funk et al., 2006). Some 

have also described affective dysregulation that persists for extended periods after cessation 

of drug use, which may help promote relapse (Kenny & Markou, 2001; Aston-Jones & 

Harris, 2004). Moreover, protracted abstinence can also enhance the incentive salience of 

drug-associated cues upon drug re-exposure (Smith & Aston-Jones, 2014). Multiple brain 

circuits are involved in this excessive drug seeking seen even after persistent abstinence. 

For example, protracted withdrawal is associated with altered glutamate-dependent plasticity 

in the VTA and its afferent inputs such as the amygdala, BNST, lateral hypothalamus, 

VTA, and NAc (Aston-Jones & Harris, 2004), as well as altered function of the PFC 

that may be mediated by CRH (Zorrilla et al., 2014; Quadros et al., 2016; Blaine & 

Sinha, 2017). In addition, opioid withdrawal memories appear to promote opioid seeking 

via interactions between these stress and reward-related circuits (Frenois et al., 2005). 

Withdrawal-associated dysphoria and stress-induced reinstatement of drug-seeking is also 

thought to be mediated in part by the dynorphin/kappa opioid receptor system, likely by 

acting in concert with CRH (Land et al., 2008; Redila & Chavkin, 2008; Bruchas et al., 
2010; Nygard et al., 2016).

In addition to withdrawal, acute stress in any form is thought be a major trigger for relapse 

in humans, and stress also potently induces reinstatement of drug seeking in rodents (Shalev 

et al., 2000; Sinha, 2001; Shaham et al., 2003; See & Waters, 2010; McReynolds et al., 
2014; Mantsch et al., 2016). Specifically, activation of stress circuit nodes such as the BNST, 

CeA, BLA, and medial septum play a key role in stress-induced relapse, as do stress-linked 

transmitters like CRH and norepinephrine in these structures and elsewhere in the brain 

(Shaham et al., 2000; Koob & Zorrilla, 2010; Logrip et al., 2011). Notably, stressors may 

activate drug seeking via their recruitment of motivation circuits (Sarnyai et al., 2001; 

Yap & Miczek, 2008; Shalev et al., 2010; George et al., 2012; Lemos et al., 2019). For 

example, physical or psychological stressors elicit the release of CRH in the VTA, causing 

dopamine release in the NAc and leading to reinstatement of drug-seeking behaviors (Wang 

et al., 2005; Wang et al., 2007; Shalev et al., 2010; Ungless et al., 2010). CRH signaling 

within NAc itself may also play stress-independent roles in reward seeking, for example by 

increasing the incentive salience of reward-paired cues (Peciña et al., 2006; Baumgartner et 
al., 2021).

Clearly, stress is an important and multifaceted factor influencing SUD, and ELA-induced 

changes in stress circuits may impact initiation of drug use, maintenance of use/avoidance of 

withdrawal, and relapse risk in response to life stressors. In the next section, we review what 

is known about how ELA affects development of brain reward and stress circuits, and how 

this may influence the development of, and recovery from addiction.

Effects of ELA on Reward and Stress Circuits

Mounting evidence suggests that ELA causes profound, likely permanent changes in brain 

reward and stress systems, including mesolimbic and extended amygdala circuits, dopamine, 

endogenous opioids, and CRH. Given the importance of these systems to addiction, it 

is likely that these disruptions contribute to the ability of ELA to enhance addiction 

susceptibility in vulnerable individuals.

Levis et al. Page 14

Eur J Neurosci. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Adult function of stress-related circuits and molecules are profoundly impacted by ELA, 

and this may impact addiction propensity or severity. For example, ELA provoked enduring 

changes in the expression levels of several stress modulators. CRH expression is augmented 

in CeA (Dubé et al., 2015) and hippocampus (Ivy et al., 2010) of ELA rodents, leading to 

major changes in circuit functions (Brunson et al., 2005; Ivy et al., 2010). In the context 

of addiction, these changes in circuit function are evident from studies examining circuit 

activation in adult rodents that have experienced ELA. Thus, palatable food, social play, 

and acute cocaine rewards induce a stronger Fos response in CeA of LBN males than 

of control males, an effect accompanied by anhedonia-like behavioral responses to those 

same rewards (Bolton et al., 2018a; Bolton et al., 2018b). This may indicate a stress-like 

response to these normally rewarding stimuli following ELA. ELA also alters functional 

connectivity and microstructure of stress- and reward-related brain regions. For example, 

