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Abstract

Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the 

world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment 

outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes 

is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in 

clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt 

homeostatic immune and CNS function appear to be highly overlapping and synergistic within 

HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal 

research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs 

and HIV, although translational studies examining comorbid SUDs and HIV are very limited due 

to the technical challenges of modeling HIV infection preclinically. In this review, we discuss 

preclinical animal models of HIV and highlight key pathophysiological characteristics of each 

model, with a particular emphasis on rodent models of HIV. We then review the implementation of 

these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, 

we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into 

the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to 

reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future 

preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal 

models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and 

effective SUD prevention and treatment targets.
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1. Introduction

Substance use disorders (SUDs) are chronic conditions characterized by enduring 

impairments in the control of motivated behavior that are often comorbid with other 

physical or neuropsychiatric disorders and diseases. Rates of human immunodeficiency virus 

(HIV) infection are much higher among individuals with SUDs compared to the general 

population, and SUDs are known to complicate HIV treatment efforts (Hartzler et al., 

2017). For example, substance misuse is associated with reduced healthcare utilization and 

antiretroviral therapy (ART) adherence and with poor viral load management among people 

living with HIV (PLWH; Durvasula & Miller, 2014). Importantly, addictive substances may 

also impair ART efficacy through direct drug-drug interactions, which can contribute to 

less successful HIV treatment outcomes (Rasbach et al., 2013; Kumar et al., 2015). While 

PLWH can live long, relatively healthy lives with ART, many individuals who achieve viral 

suppression still develop HIV-associated neurocognitive disorder (HAND). Affecting nearly 

half of all PLWH (Heaton et al., 2010; Simioni et al., 2010), HAND is characterized by a 

spectrum of cognitive dysfunction, ranging from asymptomatic neurocognitive impairment 

to HIV-associated dementia (Clifford and Ances, 2013), although the vast majority of 

HAND cases in the current ART era are asymptomatic and only identified via cognitive 

testing (Vastag et al., 2022). HIV may also exacerbate drug-induced cognitive dysfunction 

and age-related cognitive decline (Becker et al., 2004; Valcour et al., 2004a; Norman et al., 

2009; Alford and Vera, 2018), which complicates long-term health outcomes for individuals 

living with SUDs. These concerning realities highlight the need for targeted therapeutics 

to treat SUDs in PLWH. The preclinical application of translational animal models is vital 

towards this goal.

Since the late 1980s, research has indicated that use of addictive drugs is inextricably 

linked to increased HIV risk (Weiss, 1989), which is most commonly due to increased 

risk-taking behaviors such as needle sharing and unprotected sex. Preclinical animal models 

have been instrumental towards improving our understanding of the neurobiological and 

behavioral sequelae of comorbid HIV and SUDs. We discuss several prominent animal 

models of HIV and describe key findings that characterize the pathophysiological milieu of 

these models. We then highlight key preclinical findings across numerous animal models 

of comorbid HIV and SUDs and identify lingering gaps in the literature that require 

further research. Finally, we provide selected examples of modern, cutting-edge behavioral 

neuroscience tools within these preclinical models of HIV and SUDs that we expect to 

advance our knowledge of the neurobiological and behavioral intersections of comorbid 

HIV and SUDs. As highlighted in Table 1, HIV animal models come with unique caveats 

that ultimately constrain the interpretations and extrapolations one can generate from these 

models. Nevertheless, we broadly argue that future medications development efforts to 

address SUDs must consider comorbidities such as HIV to improve treatment outcomes and 

that next-generation neuroscience tools will aid in revealing novel therapeutic targets.

2. Animal Models of NeuroHIV

A broad spectrum of rodent and non-human primate (NHP) animal models has been 

developed to understand the pathophysiology of HIV and its impact on central nervous 
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system (CNS) function. Models ranging from exogenous HIV-1 protein exposure to HIV-1 

transgenic rodents and HIV-like viral infections in NHPs have provided crucial insights 

into the neurocognitive and behavioral outcomes of HIV, many of which parallel clinical 

observations of cognitive and behavioral impairments among PLWH (Jaeger and Nath, 

2012; Clifford and Ances, 2013; Moran et al., 2014; Mallard and Williams, 2018). 

Importantly, research from animal models of neuroHIV indicates that mesocorticolimbic 

reward circuits are particularly vulnerable to HIV and its protein products. Further, 

convergent research indicates that HIV interacts additively or synergistically with addictive 

drugs to promote reward system and neuroimmune dysfunction and neurocognitive 

impairment.

HIV enters the CNS predominantly via infected monocytes and T cells, where it establishes 

a productive infection within microglia (Figure 1). Within the periphery and the brain 

parenchyma, HIV-induced dysregulation of immune signaling, such as through upregulation 

or suppression of various cytokines and chemokines, can disrupt homeostatic neuronal 

function, leading to impaired cognition and behavior. PLWH exhibit a persistent viral 

reservoir within the CNS that contributes to neuroHIV and HAND. This persistence of 

chronic, low-levels of HIV protein within the CNS may contribute to HIV-associated 

neuroimmune, cognitive, and behavioral dysfunction. Preclinical animal models each 

capture a unique set of key pathophysiological features of neuroHIV and HAND and vary in 

key immunological characteristics captured in the model, each with distinct advantages and 

disadvantages (Table 1).

2.1. Exogenous HIV Protein Exposure

One in vivo methodology to study the neurobiological and behavioral sequelae of neuroHIV 

is the administration of HIV proteins, such as envelope glycoprotein 120 (gp120) and trans-

activator of transcription (Tat), directly into the CNS. Both systemic and neuroanatomically 

discrete administration of HIV proteins have been examined across numerous studies. Early 

in vitro studies provided clear evidence of HIV protein-induced neurotoxicity (Lipton, 1991; 

Sabatier et al., 1991; Müller et al., 1992; Bennett et al., 1995; Weeks et al., 1995; Yeung 

et al., 1995; Nath et al., 1996), which served as the foundation for in vivo experiments in 

rodents probing the neurotoxic effects of HIV protein exposure within mesocorticolimbic 

reward circuitry. One of the first studies to examine HIV protein neurotoxicity in vivo 
found that microinfusions of the basic domain of the Tat peptide into the brain – 

including administration to the lateral ventricles, hippocampus, or thalamus - of mice 

produced neuroinflammation and reactive astrogliosis. These deficits were attenuated by 

pharmacological inhibition of the proinflammatory cytokine tumor necrosis factor alpha 

(TNFα) (Philippon et al., 1994), implicating proinflammatory signaling as critical mediator 

of Tat-induced CNS dysfunction (Rappaport et al., 1999).

