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Risk-taking often occurs in childhood as a compex outcome influenced by individual, family, and social factors.
The ability to govern risky decision-making in a balanced manner is a hallmark of the integrity of cognitive and
affective development from childhood to adulthood. The Triadic Neural Systems Model posits that the nuanced
coordination of motivational approach, avoidance and prefrontal control systems is crucial to regulate adaptive
risk-taking and related behaviors. Although widely studied in adolescence and adulthood, how these systems
develop in childhood remains elusive. Here, we show heterogenous age-related differences in the triadic neural
systems involved in risky decision-making in 218 school-age children relative to 80 young adults. Children were
generally less reward-seeking and less risk-taking than adults, and exhibited gradual increases in risk-taking
behaviors from 6 to 12 years-old, which are associated with age-related differences in brain activation pat-
terns underlying reward and risk processing. In comparison to adults, children exhibited weaker activation in
control-related prefrontal systems, but stronger activation in reward-related striatal systems. Network analyses
revealed that children showed greater reward-related functional connectivity within and between the triadic
systems. Our findings support an immature and unbalanced developmental view of the core neurocognitive
systems involved in risky decision-making and related behaviors in middle to late childhood.

1. Introduction

Human brain undergoes rapid development with dramatic changes
in cognitive and affective functions including risky decision-making and
related behaviors (Teicher et al., 2016) to ensure survival and well-being
(Greitemeyer et al., 2013; Kim et al., 2017). Under the influence of
various individual (e.g, personal motivations, temperament) (Boles
et al., 2005), family (e.g, parenting styles, sibling effects), and
social-situational (e.g., observational influences, situation-driven moti-
vations) factors (Barbara and Jennifer, 2007; Boyer, 2006), risk-taking
behaviors occur early in childhood, which increase from then on, peak
in adolescence and decline into adulthood according to epidemiological

data (Rosenbaum and Hartley, 2019; Steinberg, 2013; Willoughby et al.,
2014). Although to some extent reflective of the normative develop-
mental pattern (Bjork and Pardini, 2015; Crone et al., 2016), risk-taking
among young children, in some extreme cases (i.e., excessive external-
izing behaviors), is considered as a predictor of adolescent conduct
disorders (Crowley et al., 2017; Fanti et al., 2016). Yet, contrasting with
ample work on the neural substrates underlying risk-taking in adoles-
cents and adults (Guassi Moreira et al., 2021; Richards et al., 2013), it
remains elusive how these systems organize to support related functions
in childhood. Knowledge of such neural underpinnings in childhood is
important for understanding precursors of adolescent risky behaviors
and ontogenies of malfunctions in related psychiatric disorders (Casey
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and Jones, 2010; Dalley and Robbins, 2017).

Previous studies have demonstrated behavioral characteristics of
risky decision-making from childhood to adulthood (Defoe et al., 2015;
Humphreys et al., 2016), neural substrates underlying risky
decision-making are nevertheless mainly examined in adolescents and
adults (Braams et al., 2015; Pei et al., 2020). Recent neuroimaging
studies began investigations into children, however, focused on single
component (e.g,, reward processing) of the complex risky
decision-making processes (Blakemore and Robbins, 2012) by testing
task-evoked regional activity (Crowley et al., 2017; Morelli et al., 2021;
Szenczy et al., 2021). Aiming to decipher complex risk-taking and
motivated behaviors, several system-based models have developed over
the years with the focus on adolescence (Casey, 2015), including the
dual-system models (McClure et al., 2004; Shulman et al., 2016; Stein-
berg, 2010), the triadic model (Ernst et al., 2006) and the imbalance
models (Casey et al., 2008; Li, 2017). These models can be used to guide
our understanding of neural mechanisms underlying risky
decision-making in childhood. In comparison with dual-system models
and imbalance models focusing on the balance between motivational
limbic system and prefrontal control system, the Triadic Neural Systems
Model (Ernst, 2014; Richards et al., 2013) dissects the limbic system into
a reward-driven and a harm-avoidant subsystem, and posits three core
neurocognitive systems including control, approach and avoidance
modules (Ernst and Fudge, 2009). This model figures as a broader theory
of functional mechanisms underlying motivated behaviors, and exam-
ines most of related brain areas reported in previous empirical studies.
Specifically, the Control module consists of dorsal anterior cingulate
cortex, dorsolateral prefrontal cortex, and ventromedial prefrontal cor-
tex that carry distinct functions such as salience detection and inhibition
(Chikazoe et al., 2007; Kouneiher et al., 2009; Rubia et al., 2010); The
Approach module includes striatal regions nucleus accumbens, caudate,
and putamen critical for reward function and motivation (Berridge and
Kringelbach, 2015; Jensen et al., 2003); The Avoidance module includes
amygdala, insula, and hippocampus which are consistently associated
with emotional perception and response to aversive stimuli (Hardin
et al., 2009; Rauch et al., 2003) (Table 1). Taken as a reference of
maturity, the adult pattern of this model shows a nuanced and balanced
coordination of these three systems to support the adaptive risk-taking
behaviors. By contrast, the adolescent model is recognized as an un-
balanced one and tilts towards approach behavior, characterized by
enhanced responsivity of the striatal regions to appetitive stimuli (Ernst
and Hardin, 2009; Galvan, 2010). This possibly results from a stronger
reward-driven system, but a weaker harm-avoidant system, and poor
regulatory controls during adolescence (Ernst et al., 2006). However,
whether such unbalanced pattern originates from childhood or not re-
mains to be unraveled. Moreover, there is still a lack of systematic in-
vestigations into functional coordination of the triadic neural systems in
children.

Here we aim to examine the neurocognitive development of risky
decision-making during childhood using event-related functional mag-
netic resonance imaging (fMRI) with an adapted Balloon Analogue Risk
Task (BART) (Lejuez et al., 2002) in a cross-sectional sample of 218
typically developing children (aged 6-12) and 80 healthy young adults
(aged 20-26). We opted a modified BART paradigm which partitioned

Table 1
Neural substrates included in the Triadic Neural Systems Model.