LBN males have increased adulthood amygdala-PFC structural connectivity relative to 

controls (Bolton et al., 2018a). Pre-weaning LBN males, but not females, have reduced 

BLA-PFC, and altered PFC-striatum resting state functional connectivity (Guadagno et al., 
2018a; Guadagno et al., 2018b), a finding that persists into adulthood, accompanied by 

reduced sucrose preference and social interaction (Yan et al., 2017). Likewise, both MS and 

LBN disrupt early maturation of BLA-PFC connections (Brenhouse et al., 2013; Honeycutt 

et al., 2020; Manzano Nieves et al., 2020), further implicating this circuit in the effects 

of ELA. Notably, human studies suggest that ELA’s impact on amygdala development is 

essential for the resulting depression and anxiety (Callaghan & Tottenham, 2016; Fareri & 

Tottenham, 2016). The latter could set the stage for “self-medicating” drug use in vulnerable 

individuals (Kessler, 2004).

Mesolimbic dopamine system development is strongly impacted by ELA (Rodrigues et 
al., 2011; Ventura et al., 2013; Peña et al., 2014; Bonapersona et al., 2018), thereby 

potentially facilitating dopamine-dependent incentive motivational, learning, or habitual 

aspects of addiction. While it is clear that ELA affects the mesolimbic dopamine circuit, 

the precise changes are somewhat inconsistent across studies, and appear to be partially 

sex dependent. For example, MS females have more dopamine cells in the VTA than 

controls, and also show enhanced excitability of VTA dopamine neurons, whereas males 

appear instead to have more non-dopamine cells in VTA relative to control males, but no 

change in the number of dopamine cells there (Chocyk et al., 2011; Chocyk et al., 2015; 

Majcher-Maślanka et al., 2017; Spyrka et al., 2020). MS females, but not males, have 

increased dopamine turnover in prefrontal cortex, and turnover of other monoamines in 

the striatum also differ between sexes after ELA (González-Pardo et al., 2020). However, 

MS does appear to affect dopamine signaling in males in some cases. For example, in 

males, MS-enhanced sensitivity to amphetamine and cocaine are associated with decreased 

dopamine transporter expression in the NAc (Meaney et al., 2002; Brake et al., 2004). 

Others have found that alcohol self-administration in MS but not control male rats is 

negatively correlated with the number of dopamine neurons in VTA, a phenomenon that 

is also seen in genetically alcohol-preferring rats (Gondré-Lewis et al., 2016; Bassey & 

Gondré-Lewis, 2019). MS combined with limited nesting materials during the second week 

of life has also recently been found to alter histone modification and gene transcription 

in dopamine receptor type 2 (D2R) containing NAc medium spiny neurons more robustly 

Levis et al. Page 15

Eur J Neurosci. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in male mice than females, suggesting a sex-dependent change in function of those cells 

(Kronman et al., 2021). As mentioned above, differences in ELA protocols, age, and 

models used for addiction or quantification approaches may be responsible for this range 

of outcomes.

ELA-induced changes in dopamine receptor protein and mRNA expression are also 

observed across the mesolimbic circuit in both sexes following ELA. Consistent decreases 

in dopamine receptor expression in striatum are induced by MS in both males (Zhu et al., 
2010; Romano-López et al., 2016) and females (Majcher-Maślanka et al., 2017), and striatal 

reductions of D2R correlate with the magnitude of MS-suppressed cocaine locomotor 

sensitization (Gracia-Rubio et al., 2016). However, others have observed that D2R and 

D3R in NAc are instead increased by MS in male rats, an effect associated with increased 

alcohol intake in male MS rats (Amancio-Belmont et al., 2020). Similarly, MS male mice 

have increased prefrontal cortex dopamine receptor gene expression relative to controls 

(Tractenberg et al., 2020).