Intracerebroventricular (i.c.v.) administration of HIV-1 Tat in rats is also associated with 

increased astrocytosis and peripheral immune cell infiltration into the parenchyma (Jones 

et al., 1998), suggesting impaired blood brain barrier (BBB) permeability induced by HIV 

protein exposure. In addition to Tat effects on the BBB, HIV-1 gp120 administration into 

the dorsal striatum of rats enhances the activation of extracellular matrix metalloproteinase 2 
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(MMP-2) and MMP-9 and downregulates essential proteins for regulation of BBB integrity 

– laminin and claudin-5 –, which is consistent with impaired BBB integrity (Louboutin 

et al., 2010). Interestingly, striatal MMP-2 and MMP-9 activity have been implicated in 

drug-seeking behavior (Smith et al., 2014; Namba et al., 2022), while changes in claudin-5 

expression and reduced BBB integrity are associated with depression-like behaviors 

(Menard et al., 2017). Other studies show that mice exposed to Tat exhibit increased 

neuroinflammation within the CNS and depression-like behavior (Pu et al., 2003; Lawson 

et al., 2011). Viral vector-mediated overexpression of antioxidants such as glutathione 

peroxidase and Cu/Zn superoxide dismutase can attenuate HIV protein-induced oxidative 

stress (Louboutin et al., 2010; Agrawal et al., 2012). Taken together, these studies provide 

clear evidence of neuroinflammatory and neurotoxic consequences of direct administration 

of HIV proteins into the CNS, and further studies have demonstrated mesocorticolimbic 

circuit dysfunction following HIV protein exposure.

Exogenous HIV protein administration into the CNS elicits neurodegenerative and 

neurotoxic effects on dopamine neurons (Nath et al., 2016; Gaskill et al., 2017). For 

example, direct administration of HIV-1 Tat into the rat striatum – a primary target 

of midbrain dopamine projections – reduced tyrosine hydroxylase (TH) staining within 

dopamine cell bodies in the substantia nigra (SN) and caused Parkinson’s-like locomotor 

deficits, thus implicating dopamine projection neurons as vulnerable to HIV protein 

exposure (Zauli et al., 2000). Microinfusions of Tat or gp120 within the rat striatum 

increased cell death, induced reactive astrogliosis, and enhanced oxidative stress (Bansal 

et al., 2000; Aksenov et al., 2001, 2003). Further investigation into the mechanism by which 

HIV proteins induce these neurotoxic effects revealed supporting evidence of retrograde 

neurodegeneration of dopamine neurons induced by intra-striatal gp120 administration 

(Nosheny et al., 2006), an effect that is attenuated by viral vector-mediated overexpression 

of brain-derived neurotrophic factor (BDNF; Mocchetti et al., 2007). In support of the 

hypothesis that dopamine neurons are particularly vulnerable to the neurotoxic effects 

of HIV, dopamine neurons of rats exposed to intra-striatal gp120 exhibit more rapid 

degeneration, and at lower gp120 doses, than non-dopamine neurons. These effects were 

prevented by viral-vector mediated overexpression of antioxidant enzymes (Agrawal et al., 

2010). Altogether, these studies highlight the complex neuroinflammatory and neurotoxic 

effects of HIV protein exposure within the CNS and implicate mesocorticolimbic reward 

circuitry as particularly vulnerable to HIV infection.

One primary advantage of the protein exposure models is their spatiotemporal precision. 

Specifically, these models allow investigators to expose discrete brain regions to HIV 

proteins, at specific doses and experimental timepoints of interest, which can be particularly 

useful when assessing the interactions between HIV and addictive substances on cognition 

and behavior. However, there is a paucity of studies that directly compare the impact of 

systemic (e.g., i.c.v.) versus neuroanatomically specific administration of HIV proteins on 

neurotoxicity, neuroinflammation, and impairments in neuronal physiology and behavior, 

which is particularly important given the potential for local exposure to HIV proteins to 

have broad neuroinflammatory effects. Another distinct advantage of these models, which 

complements their spatiotemporal precision, is that they allow isolation of HIV-associated 

pathophysiological processes to one or more specific HIV proteins. One key limitation of 
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these protein exposure approaches is that they are generally limited to acute or subchronic 

exposure periods and to only one or two viral proteins, which does not necessarily reflect 

the chronic, persistent exposure to multiple HIV proteins that occurs in PLWH. The doses 

used in many studies are also often much higher than the expected concentration of HIV 

protein within the CNS of PLWH, and the distribution of viral protein throughout the CNS 

may not reflect what is observed in humans. Further, there is no progressive viral infection 

and replication, which limits the translational extrapolations one can draw from these protein 

exposure studies. As described below, other animal models have been developed to address 

these caveats.

2.2. SIV-infected Non-Human Primates (NHPs)

Immunodeficiency in captive macaque monkeys that resembled human acquired 

immunodeficiency syndrome (AIDS) was first reported in 1983 by Letvin and colleagues 

(Letvin et al., 1983), and the cause of this condition was eventually identified as Simian 

Immunodeficiency Virus (SIV; Bailes et al., 2003; Gao et al., 1999; Peeters et al., 1989). 

HIV-1 is closely related to SIVcpz, which infects chimpanzees of West-Central Africa 

and is believed to be the origin of the HIV-1 group ‘M’ that comprises the majority of 

HIV-1 infections in humans (Simon et al., 1998; Nerrienet et al., 2005). Similarly, HIV-2 is 

closely related to SIVsmm, which infects sooty mangabeys (Lemey et al., 2003). Infecting 

macaques with HIV-1 is difficult due to cellular proteins found in macaques that restrict 

HIV-1 replication (Stremlau et al., 2004; Misra et al., 2013). Today, many NHP models 

of HIV infection utilize rhesus macaques infected with various strains of SIVmac, which 

recapitulates many immunological and serological features of HIV-1 infection in humans 

(Garcia-Tellez et al., 2016). Considered the ‘gold-standard’ animal model of HIV infection 

in humans (Mallard and Williams, 2018), SIV-infected NHPs have been crucial to our 

understanding of the pathophysiology of neuroHIV.