Modules of the Triadic Neural Systems Model

Control Approach Avoidance

Regions of Interest/Seed Regions

Dorsal Nucleus Accumbens Amygdala
Anterior Cingulate Cortex

Dorsolateral Caudate Insula
Prefrontal Cortex

Ventromedial Putamen Hippocampus

Prefrontal Cortex
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risky decision-making into three major conditions corresponding to
triadic neurocognitive processes including approach, avoidance and
control (Ernst et al., 2019), such design allows us to investigate most of
the regions of interest reported in previous BART studies (Dir et al.,
2019; Kohno et al., 2016; Poudel et al., 2022; Rao et al., 2008; Telzer
et al., 2014). Based on the above-mentioned open questions and evi-
dence from previous neurocognitive studies in adolescents and adults,
we hypothesized that children would become more risk-taking as they
grow older, and would show age-related increases of brain activity
involved in reward processing and risk processing but no significant
change of those regions engaging in control, partly due to the protracted
development of prefrontal cortex. The overall age-related differences in
behavioral performance and neural responses of risky decision-making
were examined to test these hypotheses. We further hypothesized that
triadic neural systems in children would show an adolescent-like pattern
characterized by weaker engagement of the control system, but stronger
activation of the approach system compared with adults, which may be
associated with stronger connectivity of reward-related circuitry. To
further reveal the childhood pattern of the Triadic Neural Systems
Model and test these hypotheses, age-related differences in brain acti-
vation and functional connectivity among regions of the triadic neural
systems were investigated by condition-wise Regions of Interest (ROIs)
analyses using the adult pattern as a mature reference.

2. Materials and methods
2.1. Participants

A total of 331 participants were recruited in this study, which con-
sisted of 250 typically developing children (126 girls; age range: 6-12;
mean =+ standard deviation [SD] = 9.21 + 1.38) and 81 healthy young
adults (44 females; age range: 20-26; mean + SD = 22.62 + 1.83).
Neuroimaging and behavioral data were obtained from the Children
School Functions and Brain Development Project (CBD, Beijing Cohort)
(Wang et al., 2023; Xu et al., 2022). Children were recruited by handing
out the booklets to several homogeneous elementary schools in Beijing.
And adults were recruited from the corresponding local communities in
Beijing. All participants had no history of vision problems and no history
of neurological or psychiatric disorders, and no current use of any
medication or recreational drugs. The experimental procedures were
approved by local ethics in accordance with the standards of the
Declaration of Helsinki. Written informed consent was obtained from
each participant as well as the child’s legal guardian before their
participation. Participants having excessive head motion with max
displacement larger than 3 mm (32 children and 1 adult) were excluded
from further behavioral and neuroimaging data analyses. Only the
datasets from the remaining 298 participants including 218 children
(113 girls; age range: 6-12; mean &+ SD = 9.21 + 1.39) and 80 adults (44
females; age range: 20-26; mean + SD = 22.59 + 1.82) were used in this
study. Participant demographics are summarized in Fig. S9 & Supple-
mentary Table S1.

2.2. Cognitive task

All participants completed a modified version of the Balloon
Analogue Risk Task during fMRI scan, which can model the unpredict-
able rewards and risks that characterize real-world risky behaviors
(Lejuez et al., 2002). On each trial of the task, participants were shown a
virtual blue balloon in the center of the screen, and were given the op-
tion of pumping the balloon for a potential increase in rewards (“+ ¥ 1"
for each pump, the maximum number of pumps per balloon was 12) or
cashing out to retain rewards accumulated during the current trial and
transfer them to a permanent bank at the same time, by pressing one of
two buttons within 3000 ms, otherwise the balloon would explode
automatically for no response (Fig. 1A). Balloon explosion may also
appear every time after participants pressed the “pump” button: once
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Fig. 1. Experimental design and behavioral performance of three core processes during risky decision-making. (A) An example trial of the BART: participants were
shown a computerized balloon and selected between two button responses: “pump” or “cash-out”. By pressing the “pump” button, participants could sequentially
inflate the virtual balloon as well as earn a monetary reward (1 yuan for every decision to pump the balloon) in a temporary bank (e.g., P1-P2-P3: “Inflation”
condition). They could also retain rewards accrued during the current trial and transfer them to the permanent bank by pressing the “cash-out” button at any point (e.
g., C1-C2: “Win Outcome” condition). The larger the balloon was inflated, the greater the rewards, but the higher the probability of balloon explosion happening after
a “pump” choice, which led to the loss of corresponding rewards (e.g., E3-E4: “Loss Outcome” condition). Besides, making no response all through the 3000-ms
display of a balloon would also result in an explosion (e.g., E1-E2: “Loss Outcome” condition). Arrows marked the end of a trial. (B) Violin plots showing BART
behavioral performance in adults (n = 80) and children (n = 218) based on three indexes (i.e., average adjusted pumps, total earnings and proportion of explosion).
(C) Average adjusted pumps, total earnings and proportion of explosion increase with age in children. Colored line/curve represents the best fit using the generalized
additive model with shaded area indicating 95% confidence interval. Notes: * **p < 0.001.

the balloon exploded, participants would forfeit unrealized earnings
accumulated during the trial. The explosion point of each balloon was
drawn from a uniform probability distribution from 1 to 12 pumps (Rao
et al., 2008), and to encourage participants to make multiple inflation
attempts for single balloon, the actual amount of monetary reward they
could earn also increased accordingly with the number of inflations from
1 to 12 Chinese yuan (Supplementary Table S2). Thus, pumping could
increase the size of the balloon, the accrued rewards in a temporary
bank, as well as the likelihood of explosion. The larger the balloon was
pumped, the greater the monetary reward but the higher the probability
of loss. Participants were instructed that their goal during this task was
to maximize the reward by balancing potential gain against potential
risk of losing the accrued reward, and they would receive the equivalent
of their total earnings as a bonus at the end of the study.