Brain endogenous opioid systems are enduringly altered by ELA, a fact that may 

impact drug-induced pleasure or other addiction-relevant processes. MS persistently alters 

endogenous opioid peptides, as well as opioid and dopamine receptor expression in reward 

and stress related areas, including striatum, midbrain, hippocampus, and hypothalamus in 

both a sex- and ELA timing-dependent manner (Ploj et al., 1999; Ploj et al., 2001; Ploj & 

Nylander, 2003; Ploj et al., 2003a; Ploj et al., 2003b; Gustafsson et al., 2008). Specifically, 

long bouts of daily separation (360 minutes) lead to higher ethanol consumption in 

adulthood, whereas brief bouts (15 minutes) may be protective against chronic escalating 

ethanol consumption, even though both protocols lead to elevated expression of opioid 

peptides in the hypothalamus and pituitary (Ploj & Nylander, 2003; Ploj et al., 2003a; Ploj 

et al., 2003b), PFC, and VTA (Gustafsson et al., 2008). Additionally, 15-minute daily MS 

leads to higher delta opioid receptor density in amygdala, and enhanced dynorphin-mediated 

HPA-axis inhibition in males but not females, whereas females but not males have reduced 

dynorphin expression in PFC and amygdala (Ploj et al., 1999; Ploj et al., 2001). In a 12-hr 

MS model that led to enhanced ethanol consumption in male mice, mu opioid receptor gene 

expression was elevated in NAc (García-Gutiérrez et al., 2016). MS also alters the ability 

of addictive drugs to induce plasticity in opioidergic circuits. For example, MS male rats 

do not show the typical chronic ethanol-induced downregulation of delta, mu, and kappa 

opioid receptor gene expression in striatum (Granholm et al., 2017), potentially contributing 

to the excessive alcohol consumption seen in these animals. Clearly, MS leads to persistent 

changes in endogenous opioids, though more work is needed to link these changes to 

addiction-like behaviors.

Perhaps as a result of the above molecular circuit-development changes, ELA persistently 

alters neural responses to drugs of abuse themselves in a manner that may facilitate their 

rewarding effects via actions in limbic reward circuits. For example, in male rats, MS 

increases the sensitivity of limbic and striatal regions to ethanol-induced gene expression 

and DNA methylation changes (Vrettou et al., 2017) and alcohol exposure leads to MS-

specific alterations in mesocorticolimbic dopamine and opioid receptor expression (Ploj et 
al., 2003a). In response to psychostimulants, MS increases cocaine-induced striatal c-Fos 

Levis et al. Page 16

Eur J Neurosci. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression in both male and female rats after chronic cocaine exposure (Kohut et al., 
2009) and potentiates methamphetamine-induced depletion of striatal dopamine transporter 

and tyrosine hydroxylase, but only in males (Hensleigh & Pritchard, 2015). Additionally, 

microdialysis experiments reveal enhanced dopamine release in NAc in response to d-

amphetamine in MS males (Hall et al., 1999). LBN also increases cocaine-induced c-Fos 

in NAc core, lateral habenula, and CeA of male rats, which may be related to quicker 

acquisition of cocaine self-administration, but an eventual reduction of hedonic setpoint for 

the drug (Bolton et al., 2018b).

Finally, it is possible that ELA enhances addiction vulnerability by simultaneously altering 

both stress- and reward-related processes. For example, relative to controls, MS increases 

dopamine, endogenous opioid, and CRH expression simultaneously in NAc in male mice 

that also show increased ethanol consumption relative to controls (García-Gutiérrez et 
al., 2016). In male rats, the magnitude of MS-enhanced alcohol consumption is strongly 

correlated with HPA axis responses to startle stress (Huot et al., 2001). In female rats, MS 

also increases VTA neuron excitability, an effect that is accompanied by elevated peripheral 

stress hormones (Spyrka et al., 2020). These findings support the notion that an imbalance 

of stress and reward processes may play a mediating role in the effects of ELA on SUD 

vulnerability (Koob, 2008; Valentino & Van Bockstaele, 2015).

Conclusions

Both ELA and addiction are complex processes, yet it is clear that ELA is a predisposing 

factor to SUD. However, the link between ELA and addiction is intricate and remains 

poorly understood. ELA effects on brain reward and stress circuit development are likely 

contributors to this link, though other mechanisms certainly also contribute (Kim et al., 
2017; Baracz et al., 2020). The effects of ELA may also differ based on the type of ELA, 

its timing, sex of the individual involved, and many other factors. In addition, the behavioral 

phenotypes caused by ELA are nuanced and can differ based on the drug of abuse and 

stage of the addiction process that is tested. Therefore, additional investigation is required 

to determine exactly how ELA impacts brain development, and how these resulting changes 

put individuals at risk for specific addiction-related behaviors that could all lead to SUD, 

possibly through a range of neural mechanisms. We propose that understanding the precise 

links between ELA and addiction-like outcomes opens the possibility of developing better 

strategies for preventing and reversing addiction in those predisposed by their history of 