Akin to HIV protein administration into the CNS of rodents, SIV infection in NHPs 

produces profound neuroimmune dysfunction. Early work investigating neuroinvasion of 

SIV in rhesus monkeys found that SIV facilitates macrophage infiltration into the brain 

parenchyma as early as 7 days post-inoculation, which coincides with enhanced microglial 

activation and neurovascular injury (Chakrabarti et al., 1991). More recently, studies have 

utilized CD4 or CD8 T lymphocyte depletion to enhance viral replication in macrophages, 

neuroinvasion of infected monocytes/macrophages into the brain parenchyma, and tropism 

for microglia. For example, depletion of CD8 lymphocytes and infection with the viral 

swarm SIVmac251 results in rapid onset of AIDS and a higher rate of SIV encephalitis 

(Williams et al., 2005). Similarly, CD4 lymphocyte depletion prior to SIV infection also 

results in enhanced viral replication and progression to AIDS as well as increased microglial 

infection (Micci et al., 2014). Circulating cytokine and chemokine levels within the CNS 

and the periphery of SIV-infected macaques are also dysregulated (Keating et al., 2012). 

Acute infection with SIVmac251 results in a transient upregulation of IL-1β, IL-6, IL-10, 

and TNFα mRNA expression in peripheral blood mononuclear cells (PBMCs), which 

may produce early disruptions to BBB integrity and contribute to early CNS infection 

(Benveniste et al., 1996). A recent study demonstrated that SIVmac251 infection upregulates 

CCL2, IL-6, CXCL10, and IFNγ levels within the cerebrospinal fluid, and ART treatment 
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only significantly attenuates the increase in CXCL10 (Solis-Leal et al., 2022). Consistent 

with these findings, ART treatment does not completely resolve HIV-induced dysregulations 

to peripheral cytokine expression in PLWH (Keating et al., 2011), which may be a 

mechanism underlying the persistence of HIV within the CNS as well as HAND in the 

ART era. These studies collectively highlight the importance of peripheral immune cell 

activity and CNS neuroimmune signaling as key mechanisms that mediate HIV-induced 

neuropathogenesis.

SIV-infected rhesus macaques also exhibit both motor and cognitive deficits that are 

not specifically related to the extent and anatomical location of virus-induced lesions 

within the brain (Murray et al., 1992). Moreover, reactive astrogliosis in SIV-infected 

macaques is associated with the onset and progression of neuropsychological impairments 

regardless of immunodeficiency syndrome (Rausch et al., 1994). A time-dependent increase 

in reactive astrogliosis and synaptic impairments was observed within the frontal cortex 

of SIV-infected macaques, which is a likely mechanism mediating the cognitive deficits 

observed in the previous studies (González et al., 2000). Another early study demonstrated 

that SIVmac251-infected macaques exhibit dendritic spine loss as early as 2.5–3 months 

post-infection (Montgomery et al., 1999), suggesting that early CNS infection may impair 

cortical synapses and promote cognitive dysfunction. These studies provided early evidence 

for the hypothesis that SIV and HIV can rapidly invade the CNS and elicit significant 

neurological, cognitive, and behavioral deficits through more global CNS dysregulation 

irrespective of virus-induced neurotoxicity or disease severity. These findings also suggest 

that high concentrations of HIV protein within a discrete brain region may not be necessary 

to produce impairments within that region, which helps inform lingering gaps in the 

literature regarding the differences between local versus systemic exposure to exogenous 

HIV protein. As SIV-infected macaques treated with ART still have detectable SIV env 
DNA within the basal ganglia and brain stem, CNS viral reservoirs may persist within 

the mesocorticolimbic system even with ART treatment (Perez et al., 2018). The chronic, 

low-level HIV proteins secreted by these viral reservoirs may contribute to global CNS 

dysregulation. This has significant implications for the present-day clinical landscape of 

neuroHIV in humans, where chronic neuroinflammation and CNS reservoirs of HIV can 

persist despite undetectable viral loads in the periphery (Heaton et al., 2010; Sari et al., 

2022).

Beyond the direct contribution to our understanding of the preclinical landscape of 

neuroHIV and SUDs, many studies using the SIV model to study HAND have revealed 

important insights into HIV-induced neurocognitive dysfunction that could have important 

implications for the study of comorbid HIV and SUDs. Early studies in NHPs demonstrated 

that SIV infection in rhesus macaques can produce psychomotor impairments (e.g., 

slower choice reaction times and forelimb movement) as well as cognitive and behavioral 

dysfunction that includes impaired discrimination learning, memory retention, attention, 

and motivation (Murray et al., 1992; Gold et al., 1998; Marcario et al., 1999; Weed et 

al., 2003). These SIV-induced behavioral impairments do not appear to be dependent on 

discrete virus-induced lesions within the brain (Murray et al., 1992). Indeed, neuroimmune 

activation and subsequent neuronal dysfunction may underlie these psychomotor and 

cognitive impairments. For example, one study demonstrated a significant correlation 
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between psychomotor impairments in SIV-infected macaques and associated axonal damage, 

microglial activation, and peripheral macrophage infiltration (Weed et al., 2003). Exposure 

to addictive substances may exacerbate these neurobehavioral effects. For example, SIV-

infected NHPs injected with methamphetamine exhibit increased CCR5 expression in the 

brain, which is correlated with viral load, and methamphetamine exposure also increases 

the proportion of microglia infected by SIV within the CNS (Najera et al., 2016; Niu et al., 

2020). Opioids such as morphine may also augment the pathophysiology of SIV infection 

and enhance virus-induced neurocognitive deficits (Reddy et al., 2012; Marcario et al., 2016; 

Acharya et al., 2021). However, these effects likely depend on drug type, duration of drug 

exposure, and withdrawal (Molina et al., 2011; Weed et al., 2012; Wang et al., 2019b). 

Nevertheless, most studies probing the interactions between SIV infection and addictive 

substances utilize experimenter-delivered methods of drug exposure, which does not model 

how humans consume drugs. Drug self-administration models (Section 3) will advance 

study of the impact of drug use on HAND-like cognitive impairment in the SIV model, 

although there are additional limitations to consider here (Table 1).

Like rodents exposed to exogenous administration of HIV proteins within the CNS, 

SIV-infected NHPs display impairments in mesocorticolimbic monoamine transmission. 