In summary, every trial started with the presentation of the original
balloon at the smallest size (P1 in Fig. 1A), included all pumps on the
unexploded balloon (e.g., P1-P2-P3 in Fig. 1A; this stage was considered
as “Inflation” condition, during which participants accumulated rewards
by inflating the balloon, while they had to undertake the risk that
balloon explosions may happen after a “pump” choice), and ended with
the decision to cash out, which led to a display of the single-trial earned
for 1500 ms (e.g., C1-C2 in Fig. 1A; this stage was considered as “Win
Outcome” condition), or ended with a balloon explosion, which resulted
in a 1500-ms feedback of an exploded balloon together with the mes-
sage, “Earning = 0" (e.g., E1-E2 and E3-E4 in Fig. 1A; this stage was
considered as “Loss Outcome” condition). As the task was self-paced
during one 6-minutes run, and each trial actually came to an end with
a “cash-out” choice or an unexpected balloon explosion, the total
number of completed trials was not predetermined, but depended on the
response speed varying between participants. All stimuli were presented
via E-Prime 2.0 (http://www.pstnet.com; Psychology Software Tools,
Inc).

2.3. Data analytic plan

To address the open questions and test the corresponding hypotheses
(mentioned in the Introduction), age-related differences in behavioral
performance of risky decision-making were first examined by imple-
menting the generalized additive model to detect linear or non-linear
relationships between age and behavioral measures. Next, to examine
age-related differences in brain systems involved in risky decision-
making, univariate and multivariate analyses were employed to quan-
tify how neural responses of risky decision-making differ between age
groups from 6 to 12 years old. Based on the Triadic Model framework, to
further investigate the brain activation patterns underlying risky
decision-making in children compared with adults, condition-wise (i.e.,
“Inflation”, “Win Outcome”, and “Loss Outcome™) ROI analyses and
group comparisons were conducted to capture multi-dimensional dif-
ferences in task-related activation at both module-level and single-
region-level. Moreover, to explore the functional coordination among
regions of the triadic neural systems in children compared with adults,
task-dependent functional connectivity analyses, together with corre-
sponding condition-wise ROI analyses and group comparisons, were
conducted at both module-level and single-region-level. Details about
these analyses are provided in the following sections.

2.4. Behavioral data analysis

As the number of pumps is constrained on balloons that explode, we
indexed adaptive decision-making by calculating average adjusted
pumps, which represents the average number of pumps on balloons that
did not explode (Rao et al., 2018; Telzer et al., 2014), as well as total
earnings (Kohno et al., 2016). Then we conducted corresponding inde-
pendent t-tests to examine group differences (adults vs. children) in risky
decision-making (Fig. 1B left & middle). Similarly, separate independent
t-tests (adults vs. children) were performed for proportion of explosion
(the ratio of exploded balloons to total balloons) and reaction time
(Fig. 1B right & Fig. S1A). Subsequently, the generalized additive model
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(GAM) based on the R package “mgcv” (https://cran.r-project.org
/web/packages/mgcv/index.html) was used to investigate age-related
differences of behavioral performance in the BART from 6 to 12 years
old (Fig. 1C & Fig. S1B). Such a method allows us to detect the linear or
non-linear relationships between age and behavioral measures without
defining a set of priori functions (i.e., polynomials) (Baum et al., 2017).
Notably, the GAM estimates nonlinearities using restricted maximum
likelihood (REML), and determines a penalty with increasing nonline-
arity in order to avoid over-fitting the data (Wood, 2006). We used the
penalized splines to estimate developmental patterns of risky
decision-making, and included gender as one of covariates in these
models. Accordingly, the final model for estimating age effects on each
BART behavioral score can be expressed as:

Y = Spline (Age) + Gender, where Y represents average adjusted
pumps, total earnings, proportion of explosion or reaction time.

2.5. fMRI data acquisition

Whole-brain functional images were acquired from a 3 T Siemens
MRI scanner (Magnetom Prisma syngo MR D13D, Erlangen, Germany)
using a 64 head coil with a T2 * -sensitive echo-planar imaging (EPI)
sequence based on blood oxygenation level-dependent (BOLD) contrast.
Thirty-three axial slices (3.5 mm thickness, 0.7 mm skip) parallel to the
anterior and posterior commissure (AC-PC) line and covering the whole
brain were imaged with the following parameters: volume repetition
time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle (FA) = 90°,
voxel size =3.5x3.5x35 mm3, field of view (FOV)
=224 x 224 mm?. A set of 184 volumes were collected during the
BART scan in a single run. And each participant’s high-resolution
anatomical images were acquired through 3 Dimensional sagittal T1-
weighted magnetization-prepared rapid gradient echo (MPRGE) with
192 slices: TR = 2530 ms, TE = 2.98 ms, FA = 7°, inversion time (TI)
= 1100 ms, voxel size = 0.5 x 0.5 x 1.0 mm3, acquisition matrix size
= 256 x 224, FOV = 256 x 224 mm?, BW = 240 Hz/Px, slice thickness
=1 mm.

2.6. fMRI data preprocessing

Image preprocessing was performed using Statistical Parametric
Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm). The first 4 vol-
umes were removed for stabilization of magnetic resonance signal and
participants’ adaptation to scanning noise. Remaining images were
corrected for slice acquisition timing and realigned for head motion
correction. Subsequently, functional images were co-registered to each
participant’s gray matter image segmented from corresponding high-
resolution T1-weighted image, then spatially normalized into a com-
mon stereotactic Montreal Neurological Institute (MNI) space and
resampled into 2-mm isotropic voxels. Finally, images were spatially
smoothed by convolving an isotropic 3D-Gaussian kernel with 6-mm full
width at half maximum (FWHM).

2.7. Univariate general linear model (GLM) analysis

To assess task-related brain responses in the BART, three conditions
including “Inflation”, “Win Outcome”, and “Loss Outcome”, were
modeled as three separate event-related regressors and convolved with
the canonical hemodynamic response function (HRF) implemented in
SPM12. Additionally, each participant’s motion parameters derived
from the realignment procedure were included to regress out effects of
head movement on brain response. We performed high-pass filtering
using a cutoff of 1/128 Hz, and conducted global intensity normaliza-
tion and corrections for serial correlations in fMRI using a first-order
autoregressive model (AR (1)) in the GLM framework. Subsequently,
both individual- and group- level statistical analyses were conducted
using SPM12.