ELA.
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CeA central amygdala

CORT corticosterone

CREB cAMP-response element binding protein

pCREB phosphorylated CREB

CPP conditioned place preference

CRH corticotropin releasing hormone

D2R dopamine receptor type 2

D3R dopamine receptor type 3

DAT dopamine transporter

ELA early life adversity

GluA1 AMPA glutamate receptor subunit A1

GluA2 AMPA glutamate receptor subunit A2

HPA axis hypothalamic-pituitary-adrenal axis

ICSS intracranial self-stimulation

LBN limited bedding and nesting

MeCP2 methyl CpG binding protein 2

MS maternal separation

NAc nucleus accumbens

PFC prefrontal cortex

SUD substance use disorder

TH tyrosine hydroxylase

VTA ventral tegmental area
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Figure 1. Conceptual framework for the neurodevelopmental origins of substance use disorders.
ELA perturbs multiple neurodevelopmental processes, including the development and 

maturation of reward and stress circuits. These alterations may lead to a variety of reward-

related behaviors associated with addiction. Importantly, the developmental trajectory from 

ELA to substance use is mediated by a complex multitude of interacting features, ultimately 

manifesting as a heterogeneous constellation of neurobiological and behavioral outcomes 

that increase risk for substance use disorder.
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Table 1.

Summary of findings on the effects of ELA on stimulant, alcohol, and opioid-seeking behaviors and relevant 

stress and reward circuit correlates.

Reference Drug Class ELA 
Procedure Species

ELA Effect on Addiction-
like Behavior

ND = not done; Ø = no 
effect

Reward / Stress 
Circuit Correlate

Procedural 
Notes

Male Female

Levis et al., 2019 opioid LBN P2-9 rat ND ↑ N/A

Ordoñes Sanchez 
et al., 2021 opioid LBN P2-9 rat ↑ Ø transcription changes in 

NAc (M)

Kalinichev et al., 
2002 opioid MS15/180 

P2-14 rat ↑ (MS180 
> MS15) ND N/A

Matthews & 
Robbins, 2003 opioid REMS360* 

P5-20 rat ND ↓ N/A

* 
separations 
occurred on 
10 randomly 
spaced 
occasions

Vazquez et al., 
2005 opioid MS180 P1-14 rat ↑ ND ↓ striatal endogenous 

opioid mRNA

Michaels & 
Holtzman, 2008 opioid

24h MS P2; 
MS180-360* 

P4-12
rat ↑ Ø N/A

* alternating 
3h and 6h 
separations

Abad et al., 2016 opioid MS180 P2-14 rat ↑ ↑ N/A

Mohammadian et 
al., 2019 opioid MS180 P2-14 rat ↑ ↑ N/A

Bolton et al., 
2018b psychostimulant LBN P2-9 rat ↓ ND

↑ cocaine-induced c-
Fos in NAc, lateral 
habenula, central 
amygdala

Campbell & Spear, 
1999 psychostimulant MS15 P1-12 rat ↓ ↓ N/A

Matthews et al., 
1999 psychostimulant REMS360* 

P5-20 rat ↓ ↑ N/A

* 
separations 
occurred on 
10 randomly 
spaced 
occasions

Kosten et al., 2000, 
2004 psychostimulant MS60 P2-9 rat ↑ ↑ N/A

Li et al., 2003 psychostimulant MS15/180 
P1-21 rat ND ↓ 

(MS15/180) N/A

Brake et al., 2004 psychostimulant MS0/15/180 
P1-14 rat ↑ (MS180)

↓ (MS15) ND ↓ striatal DAT (MS180)

Marquardt et al., 
2004 psychostimulant MS+ P1-10 rat ↑ ND N/A

+ additional 
aversive 
stimulus 
during 
separation

Zhang et al., 2005 psychostimulant MS60 P2-9 rat ↑ ND N/A

Moffett et al., 2006 psychostimulant MS15/180 
P2-15 rat ↑ (MS180) ND N/A

Vazquez et al., 
2006

psychostimulant
alcohol
opioid

MS180 P1-14 rat
slight ↑

no effect
↑

ND no effect of MS on VTA 
or striatal DAT
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Reference Drug Class ELA 
Procedure Species

ELA Effect on Addiction-
like Behavior

ND = not done; Ø = no 
effect

Reward / Stress 
Circuit Correlate

Procedural 
Notes

Der-Avakiann & 
Markou, 2010 psychostimulant MS180 P1-14 rat ↑ ND N/A

Lewis et al., 2013, 
2016 psychostimulant MS15/180 

P2-14 rat ↑ (MS180) ND
↑ protective MeCP2 
expression in NAc core 
(MS15)