SIV-infected macaques exhibit elevated levels of the dopamine metabolite 3,4-dihydroxy-

phenylacetic acid (DOPAC) within the cerebrospinal fluid (CSF), which is also accompanied 

by a progressive, time-dependent increase in serotonin metabolites within 8 months 

from initial infection (Koutsilieri et al., 1997). While administration of selegiline (a 

monoamine oxidase inhibitor that increases CNS dopamine availability) or levodopa 

(L-DOPA) to SIV-infected macaques restored SIV-induced dopamine deficiency, it also 

worsened CNS viral replication and SIV-induced neuropathology (Czub et al., 2001). 

Both selegiline and L-DOPA also potentiate proinflammatory TNFα mRNA expression 

across the mesocorticolimbic reward system in SIV-infected macaques (Czub et al., 2004, 

although see Emanuel et al., 2022). Reduced dopamine levels within the striatum of SIV-

infected macaques correlate with increased microglial activation (Scheller et al., 2005), and 

treatment with minocycline – which blocks microglial activation - can ameliorate this striatal 

dopamine decline (Meulendyke et al., 2012). This perhaps suggests that aberrant microglial 

activation promotes mesolimbic dopamine deficiency and the potential for bidirectional 

interaction between neuroimmune and monoamine outcomes. However, one study observed 

dopamine deficiency within the nucleus accumbens (NAc) of asymptomatic, SIV-infected 

macaques prior to any HIV-induced neuropathology, indicating that impaired monoamine 

signaling may precede HIV-induced neuropathogenesis (Jenuwein et al., 2004). These 

studies collectively suggest that HIV-induced monoamine impairments could contribute 

to HIV-associated neuroinflammation and neurocognitive dysfunction and that dopamine-

modulating drugs, such as addictive drugs, may exacerbate these processes. Akin to findings 

from exogenous HIV protein models described above, these systems represent common 

mechanisms of HIV-induced pathology within the CNS that could be effective treatment 

targets. Despite the tremendous advancements produced by SIV-infected NHP models of 

HIV, work with NHPs comes with certain limitations that include low sample sizes as well 

as ethical and regulatory concerns (J. D. Estes et al., 2018; Table 1). Moreover, another 

limitation of NHP models is that there are generally fewer validated tools, compared 
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to rodent models, that can precisely elucidate molecular, cellular, and circuit-specific 

mechanisms that mediate neurobehavioral impairments produced by combined HIV and 

drug use. The advent of sophisticated transgenic rodent models and chimeric HIV viruses 

that infect murine cells have greatly facilitated the investigation of the neural underpinnings 

of comorbid HIV and SUDs.

2.3. Transgenic Mice

Several transgenic (Tg) mouse models that express HIV-1 proteins, either constitutively or 

conditionally, have been utilized to model some aspects of the pathophysiology produced 

by HIV-1 infection within the CNS. One such model is the HIV-1 gp120 Tg mouse, which 

constitutively expresses gp120 in astrocytes under the control of the glial fibrillary acidic 

protein (GFAP) promoter. First described by Toggas et al., these mice exhibit cortical 

neurodegeneration, dendritic vacuolization and synapse loss, astrogliosis, and microglial 

activation across the brain (Toggas et al., 1994; Kang et al., 2010; Maung et al., 2014; 

Thaney et al., 2017, 2018). These mice also exhibit impaired long-term potentiation (LTP) 

within the CA1 region of the hippocampus, which likely contributes to spatial working 

memory deficits seen in these mice (Krucker et al., 1998; Hoefer et al., 2015). As in SIV-

infected NHP and exogenous protein models, HIV-1 gp120 Tg mice also exhibit enhanced 

BBB permeability (Toneatto et al., 1999; Cioni and Annunziata, 2002; Strazza et al., 2011), 

suggesting that chronic gp120 exposure may facilitate HIV-1 neuroinvasion. A recent in 
vivo PET imaging study revealed an increase in translocator protein (TSPO) binding, which 

is indicative of microglial activation in mice, in multiple neural substrates (the striatum, 

hypothalamus, ventral tegmental area (VTA), and hippocampus) of Tg mice in response to 

lipopolysaccharide (LPS) exposure, suggesting a hypersensitive response to inflammatory 

stimuli within the mesocorticolimbic reward system of these mice (Young et al., 2022). 

Indeed, this has significant implications for SUDs, where PLWH may experience greater 

neuroinflammation and subsequent neurocognitive impairment due to the proinflammatory 

effects of many addictive drugs (Cui et al., 2014; Namba et al., 2021).

One disadvantage of the constitutive HIV-1 gp120 Tg mouse model is the lack of temporal 

control over CNS exposure to HIV proteins. To overcome this barrier, a conditional Tg 

mouse line that expresses HIV-1 Tat in GFAP+ cells upon doxycycline (i.e., a tetracycline 

antibiotic) exposure was developed. This mouse model produces Tat protein in astrocytes 

in a doxycycline-dependent manner that can be released to directly interact with neurons 

(for review, see Langford et al., 2018). This results in cortical atrophy, astrocytosis, 

dendritic degeneration, neuronal apoptosis, and infiltration of peripheral monocytes and 

T lymphocytes into the brain parenchyma (Kim et al., 2003a). These mice also exhibit 

corticostriatal neuroinflammation, increased BBB permeability, and increased striatal and 

hippocampal microglial activity (Kim et al., 2003a; Fitting et al., 2010; Leibrand et al., 

2017). In addition to immune dysregulation, HIV-1 Tat Tg mice have altered dopamine 

transmission within the PFC and striatum. For example, Tat induction in these mice 

increases phasic dopamine release within the dorsal striatum through dopamine transporter 

(DAT) inhibition and stimulation of synaptic release of dopamine (Davis et al., 2023). 

Another study demonstrated that within the PFC, Tat induction reduces DAT-mediated 

dopamine reuptake and concomitantly inhibits action potential firing among layer V 
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prelimbic cortex pyramidal neurons (Strauss et al., 2020). In contrast, another study 

showed increased action potential firing in layers II/III of the mPFC and decreased firing 

within the CA1 region of the hippocampus (Cirino et al., 2020). Given the significant 

immunomodulatory role of dopamine (Gaskill et al., 2017; Nolan and Gaskill, 2019; Xia 

et al., 2019), this dysregulation of dopamine homeostasis within the reward system could 

further impair neuroimmune signaling, thus contributing to Tat-induced neuropathology. 

However, as these studies highlight, it is possible that Tat-mediated dopamine impairments 

and subsequent dysfunction of neuronal activity could be brain region-specific.