Contrast parameter estimated images for “Inflation”, “Win
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Outcome”, and “Loss Outcome” conditions, initially generated at the
individual-level, were submitted to group-level analyses treating par-
ticipants as a random factor. Separate independent t-tests were per-
formed to identify group differences (adults vs. children) in whole-brain
activation under these three conditions of BART (Fig. S2). Analysis of
variance with six different age groups including children (some groups
had been merged into one because of their small sample size; e.g., Age 6
& 7) and adults was conducted to investigate how brain activation
patterns underlying risky decision-making changed by age group
(Fig. 2A). For visualization purposes, significant clusters were deter-
mined by using a height threshold of p < 0.005 and an extent threshold
of p < 0.05 corrected for multiple comparisons using family-wise error
corrections based on nonstationary suprathreshold cluster-size distri-
butions computed by Monte Carlo simulations (Nichols and Hayasaka,
2003). Since the BART paradigm in current study was self-paced, the
trial number of each condition will be differentiated across and within
subjects, which may influence the group-level analyses of contrast ac-
tivations. To clarify such issue, another group-level regression model
taking the trial numbers of each condition as covariates was additionally
conducted, and the results were corrected at the same levelas the above
analyses for multiple comparisons. The corresponding results can be
seen in Fig. S4.

2.8. Multivariate maturation index

To examine age-related differences in task-related neural represen-
tation patterns between child groups from 6 to 12 years old, we
computed an overall multivariate maturation index for each of the three
conditions (Kriegeskorte et al., 2008; Zhuang et al., 2022), which could
assess the degree of neural activity pattern similarity in each child
relative to the mature template of corresponding neural activity pattern
averaged across adults. Condition-related independent brain masks were
generated from activated brain regions of adults under the three con-
ditions respectively, in which significant clusters were determined by
using a stringent threshold of q < 0.05 (cluster size > 30) false discovery
rate correction for multiple comparisons. Next, condition-specific mul-
tivoxel pattern vectors were extracted from corresponding brain masks
in each child, and averaged neural activity patterns for each condition
were created by averaging corresponding pattern vectors across adults.
Then we calculated the maturation index represented by Pearson cor-
relation between condition-specific pattern vector in each child and
corresponding averaged pattern vector across adults. Subsequently, for
each condition, the maturation index was entered as a dependent vari-
able, and the age was entered as an independent variable into a linear
regression (Fig. 2B-D). As demonstrated in Fig. S9, the unbalanced
number of participants included in each age group would introduce the
problem of narrower range of variables of interests. To clarify the
possible impact of such issue on the above analyses, a Stratified Boot-
strapping Analysis was subsequently conducted using the self-edited
script based on Python (https://github.com/psychRay/BART su
pplement analyses/tree/master): the same number of participants
extracted from each age group were combined into a new sample and
correlation coefficient between maturation index and age was calculated
in it, which was replicated with 10000 times and returned a distribution
of correlations. And the significance of correlation was judged based on
whether 95% confidence intervals of correlation distributions include
zero value (i.e., equals to two-tailed p < 0.05). Furthermore, to offer a
better view of brain-behavior associations, the simple Pearson correla-
tions among maturation indexes and behavioral variables were calcu-
lated (Supplementary Table S3 & S4).

2.9. Regions of Interest analysis
To characterize age-group differences in brain engagement in risky

decision-making, at the group-level, we ran complementary ROIs ana-
lyses focusing on the Triadic Neural Systems Model, which provide a
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Fig. 2. Age-related differences in brain systems engaged in three core processes during risky decision-making. (A) An overview of activation patterns under the
“Inflation” (shown in blue), “Win Outcome” (shown in green) and “Loss Outcome” (shown in red) conditions in different age groups. Axial slices (z = —10, 0, 10, 20)
are displayed for reference. Overlaps between these conditions are shown in corresponding colors. (B-D) Age-related differences in brain activation under the
“Inflation”, “Win Outcome”, and “Loss Outcome” conditions in child groups from 6 to 12 years old. Colored line indicates the best linear fit, and shaded area indicates
95% confidence interval. Marginal histograms indicate the distribution of age and maturation index. Notes: L, left; R, right.

theoretical framework for the neuroscience researches on motivated
behaviors (Ernst, 2014; Ernst and Fudge, 2009; Richards et al., 2013).
And the neural substrates of the triadic modules are summarized in
Table 1 (ie., Control: dorsal anterior cingulate cortex (dACC; we
extracted parameter estimates from different subregions of anterior

cingulate cortex, and found age-related differences in the dorsal part),
dorsolateral prefrontal cortex (dIPFC), ventromedial prefrontal cortex
(vinPFC); Approach: nucleus accumbens (NAc), caudate, putamen;
Avoidance: amygdala, insula, hippocampus). These ROI masks were
defined based on the anatomical templates of the corresponding nine
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regions by using multiple atlases integrated in the WFU PickAtlas
toolbox (Maldjian et al., 2003) (https://www.nitrc.org/projects/wfu_
pickatlas) and the NeuroSynth meta-analysis database (Yarkoni et al.,
2011) (https://www.neurosynth.org), which also helped to avoid the
possible overlaps and inconsistencies caused by using single atlas.
Specially, for dACC, dIPFC and vinPFC, the corresponding meta-analysis
maps associated with them were first generated using “dacc”, “dlpfc”
and “vmpfc” as terms in the NeuroSynth database, and then three ROI
masks were defined as the overlap between these maps and anatomical

Developmental Cognitive Neuroscience 66 (2024) 101346

templates of anterior cingulate, middle frontal gyrus and medial frontal
gyrus, respectively. NAc, caudate and putamen were anatomically
defined using the Individual Brain Atlas Statistical Parametric Mapping
(IBASPM) templates (Aleman-Gomez et al., 2006). Amygdala, insula and
hippocampus were anatomically defined using the Automated
Anatomical Labeling (AAL) atlas (Rolls et al., 2015; Tzourio-Mazoyer
et al., 2002) (Fig. 3A). In addition to ROIs separately defined at a
single-region-level, separate regions constituting each functional mod-
ule were merged into one unified mask respectively to form the

A Triadic Neural Systems Model
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module-level ROIs. Specifically, the dACC, dIPFC and vmPFC masks
were merged into the Control module ROI; the NAc, caudate and puta-
men masks were merged into the Approach module ROI; the amygdala,
insula and hippocampus masks were merged into the Avoidance module
ROI (Table 1), by using the Image Calculator function in SPM12.