Hensleigh & 
Pritchard, 2014, 
2015

psychostimulant MS180 P2-8 rat ↑ Ø

MS potentiates 
methamphetamine-
induced decrease in 
striatal DAT and TH 
expression (M)

O’Connor et al., 
2015 psychostimulant MS180 P2-12 rat ↓ ND N/A

Ganguly et al., 
2019 psychostimulant MS240 P2-20 rat ↑ Ø ↓ GluA2 expression in 

PFC, NAc (M)

Kikusui et al., 
2005 psychostimulant MS60 P1-13 mouse ↑ (M > F) ↑ N/A

Gracia-Rubio et 
al., 2016 psychostimulant

MS240 P2-5, 
MS480 P6-16, 
weaning at P17

mouse ↓ ND ↓ striatal D2R 
expression

Mitchell et al., 
2018 psychostimulant LBN P2-9 mouse ↓ ND

↓ NAc α2 subunit 
of GABA-A receptor 
mRNA

Castro-Zavala et 
al., 2020a,b psychostimulant

MS240 P2-5, 
MS480 P6-16, 
weaning at P17

mouse ↑ Ø

sex and drug 
experience-dependent 
changes of GluA1, 
GluA2, CREB, and 
pCREB expression in 
NAc and VTA

Okhuarobo et al., 
2020 alcohol LBN P2-9 mouse ↑ Ø N/A

Huot et al., 2001 alcohol MS15/180 
P2-14 rat ↑ (MS180) ND ↑ HPA axis reactivity 

(MS180)

Ploj et al., 2003a alcohol MS15/360 
P1-21 rat ↑ (MS360)

↓ (MS15) ND

MS duration and 
alcohol-experience 
dependent changes 
in mesocorticolimbic 
dopamine and opioid 
receptor expression

Roman et al., 2004 alcohol MS15/360 
P1-21 rat ND Ø N/A

Romano-López et 
al., 2012 alcohol MS360* P2-15 rat ↑ ND

MS-induced changes 
in PFC, NAc, and 
hippocampal glutamate 
and GABA expression

* two daily 
180-min 
separations

Gondré-Lewis et 
al., 2016 alcohol MS180 P2-21 rat ↑ ↑

↓ VTA dopamine-like 
neurons, ↑ amygdala 
neuron number & 
density

Bassey & Gondré-
Lewis, 2019 alcohol MS180 P2-21 rat ↑ ↑

↓ VTA, ↑ amygdala 
neuron number & 
density

Amancio-Belmont 
et al., 2020 alcohol MS180 P2-15 rat ↑ ND ↑ NAc D2R and D3R 

expression

Portero-Tresserra 
et al., 2018 alcohol

MS240 P2-5, 
MS480 P6-16, 
weaning at P17

mouse ↑ ND
↓ PFC and 
striatal endocannabinoid 
expression
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Reference Drug Class ELA 
Procedure Species

ELA Effect on Addiction-
like Behavior

ND = not done; Ø = no 
effect

Reward / Stress 
Circuit Correlate

Procedural 
Notes

Kawakami et al., 
2007 alcohol MS15/180 

P2-14 mouse Ø ↑ (MS180 > 
MS15)

↑ basal CORT (F; 
MS180)
↑ EtOH CORT response 
(M; MS15/180)

Cruz et al., 2008 alcohol MS180 P1-14 mouse ↑ ND N/A

García-Gutiérrez et 
al., 2016 alcohol 12h MS P8 & 

P12 mouse ↑ ND
↑ NAc dopamine, opioid 
peptide & receptor, and 
CRH expression

Table abbreviations: CORT, corticosterone; CREB, cAMP-response element binding protein; pCREB, phosphorylated CREB; CRH, corticotropin 
releasing hormone; D2R, dopamine receptor type 2; D3R, dopamine receptor type 3; DAT, dopamine transporter; GluA1, AMPA glutamate 
receptor subunit A1; GluA2, AMPA glutamate receptor subunit A2; HPA axis, hypothalamic-pituitary-adrenal axis; LBN, limited bedding and 
nesting; MeCP2, methyl CpG binding protein 2; MS, maternal separation; NAc, nucleus accumbens; PFC, prefrontal cortex; TH, tyrosine 
hydroxylase; VTA, ventral tegmental area
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