While this model provides experimenters with greater temporal specificity over HIV protein 

expression, the expression of Tat in astrocytes represents a limitation of this model given 

that HIV primarily infects microglia in the CNS. Moreover, these tetracycline-inducible 

transgene expression systems are “leaky” and can produce chronic, low-level protein HIV-1 

protein expression even in the absence of doxycycline (Fitting et al., 2010). Depending 

on perspective and experimental question, this could be viewed as either an advantage or 

disadvantage. On the one hand, uncontrolled expression of Tat detracts from the temporal 

control feature of this model. However, this may better model the chronic, low-level 

HIV protein exposure that occurs with neuroHIV among virally-suppressed individuals. 

In support of this, a recent study demonstrated that mice chronically exposed to low-level 

Tat (in the absence of doxycycline treatment) exhibit decreased cortical expression of the 

synaptic markers synaptophysin and PSD95 as well as increased hippocampal astrocytosis 

and neuroinflammation (Dickens et al., 2017). Constitutive, systemic expression of Tat in Tg 

mice is associated with an increase in evoked cortical glutamate release and a concomitant 

decrease in GABA release (Zucchini et al., 2013), suggesting that mice chronically exposed 

to HIV-1 Tat may exhibit impairments in cortical excitatory neurotransmission, which has 

important implications for the pathophysiology of SUDs (Kalivas, 2009; Koob and Volkow, 

2016). It is important to note that doxycycline treatment is typically administered for 

shorter time periods (e.g., about one week) via i.p. injections or for longer periods (e.g., 

several weeks) orally via doxycycline-containing chow, and these different methods of 

administration can produce differential effects on neuropathology and behavior. Specifically, 

anxiety-like behavior, motor function, as well as spatial memory and reversal learning 

exhibit differential profiles of impairment between these two exposure paradigms (Joshi 

et al., 2020). Moreover, the neuropathology produced in the brain, such as gliosis, 

dysregulation of neuroimmune signaling, and impaired neurotransmission, differs between 

i.p. doxycycline-treated mice compared to doxycycline chow-fed mice (Kim et al., 2003b; 

Bruce-Keller et al., 2008; Fitting et al., 2010; Carey et al., 2012, 2013; Miller et al., 2018), 

emphasizing the need to consider the duration and route of doxycycline administration in 

inducible Tg models.

One limitation of the HIV Tg mouse models discussed above is the lack of chronic, systemic 

expression of multiple HIV proteins. This is resolved in the HIV-1 Tg26 mouse model, 

where a replication-incompetent HIV-1 provirus lacking gag and pol expresses the other 

seven HIV-1 genes (Dickie et al., 1991). These mice express high levels of HIV-1 transcripts 

env, tat, rev, vif, vpr, vpu, and nef in various tissues, such as skin, skeletal muscle, and 

brain. The homozygous Tg26 mice exhibit psoriasis-like skin lesions and progressive renal 

disease, while the heterozygous Tg26 mice have a longer lifespan and develop renal disease 
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later in life (Dickie et al., 1991; De et al., 1997; Rosenstiel et al., 2009). In particular, 

Tg26 mice backcrossed with the C57BL/6 strain exhibit longer lifespans with fewer health 

complications (e.g., minimal renal disease; Gharavi et al., 2004; Mallipattu et al., 2013; 

Zhong et al., 2005), making these mice a more reliable model for studying HAND. These 

Tg26 mice also exhibit lower levels of viral transcripts within the brain, perhaps resembling 

PLWH on ART, which contributes to the translational potential of this model (Putatunda 

et al., 2018). Furthermore, studies on Tg26 mice have revealed deficits in hippocampal 

dendritic morphology and sex-specific spatial learning impairments (Putatunda et al., 2018, 

2019; Barbe et al., 2020). A recent study demonstrated increased neuroinflammation and 

astrogliosis within the hippocampus of Tg26 mice (Li et al., 2020), which could potentially 

contribute to these behavioral and synaptic impairments. These findings point to the 

potential value of future studies examining addiction-related behaviors within this model.

2.4. HIV-1 Transgenic Rat

Akin to HIV-1 Tg26 mice, the HIV-1 Tg rat constitutively and systemically expresses 7 of 

the 9 HIV proteins and exhibits many pathological features of HIV infection in humans 

(Reid et al., 2001; Vigorito et al., 2015). These rats were first reported to exhibit many 

clinical aspects of AIDS by 5–9 months of age, including cataracts, wasting, respiratory 

difficulty, neurological abnormalities, and skin lesions (Reid et al., 2001). However, later 

studies using Tg rats obtained from a commercial vendor observed these symptoms at 

18 months or older (Moran et al., 2013; Vigorito et al., 2013). Akin to observations in 

humans, CD4+ and CD8+ cells from HIV-1 Tg rats exhibit increased susceptibility to 

activation-induced apoptosis and diminished capacity to generate IFNγ following activation 

(Reid et al., 2004). Upon exposure to an inflammatory stimulus such as LPS, HIV-1 Tg rats 

also exhibit an exaggerated cytokine and chemokine response within the spleen and brain 

compared to controls, suggesting that non-replicative HIV-1 provirus expression in these rats 

may prime the immune system to produce dysregulated responses to future insults (Homji et 

al., 2012a). These rats also exhibit a decline in T cells beginning by around 6 months, which 

is exacerbated with advanced age alongside increased expression of proinflammatory factors 

such as IL-6 and TNFα (Abbondanzo and Chang, 2014). Overall, the immune system 

changes that occur over the lifespan of these rats mirrors, to an extent, what is observed 

in humans. However, the marked health decline of these animals with advanced age should 

be noted when designing studies with this model, particularly in the case of longitudinal 

studies and those pertaining to aging and HIV. Moreover, the constitutive expression of viral 

proteins in cell types not normally infected by HIV-1, which occurs in this model, represents 

a limitation that should be considered when interpreting findings from this model.