Parameter estimates (or f weights) associated with the three condi-
tions of interest were extracted from these ROIs and averaged across
voxels within each region (module-level and single-region-level), and
were subsequently submitted for statistical testing based on the MAT-
LAB platform. Separate contrasts on group differences (adults vs. chil-
dren) were performed at both module-level and single-region-level to
investigate age-related differences in brain activation patterns under-
lying different risky decision-making processes, the results of which
were visualized using polar graphs as well as bar graphs (Fig. 3B-D &
Fig. S5).

2.10. Task-dependent functional connectivity analysis

Task-dependent functional connectivity was investigated using the
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psychophysiological interaction (PPI) analysis based on SPM12, which
examined condition-specific modulation of functional connectivity of a
specific ROI with the rest of the brain, after removing potentially con-
founding influences of overall task activation and common driving in-
puts. Consistent with ROIs analyses, seed regions of the Triadic Neural
Systems Model were defined as the anatomical templates of the corre-
sponding brain regions (Table 1; i.e., Control: dACC, dIPFC, vinPFC;
Approach: NAc, caudate, putamen; Avoidance: amygdala, insula, hip-
pocampus). And under each of the three task conditions (Inflation vs.
Win Outcome vs. Loss Outcome), separate whole-brain PPI analyses
were conducted with each of the nine ROIs as a seed. The mean time
series from these seed ROIs were deconvolved to uncover neuronal ac-
tivity (i.e., physiological variable) and multiplied with the task design
vector (i.e., a binary psychological variable) to form a psychophysio-
logical interaction vector. And this interaction vector was then
convolved with a canonical HRF to form the PPI regressor of interest. To
remove overall task-related activation and the effects of common driving
inputs including head motion parameters on brain connectivity, we also
included the psychological variable representing the task conditions as
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Fig. 4. Age-related differences in brain network connectivity between children and adults under the “Win Outcome” condition. (A) Within-network connectivity was
computed within each module of the Triadic Model, and between-network connectivity was calculated between all pairs of these modules. (B) Differences in within-
network connectivity and pairwise between-network connectivity between children and adults. (C) Reward-related functional connectivity patterns of children (left)
and adults (middle), as well as their differences (right). Notes: L, left; R, right; a.u., arbitrary units; *p < 0.05; * *p < 0.01; * **p < 0.001; Error bars, s.e.m.
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well as the mean-corrected time series of the seed ROIs in the GLM. Brain
regions showing significant PPI effects were determined by testing for a
positive regression slope of the PPI regressor, which suggested signifi-
cant variations in the brain response can be explained by the contribu-
tion of the psychophysiological interaction (Cole et al., 2013; Friston
et al., 1997) and further formed the connectivity matrices.

Connectivity matrices corresponding to PPI effects under the
“Inflation”, “Win Outcome” and “Loss Outcome” conditions at the
individual-level were then entered into functional network analyses (Yu
et al.,, 2019). Network connectivity was calculated within the three
functional modules defined by the Triadic Neural Systems framework, as
well as between all pairs of the three modules under the three conditions
of BART (Fig. 4A), as follows:

Within-network connectivity (W,) for each module (a € {1,2,3})
was computed as the average connectivity across all the links within the
functional module (values along the diagonal of the matrix were not
included), as follows:

_ ZLan Cij

W,
2N,

where Cj is the value in the 9 x 9 connectivity matrix; N, is the number
of nodes within module g; i and j denotes different ROIs (i # j).

Pairwise between-network connectivity (P,_,) was computed as the
average connectivity across all the links between two modules, a and b
(a,b € {1,2,3}; a #b), as follows:

Ziea.jehcif

P,y =
b 2NN,

Subsequently, within-network connectivity and pairwise between-
network connectivity were compared across groups (adults vs. chil-
dren) using two-sample t-tests based on the MATLAB platform (Fig. 4B &
Fig. S6). To offer more details and as a supplementary support for above
analyses, we further conducted tests between children and adults at ROI-
ROI level to investigate the specific connectivity which may contribute
to the observed age-related differences (Fig. 4C, Fig. S7 & S8). And the
significant results were identified using false discovery rate correction at
q< 0.05.

3. Results

3.1. Age-related differences in behavioral performance of risky decision-
making

We first examined age-related differences in behavioral performance
during the Balloon Analogue Risk Task between adults and children.
Independent t tests for average adjusted pumps, total earnings and
proportion of explosion revealed that children had less average adjusted
pumps (t' < —13.22, P < 0.001; Z = —9.745, P < 0.001) (for compari-
sons failing the Levene’s Test for Equality of Variances, results from both
t' test and Mann-Whitney U test are provided), less total earnings (t' <
—7.99, P <0.001; Z=-7.152, P < 0.001), and lower proportion of
explosion (t' < —8.46, P < 0.001; Z = —7.339, P < 0.001) than adults
(Fig. 1B).

To further characterize age-related differences of risky decision-
making behaviors from 6 to 12 years old, we implemented a GAM to
search for linear or non-linear relationships between age and behavioral
measures. This analysis revealed significant increases in average
adjusted pumps (P < 2.7 ><10’7), total earnings (P < 5.1 ><10*9) and
proportion of explosion (P < 4.3 x10™*) as a function of age (Fig. 1C).
Additionally, children showed slower response (i.e., longer reaction
time) in risky decision-making relative to adults (tag¢ > 6.47, P < 0.001)
(Fig. S1A), and tend to become faster with the increase of age
(P < 1.8 x107>) (Fig. S1B). To offer an overall view of associations
between behaviors of risky decision-making and ages, the correlations
among variables of interests (including age) were calculated separately
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in child and adult samples (Supplementary Table S3 & S4). The addi-
tional comparisons of age-related differences revealed no significant
age-behavior correlations in adults but supported the above age-related
increases in children, which to some extent provides evidence for
gradual improvements in risky decision-making during childhood.
These results indicate that children are generally less reward-seeking,
less risk-taking and satisfied with relatively lower rewards compared
to adults. With the increase of age, children tend to pursue higher re-
wards and become more risk-taking.

3.2. Age-related differences in brain systems involved in risky decision-
making

Next, we investigated age-related differences in brain systems
engaged in risky decision-making under three conditions of the BART in
children compared with adults. As shown in Fig. 2A, there were
noticeable changes in task-evoked univariate activations related to the
conditions of “Inflation”, “Win Outcome” and “Loss Outcome” in
different age groups. Taking trial number of each condition as covariates
did not alter the main results, in which only group of lower age (6 & 7
years-old) was to some extent influenced (Fig. S4).

To quantify these age-related differences in brain systems underlying
risky decision-making, we calculated an overall multivariate maturation
index for each of the three conditions in children. This index is repre-
sented by the similarity between each child’s specific activation pattern
vector and the averaged activation pattern vector for the corresponding
condition in the adult brains. Subsequent linear regression analyses
revealed no significant age-related difference in the maturation index
(r =0.088, P = 0.196) for the “Inflation” condition (Fig. 2B), but sig-
nificant age-related increases in the maturation indexes for the “Win
Outcome” (r=0.299, P=7 ><10_6) and “Loss Outcome” (r = 0.315,
P =2 x10% conditions (Fig. 2C, D). To clarify the possible bias
introduced by unbalanced number of participants included in each age
group, the additional Stratified Bootstrapping Analysis was performed.
And the results demonstrated the consistency with the above analyses
(Fig. 2B-D), in which significant correlations between maturation in-
dexes and age under the “Win Outcome” (95% CI of r: [0.083, 0.4871)
and “Loss Outcome” (95% CI of r: [0.132, 0.519]) conditions were
identified and no significance under the "Inflation" condition were found
(95% CI of r: [—0.143, 0.283]) (Fig. S3). Furthermore, the results of
correlation analyses among maturation indexes and behavioral variables
(Supplementary Table S3 & S4) revealed significant positive associa-
tions between maturation index under the "Loss Outcome" condition and
total earnings, and negative associations between maturation index
under the "Inflation" condition and reaction time. The former shows that
greater similarity of multivariate activity under the "Loss Outcome"
condition with adults may contribute to more earnings during risky
decision-making, which further indicates the age-related improvements
in learning from failures. And the latter negative correlation provides
additional evidence for the age-related increases in adaptive risk-taking
behaviors.

These results indicate that distributed and largely overlapping brain
regions, which demonstrate age-related differences, support the com-
plex process of risky decision-making in children. Taking the adult
pattern as the reference of maturity, the neurodevelopment related to
risky decision-making from 6 to 12 years old is characterized by
increasingly mature activation patterns associated with “Win Outcome”
or “Loss Outcome”, but no significant age-related difference of activa-
tion patterns involved in the “Inflation” processes requiring the
engagement of cognitive control, which may partly result from the
protracted development of control-related brain regions during this
period.
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3.3. Weaker engagement in control-related brain systems, but stronger
engagement in reward-related systems during risky decision-making in
children than in adults

Based on the Triadic Model framework, we further examined how
children and adults differed in neural activities involved in risky
decision-making under the three conditions of the BART. Nine regions of
interest, core nodes of the three functional modules constituting the
Triadic Neural Systems Model, were defined by using the anatomical
atlases (Fig. 3A). Three regions from each module were merged into one
respectively to form module-level ROIs. Activation estimates extracted
from these ROIs were then entered into group level statistical analyses
for each condition.

Compared with adults, children showed weaker activation in all of
the three functional modules under the “Inflation” condition (Control:
tags < —2.01, P < 0.045; Approach: tags < —2.06, P < 0.040; Avoidance:
toge < —3.43, P < 0.001; Fig. 3B upper). Significant regions included the
dACC (t2g96 < —2.80, P < 0.006) and dIPFC (tp96 < —2.70, P < 0.008) in
the control module, putamen (tyg9¢ < —2.25, P < 0.025) in the approach
module, amygdala (tz96 < —3.00, P < 0.003) and insula (ta9¢ < —3.80,
P < 0.001) in the avoidance module (Fig. 3B lower). Under the “Win
Outcome” condition, however, children exhibited significantly higher
activation only in the approach module (tyg¢ > 2.57, P < 0.011) than
adults, which consists of the NAc (tag¢ > 4.04, P < 0.001), caudate (ta9g
> 2.30, P < 0.023), putamen (ta96 > 2.36, P < 0.019) (Fig. 3C upper &
lower). Under the “Loss Outcome” condition, there was no reliable dif-
ference in the activation of three functional modules between children
and adults (Fig. 3D upper), while subsequent analyses revealed stronger
activation of NAc in children (ty9¢ > 3.28, P < 0.002; Fig. 3D lower).
These results indicate that, compared to adults, the Triadic Neural
Systems Model in children is characterized by weaker regulatory con-
trols of the prefrontal cortex, but stronger reward-related striatal
systems.