Neuropathology in the HIV-1 Tg rat consists of cortical neuroinflammation, reactive gliosis, 

neuronal cell loss, and increased BBB permeability and lymphocyte infiltration into the 

brain parenchyma (Reid et al., 2001; Royal et al., 2012). Within the striatum, HIV-1 Tg 

rats exhibit loss of TH expression that worsens with age, suggesting a time-dependent 

dysregulation of striatal dopamine neurotransmission (Reid et al., 2016). Importantly, 

these animals exhibit significant impairments in synaptic connectivity within the striatum, 

which includes profound alterations in the distribution of dendritic spine types on medium 

spiny neurons (MSNs; McLaurin et al., 2018). Specifically, HIV-1 Tg rats exhibit an 
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increase in thin and mushroom spines proximal to MSN somas and an increase in 

stubby spines on more distal dendritic branches, as well as sex-dependent morphological 

alterations in dendritic complexity and organization (McLaurin et al., 2018). Transcriptome 

sequencing of the prefrontal cortex (PFC), hippocampus, and striatum from HIV-1 Tg 

rats revealed significant alterations in immune response and neuronal survival pathways 

across all three brain regions (Li et al., 2013), which may contribute to enduring changes 

in mesocorticolimbic synaptic connectivity and dendritic spine morphology. Significant 

alterations in cytokine and chemokine expression are observed in the PFC, NAc, and 

VTA of HIV-1 Tg rats compared to controls as well as differential immune responses 

to nicotine treatment (Yang et al., 2016). Within the PFC specifically, these rats exhibit 

reduced dendritic spine density that is likely driven by gp120-induced upregulation of the 

proinflammatory cytokine IL-1β (Festa et al., 2015). More recently, it was demonstrated that 

HIV-1 Tg rats exhibit a decrease in thin spine density within the prelimbic cortex (PrL), 

which negatively correlated with trials to criterion in an attentional set-shifting task, and 

that CXCL12 signaling rescues these deficits (Festa et al., 2020). Notably, this reduction in 

PrL thin spine density contrasts with the increase in striatal thin spine density observed in 

McLaurin et al., 2018, suggesting important brain region-specific effects of HIV-1 protein 

exposure on dendritic spine morphology. Collectively, these findings critically underscore 

the impact of chronic HIV protein exposure on mesocorticolimbic circuit function, which 

has important implications for drug-seeking behavior.

2.5. EcoHIV Rodent Model of HIV-1 Infection

Achieving a productive HIV infection is difficult in rodents, as they are poorly susceptible 

to HIV (Sawada et al., 1998; Hinkula et al., 2004). While transgenic rodent models can 

produce aspects of later stages of infection, such as persistent HIV protein expression, a 

major goal of HIV animal model development has been achieving primary viral infection 

in rodents that mirrors the immunological and serological milieu observed in humans. 

HIV infection begins with cellular endocytosis of HIV through interactions between HIV 

Env (i.e., gp120 and gp40) and a host cell receptor complex composed of CD4 and co-

receptors CXCR4 or CCR5 (Wilen et al., 2012). While rodent cells are capable of persistent 

production of infectious HIV-1 (Mizrachi et al., 1992; Keppler et al., 2001), the virus does 

not efficiently bind to rodent cells. This is the principal challenge in producing a rodent 

model of sustained HIV-1 infection. Previous attempts to resolve this issue by producing 

transgenic rodents that express human CD4, as well as CCR5 or CXCR4, showed limited 

capacity to produce persistent infection in vivo (Browning et al., 1997; Sawada et al., 

1998). To overcome this difficulty, a chimeric HIV-1 viral construct, EcoHIV, was created 

by replacing the coding region of gp120 with the envelope-coding region of gp80 from 

ecotropic murine leukemia virus (MLV), permitting infection and viral replication in rodents 

(Potash et al., 2005). Potash and colleagues demonstrated that EcoHIV produces systemic 

infection in mice after a single inoculation and that viral mRNA is detected in CD4+ T 

cells, macrophages, and microglia, which are all major target cell types of HIV-1. EcoHIV 

mRNA and expression of the viral proteins Tat and p24 were also detected within the brain 

(Potash et al., 2005). EcoHIV infection in mice also increases BBB permeability through 

downregulation of claudin-5, which is also observed in the gp120 Tg mouse (Jones et al., 

2016). Recent evidence suggests that microinfusion of EcoHIV into the rat brain produces a 

Namba et al. Page 11

Brain Behav Immun. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detectable infection predominantly in Iba1+ cells, implicating microglia as the predominant 

cell type that harbors EcoHIV (Li et al., 2021b). As microglia are widely believed to be the 

primary HIV-1 reservoir within the CNS in humans (Wallet et al., 2019; López et al., 2021), 

this represents a critical translational advantage of the EcoHIV rodent model.

EcoHIV infection in the CNS induces neuroinflammation and parallel changes in neuronal 

morphology and synaptic function. Intracerebral infection of EcoHIV in the mouse brain 

induces synaptodendritic loss in the hippocampus, which is correlated with working memory 

impairment. This neuronal dysfunction is not associated with apoptosis (Kelschenbach et 

al., 2019) which mirrors findings in virally-suppressed PLWH who experience cognitive 

impairment with subtle neurodegeneration rather than cell loss or death (Heaton et al., 

2010; Gelman, 2015). Neuronal morphology and synaptic function are also altered in 

EcoHIV-infected rats. For example, administration of EcoHIV into the rat cortex induces 

dendritic spine morphology dysfunction in NAc MSNs and medial PFC (mPFC) pyramidal 

neurons. Specifically, EcoHIV-infected rats show increased relative frequency of shorter 

dendritic spines, increased head diameter, and increased neck diameter (Li et al., 2021a, 

2021b). These synaptic alterations are associated with upregulation of the expression of 

proinflammatory factors such as NF-κB, TNF-α, and IL-1β within the cortex (Potash et 

al., 2005; Li et al., 2021a). These neuronal dysfunctions in EcoHIV-rats are associated with 

deficits in temporal processing as well as long-term memory, which are considered aspects 

of HAND pathology.

One limitation of the EcoHIV model is that the virus lacks the HIV-1 Env protein 

gp120. As evidenced by the exogenous protein and transgenic models, HIV gp120 

induces neuropathology and alters motivated behavior, including producing synaptodendritic 

damage. For example, intracerebral microinjection of gp120 in rats reduces spine density 

and causes dendritic damage in the PFC (Festa et al., 2015), and gp120 Tg mice exhibit 

dendritic spine deficits within the hippocampus and striatum (Bachis et al., 2016; Speidell 

et al., 2020). Reduced dendritic spine density within the PrL of HIV-1 Tg rats is correlated 

with impaired cognitive flexibility (Festa et al., 2020) and it is possible that gp120-induced 

synaptodendritic deficits contribute to alterations in reward circuit function. Taken together, 

the contribution of gp120 to HIV-related neurocognitive pathology should not be ignored. 