3.4. Stronger functional connectivity of reward-related brain networks in
children than adults

Focusing on the three modules of the Triadic Neural Systems Model
(Control: dACC, dIPFC, vmPFC; Approach: NAc, caudate, putamen;
Avoidance: amygdala, insula, hippocampus), we investigated age-
related differences in functional connectivity patterns during risky
decision-making by using whole-brain PPI analyses. First, separate
contrasts were run to examine differences in the means of within- and
between-network connectivity between children and adults under the
three conditions of the BART (Fig. S6). We found that these brain sys-
tems only exhibited significantly different connectivity patterns under
the “Win Outcome” condition, characterized by stronger network con-
nectivity in children (Fig. 4B & Fig. S6B). There was no reliable differ-
ence between children and adults in within- and between-network
connectivity under the “Inflation” (Fig. S6A) or “Loss Outcome”
(Fig. S6C) condition. We further sought to explore which seed region’s
connectivity with other brain areas in the Triadic Model accounted for
the detected group differences.

Within-network connectivity for each functional module was
computed as the average connectivity across all the links within the
module (Fig. 4A). Compared with adults, children showed significantly
higher within-network connectivity in all of the three functional mod-
ules under the “Win Outcome” condition (Within Control: tyge > 2.652,
q < 0.013; Within Approach: tyge > 3.762, q < 0.002; Within Avoidance:
tage > 2.285, q < 0.024) (Fig. 4B), and the greatest difference was
observed in striatal regions, characterized by stronger NAc-putamen
(tags > 3.237, q <0.005) and caudate-putamen (tag9¢ > 5.065, q
<0.001) connectivity (Fig. 4C right). There was no significant difference
in within-network connectivity between children and adults under the
“Inflation” (Fig. S6A upper) or “Loss Outcome” (Fig. S6C upper) con-
dition. Pairwise between-network connectivity was defined as the
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average connectivity across all pairwise links among nodes of the three
modules (Fig. 4A). Compared with adults, children exhibited stronger
connectivity between all of the three pairs under the “Win Outcome”
condition (Control-Approach: tygs > 3.596, q < 0.002; Control-
Avoidance: tygs > 2.311, q < 0.024; Approach-Avoidance: tyge >
3.167, q < 0.004) (Fig. 4B) (more details regarding ROI-ROI connec-
tivity are provided in supplementary Fig. S7 & S8). And there was no
reliable group difference under the “Inflation” (Fig. S6A lower) or “Loss
Outcome” (Fig. S6C lower) condition. These results indicate that chil-
dren exhibited stronger reward-related brain network connectivity than
adults, especially for functional connectivity within the Approach
module and cross-network connectivity between Control and Approach
modules (i.e., PFC-striatum).

4. Discussion

In this fMRI study, we investigated age-related differences in three
neurocognitive systems underlying risk decision-making during middle
to late childhood. Behaviorally, children exhibited age-related increases
in risk-taking behaviors measured by adjusted pumps, total earnings and
proportion of explosions during the task from 6 to 12 years old. At
neuroimaging level, brain regions engaged in reward and risk processing
significantly developed with age during childhood and exhibited a
progressive approximation towards adults as revealed by multivariate
maturation index, which partly accounts for children’s increasing risk-
taking propensities. Critically, in comparison with adults, children
exhibited weaker activation in prefrontal control system, but stronger
activation in approach-related striatal systems. Moreover, greater
reward-related functional connectivity within and between these brain
systems was observed in children than in adults. These findings high-
light heterogenous age-related differences in three neurocognitive sys-
tems involved in risky decision-making during childhood, and suggest
that immature and unbalanced triadic neural systems may underlie risk-
taking behaviors in children.

4.1. Age-related characteristics of risk-taking behaviors during childhood

Behaviorally, children tended to pursue higher rewards and exhibit
more risky behaviors with the increase of age, which to some degree
supports the view that increased risk-taking is a consequence of
normative development (Crone et al., 2016), at least from 6 to 12 years
old. Given that the risky behaviors dramatically rise and peak in
adolescence (Burnett et al., 2010; Casey and Jones, 2010; Figner et al.,
2009; Galvan, 2010; Paus et al., 2008) and are subsequently improved in
adulthood through learning (Humphreys et al., 2016), we speculate that
risky behaviors may increase early from childhood to adolescence,
which is in line with the epidemiological findings (Rosenbaum and
Hartley, 2019; Steinberg, 2013). In addition, children exhibited less
risk-taking with less pumps relative to adults, which partly contradicts
previous studies reporting children’s stronger risk preference (Paulsen
etal., 2011). Such contradiction may be derived from the modulations of
risk-taking by factors like task demands, age range and cultural differ-
ences (Defoe et al., 2015). This is also consistent with the findings
showing that children until age 12 do not exploit advantageous options
when processing risky reward (Van Duijvenvoorde et al., 2012).

4.2. Unbalanced functional organization of the triadic neural systems in
children

At the brain activation level, multivariate maturation indexes based
on whole-brain activity patterns provide new insights into how child’s
individual pattern of risky decision-making develops relative to the
matured template defined by brain activity patterns in healthy adults.
Specially, we divided the BART into three conditions (i.e., “Inflation”,
“Win Outcome”, and “Loss Outcome”) in view of the complexity of risky
decision-making processes (Blakemore and Robbins, 2012; Guassi
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Moreira et al., 2021). As revealed by the maturation index, brain activity
concerning reward- and risk-feedback demonstrated continuous devel-
opment, but no significant age-related difference was found in brain
activity patterns under the “Inflation” condition during which the
engagement of control-related brain regions was needed. This finding
may suggest a relatively protracted development of brain systems
involved in cognitive control for risky decision-making. Taken together,
such unbalanced development may contribute to a gradual increase in
risky behaviors during childhood. Notably, this finding coincides with
the theoretical models which postulate that risk-taking in the following
adolescence is driven by the relatively slower development of
self-control capacities (Casey and Jones, 2010; Ernst and Fudge, 2009).
The Triadic Neural Systems Model (Ernst et al.,, 2006) and the
dual-system imbalance models (Casey et al., 2008; Li, 2017), derived
from empirical studies focusing on human neurodevelopment and
translations across species, have also suggested that unbalanced devel-
opment of prefrontal control and limbic regions may lead to a processing
imbalance in motivated behaviors (Casey, 2015), from which the further
speculation could be made that the behavioral propensity for risk-taking
in children might be at least partly due to unbalanced functional orga-
nization of brain systems involved in risky decision-making.

Extending on prior findings that put forward the Triadic Neural
Systems Model of motivated behavior in adolescence, we provide
empirical evidence supporting the neurodevelopment of risk-taking
onset early from middle and late childhood. Interestingly, under the
“Inflation” condition when the prefrontal control module was urgently
needed to balance reward against loss risk, we found yet children’s
significantly weaker activation than adults in dIPFC and dACC, both of
which play pivotal roles in saliency, regulatory control, attention and
conflict (Amodio and Frith, 2006; Bush et al., 2000; Carter and van
Veen, 2007). Under the “Win Outcome” condition during which the
reward information was displayed, the significantly higher activations
in the NAc, caudate and putamen within approach system were observed
in children compared with adults, which coincides with the previous
observation of enhanced responsivity of the striatal system to appetitive
stimuli in early adolescence (Ernst and Hardin, 2008), together indi-
cating that children demonstrated adolescent-like higher sensitivity to
reward feedback and weaker control for reward-risk balance. As for the
avoidance system, it manifests obvious differences between children and
adults under the “Inflation” condition, but not under the “Win Outcome”
or “Loss Outcome” condition. This might be partly due to adults’ better
ability to learn from losses, in which the loss memory of previous trials
and uncertainty evaluation will contribute to aversive learning during
inflation. And such ability, evidenced by previous studies (Kuhnen and
Knutson, 2005; Peter et al., 2010; van Duijvenvoorde et al., 2022; Wu
et al., 2021), is largely dependent on brain activity in the amygdala
(Maren, 2016; Sanford et al., 2017), insula (Hardin et al., 2009; Rauch
et al., 2003) that constitute the avoidance system in the Triadic Neural
Systems Model.

Together, these findings point toward unbalanced functional orga-
nization of the triadic neural systems underlying risky decision-making
during childhood, which manifests a stronger and faster development of
reward-related striatal systems and a weaker and slower development of
control-related prefrontal systems. Such an adolescent-like pattern also
partly strengthens the idea of using childhood indexes as the precursors
and predictors of adolescence risk-taking (Crowley et al., 2017; Ernst
and Fudge, 2009; Ernst et al., 2006).

4.3. Heightened reward-related functional coordination in children

At the brain network level, we also observed stronger within- and
between-module functional connectivity of the triadic neural systems in
children than adults, which may suggest immature functional coordi-
nation of brain regions underlying risky decision-making in childhood.
The stronger functional coordination among regions within the
approach system, revealed here by higher within-module connectivity in
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children, was demonstrated under the context of win outcome and is
somehow in line with regional activation results, which offer both
activation- and connectivity-level evidence supporting children’s higher
sensitivity to reward. Additionally, by virtue of the BART paradigm,
reward can only be acquired through stopping pumping the balloon and
is directly linked to the inhibition of risk-taking, based on which our
results revealed that stronger between-module (Control-Approach)
connectivity in children under the “Win Outcome” condition may result
from and even contribute to the successful inhibition of risky behaviors.
Such pattern may be derived from the relatively slower functional
specialization (within-module connectivity) of executive control
network (Finn et al., 2010), maturation of which in adults bolsters the
enduring monitoring of inflation process and controlling of pumping
decision to achieve better risk-reward balance. From the cross-sectional
view, that PFC-striatum connectivity at rest decreased with age from
childhood to adulthood (Fareri et al., 2015) conforms to the above
age-related differences in between-module connections and further
strengthens our view. Notably, all of these age-related differences only
existed under the “Win Outcome” condition, no significant group dif-
ference in within- and between-module functional connectivity was
observed under the “Inflation” and “Loss Outcome” conditions in our
present study. Viewed in connection with children’s higher striatal
activation under the “Win Outcome” condition displaying
reward-related information, the approach system consisting of striatal
regions may have a relatively dominant position in the functional co-
ordination of these systems in children, which further contributes to
these condition-specific connectivity patterns.

Taken together, our above findings suggest that children, who are
more sensitive to reward feedback and poorer at reward-risk balance
than adults, have immature functional coordination of the triadic neural
systems underlying risky decision-making.

4.4. Limitations

Our findings should be interpreted in the context of limitations and
tradeoffs in our experimental design. First, our present study with cross-
sectional design focused on children of age-range from 6 to 12 years old
instead of covering the entire period from childhood to adulthood, and
mainly investigated age-related differences based on “adults vs. chil-
dren” contrasts, which limited its ability to discuss mechanisms of
development compared with longitudinal designs. Second, although
children-friendly, our current task paradigm adapted from the original
BART paradigm (Lejuez et al., 2002) did have some limitations
including the inaccurate estimation of risk-taking (Pleskac et al., 2008;
Young and McCoy, 2019) and the difficulty in dissociating different
states of decision-making (Rao et al., 2008). Third, children and adults
participating in the experiment were recruited from several homoge-
neous schools and communities, but some of personal traits (e.g,
impulsivity, reward/risk preferences, sensation seeking) and socioeco-
nomic factors (e.g., the average income) that may be associated with
neural sensitivity to risky rewards (Dalley and Robbins, 2017; van
Duijvenvoorde et al., 2022) were not strictly manipulated. These po-
tential factors may limit the generalizability of our findings to a broader
population. Future large-scale, longitudinal studies that can better
simulate real-world risk situations (De Groot, 2020) and take more
interferential factors into consideration will help provide a more
comprehensive understanding of the life-span neurocognitive mecha-
nisms underlying risky decision-making.

5. Conclusion

Our study sheds light on the neurobehavioral development of chil-
dren’s risk-taking behaviors, and demonstrates immature and unbal-
anced functional organization of the triadic neurocognitive systems
involved in risky decision-making during childhood, characterized by
weaker prefrontal engagement but stronger reward-related striatal



M. Jiang et al.

activation as well as brain network connectivity. Our findings establish a
critical link between the unbalanced triadic neural systems and chil-
dren’s risk-taking behaviors and provide implications into understand-
ing the neurodevelopment of these systems.
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