In the EcoHIV model, the potential role of gp80 within the mouse CNS has not been fully 

investigated. One study has reported that MLV (which contains the gp80 envelope protein) 

does not induce cognitive dysfunction akin to what is observed in EcoHIV-infected mice, 

indicating that gp80 may not model gp120-driven neuronal impairments within the CNS 

(Kelschenbach et al., 2019). Unlike gp120, Tat is expressed systemically by EcoHIV and can 

be detected within the brain (Potash et al., 2005). However, whether EcoHIV-mediated Tat 

expression contributes to neurocognitive dysfunction akin to other Tat models is still under 

investigation. These caveats should be noted when interpreting data from EcoHIV studies. 

Nevertheless, the evidence demonstrating that EcoHIV infects microglia/macrophages and 

that it induces neuroinflammation and cognitive impairment indicates EcoHIV infection in 

rodents is a valuable model to study HIV-associated neurocognitive disorders (Kelschenbach 

et al., 2019; Li et al., 2021a). Importantly, unlike HIV Tg rodent models, EcoHIV produces 

a sustained infection in wild type mice. However, infected mice do not appear to ever 

transition to an immunodeficient state after a protracted period of time in the absence of 
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ART. Indeed, these mice show a precipitous decline in peripheral viral RNA levels by 

three weeks post-inoculation and exhibit anti-Gag and anti-Tat antibodies for many weeks 

post-inoculation (Potash et al., 2005; Gu et al., 2018), indicative of an antiviral immune 

response that limits the extent of EcoHIV infection. Interestingly, this is reminiscent of 

the asymptomatic phase of HIV infection in humans following primary infection, where 

individuals maintain immunocompetency. Related to SUDs, this is perhaps a unique and 

advantageous design feature of this model because it enables researchers to examine how 

persistent drug use in otherwise-healthy PLWH, under virally-suppressed conditions (which 

may or may not include ART), alters the course of HIV infection and subsequent changes in 

reward-associated cognition, behavior, and neurobiology. Nevertheless, it must be noted that 

once infection is established, ART treatment is ineffective at attenuating viral DNA levels in 

the spleen and reversing spatial memory impairments induced by EcoHIV infection (Gu et 

al., 2018). This represents an important caveat of the model and should be considered when 

designing studies that probe the impact of chronic ART treatment on neurocognitive and 

behavioral outcomes.

2.6. Alternative HIV-1 rodent models

Beyond these models, multiple additional rodent models of HIV have been developed 

in which complementary preclinical investigation would inform our understanding of co-

occurring HIV-1 infection and SUD. This includes HIV-1 Nef-expressing rodent models. 

For example, transgenic mice expressing Nef in microglia exhibit striatal neuroimmune 

dysfunction, reduced levels of dopamine and DAT within the striatum, and behavioral 

changes such as hyperlocomotion (Acharjee et al., 2014). Another Nef transgenic mouse 

model, where Nef expression is induced by doxycycline treatment in CD4+ T cells, exhibits 

T cell activation and depletion as well as AIDS-like disease in nonlymphoid organs such 

as the lungs and kidneys (Rahim et al., 2009). It is possible that Nef expression alone 

is sufficient to induce neurobehavioral impairments, as implanting Nef-expressing primary 

astrocytes into the hippocampus of rats results in neuronal loss and impaired recognition 

memory, increased CCL2 expression, and peripheral macrophage infiltration (Chompre et 

al., 2013). Altogether, very few studies have identified a mechanistic role for Nef in HIV-

associated neurobehavioral and cognitive impairment, and no studies to date have leveraged 

HIV-1 Nef models to examine the effect of Nef expression on addiction-related behavior. 

Future work investigating SUDs and HIV may also benefit from additional work in the 

severe combined immunodeficient (SCID) mouse model, where mice lack functional T and 

B cells and can be humanized via the engraftment of human fetal liver, thymus, and lymph 

node tissue (McCune et al., 1988, 1991; Namikawa et al., 1988). As reviewed in more 

detail elsewhere (Sil et al., 2021), other humanized mouse models, including the humanized 

microglia mouse model (Mathews et al., 2019) and the humanized NOD/SCID/γ chainnull 

(NSG) mouse model (Cai et al., 2011), may also be useful for assessing the pathophysiology 

and neurocognitive burden of HIV-1 infection.

3. Utilization of NeuroHIV Animal Models in Preclinical SUD Research

Co-occurring HIV and SUDs represent a unique clinical challenge. Drug use can impede 

successful HIV treatment outcomes and, as discussed in detail below, HIV may complicate 
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SUD treatment efforts through modulation of drug-induced dysregulation of brain reward 

and motivation processes. For example, we have recently demonstrated that a candidate 

preclinical medication for treatment of cocaine use disorders – previously shown to 

successfully suppresses cocaine motivation (Powell et al., 2020) – failed to suppress cocaine 

relapse-like behavior in rats exposed to gp120 (Namba et al., 2023). This study highlights 

the need to consider comorbidities such as HIV when designing preclinical SUD models 

for medications development. Indeed, individuals with multiple diagnoses experience poorer 

treatment adherence, and integrated treatment approaches have been proven consistently 

superior to separate treatment of individual diagnoses (for review, see National Institute on 

Drug Abuse, 2020). Thus, the integration of the aforementioned preclinical HIV models 

with established animal models of SUDs provides an opportunity for researchers to examine 

how the pathophysiology of HIV, with or without chronic ART, alters the neurobiology and 

behavioral sequelae of addiction-related behaviors and, importantly, the efficacy of novel 

pharmacotherapeutics intended to treat SUDs.

3.1. Behavioral sensitization

Potentiation of behavioral responses to a stimulus after repeated exposure to that stimulus 

is referred to as sensitization. In the context of addictive substances, behavioral sensitization 

most often refers to the enhanced frequency of behavioral response to a drug following 

repeated exposure, which is an effect that can last chronically (Paulson et al., 1991) 

and occurs across a myriad of drugs (Stripling and Ellinwood, 1977; Joyce and Iversen, 

1979; Robinson and Becker, 1986; Benwell and Balfour, 1992; Cunningham and Noble, 

1992). Typically, behavioral sensitization within this context is observed when the same 

dose of a drug produces a potentiated behavioral response and/or when less drug is 

necessary to produce a particular magnitude of response. This phenomenon is usually 

measured as sensitization of drug-induced locomotion but can also include behaviors such 

as psychostimulant-induced stereotypy (e.g., methamphetamine-induced head twitching). 

Cross-sensitization, where repeated exposure to one drug can produce sensitization to 

another, is common between addictive drugs and points toward shared neurobiological 

mechanisms underlying the formation of behavioral sensitization (Vezina et al., 1989; 

Itzhak and Martin, 1999; Beyer et al., 2001; Cadoni et al., 2001). Importantly, many 

studies have demonstrated a reduction in drug-induced locomotor sensitization in rodents 

following treatment with FDA-approved pharmacotherapeutics used to treat SUDs (Chester 

et al., 2001; Häggkvist et al., 2011; Goutier et al., 2015), highlighting the value of this 

model towards identifying treatment targets. While the lower face validity of locomotor 

sensitization relative to other behavioral paradigms discussed here represents a limitation 

of this model, the neurobiological processes that mediate this behavior overlap with other 

models of drug use and relapse (Steketee and Kalivas, 2011).

Studies using intracranial microinfusions of HIV protein and transgenic rodents demonstrate 

that CNS exposure to HIV proteins can alter drug-induced behavioral sensitization and 

mesocorticolimbic neuroplasticity. One study examining the impact of CNS expression of 

HIV Tat on methamphetamine (METH) sensitization demonstrated that male HIV-1 Tat Tg 

mice exhibit enhanced locomotor sensitization and microglial activation within the dorsal 

striatum relative to control mice (Kesby et al., 2017). This study also demonstrated that 
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HIV-1 Tat Tg mice have reduced expression of D1, D2, D4, and D5 dopamine receptors 

within the NAc, implicating altered mesolimbic dopamine transmission as a functional 

impairment in these mice. Similarly, male HIV-1 Tg rats exhibit enhanced sensitization 

of METH-induced stereotypic behavior (Liu et al., 2009) and potentiated cocaine-induced 

locomotor sensitization (Paris et al., 2014a). However, HIV-1 protein effects on drug-

induced locomotor sensitization appear to depend on the protein exposure method, sex, and 

hormonal status of animal subjects. For example, intra-NAc microinfusions of Tat potentiate 

acute cocaine-induced locomotion but attenuate cocaine-induced locomotor sensitization in 

ovariectomized female rats (Harrod et al., 2008). In freely-cycling, gonadally-intact female 

HIV-1 Tat Tg mice, Tat induction attenuates acute cocaine-induced locomotion only during 

diestrus, whereas Tat induction reduces cocaine-induced locomotor sensitization regardless 

of cycle phase (Paris et al., 2014b). Similarly, intra-NAc Tat exposure also attenuates 

cocaine- (Ferris et al., 2010) and nicotine-induced locomotor sensitization in male rats (Zhu 

et al., 2015). In contrast to these findings, one study found that ovariectomized female HIV-1 

Tg rats exhibit sensitization to cocaine-induced locomotion within the periphery of an open 

field arena (Moran et al., 2013). However, similar to findings from Zhu and colleagues 

(2015), male HIV-1 Tg rats exhibit attenuated nicotine-induced locomotor sensitization 

(Midde et al., 2011). While altered behavioral sensitization can implicate disrupted 

neurobehavioral plasticity, alone it is insufficient to model more complex motivation and 

reward processes that are fundamental to all SUDs. Indeed, studies examining the incentive 

motivational effects of the Pavlovian and operant mechanisms that underlie drug use across 

HIV models have revealed important insights into how HIV may alter the pathophysiology 

of SUDs.

3.2. Conditioned Place Preference

First developed to assess the reinforcing efficacy of opioids (Rossi and Reid, 1976; 

Katz and Gormezano, 1979; Mucha and Iversen, 1984), the conditioned place preference 

(CPP) paradigm is a common behavioral model used to quantify Pavlovian drug-context 

associations (for review, see McKendrick & Graziane, 2020). In preclinical addiction 

studies, CPP utilizes a two- or three-chamber apparatus (two primary chambers where 

conditioning occurs and a middle chamber), each of which consists of distinct visual, tactile, 

and/or olfactory cues. Testing in the CPP paradigm typically consists of three phases – the 

pretest, conditioning, and post-test phases. During pretesting, animals are allowed to explore 

the CPP apparatus to determine their baseline chamber preference. For the conditioning 

phase, animals receive experimenter-delivered injections of drug and are confined to one 

of the two primary chambers. In a biased design, drug is paired to the chamber that 

is opposite to the preferred chamber during pretesting. Conversely, an unbiased design 

randomly assigns the drug-chamber pairings to each animal. The experimenter-administered 

drug is repeatedly paired with the designated associated context. On alternating sessions, 

a neutral stimulus (e.g., saline) is paired with the opposite context, occurring either on the 

same day or on alternating days. After drug conditioning, animals are tested for expression 

of CPP, where they are allowed to explore all the entire apparatus and time spent in 

the drug-paired chamber is measured. Generally, increased time spent in the drug-paired 

chamber is associated with the rewarding efficacy of the drug. Many CPP studies using the 

aforementioned rodent models of HIV demonstrate that HIV may potentiate the rewarding 
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properties of various addictive drugs, providing evidence for a role of HIV in modulating the 

pathophysiology of SUDs.

The majority of CPP studies in rodent models of HIV have utilized transgenic mice that 

conditionally or constitutively express HIV proteins. Among male HIV-1 Tat Tg mice, 

induction of CNS expression of Tat potentiates the expression of cocaine CPP (Zhu et al., 

2022). The induction of Tat expression is also sufficient to reinstate extinguished cocaine 

CPP (Paris et al., 2014a; Mediouni et al., 2015). Tat induction also potentiates ethanol CPP 

in HIV-1 Tat Tg mice and is sufficient to reinstate this behavior following extinction training 

(McLaughlin et al., 2014). These findings suggest that Tat expression during reward learning 

and acutely during the expression of place preference is sufficient to impact reward seeking. 

Importantly, the effect of Tat induction on the reinstatement of drug-seeking behavior, 

which is a preclinical model of relapse-like behavior, indicates that Pavlovian conditioning 

processes that drive drug seeking in humans (O’Brien et al., 1992; Perry et al., 2014) may 

be impacted by HIV infection. Females within this mouse model also express potentiated 

cocaine CPP due to Tat induction during diestrus (Paris et al., 2014b). Akin to cocaine, 

male HIV-1 Tat Tg mice also exhibit potentiated morphine CPP (Gonek et al., 2018). This 

study found that pretreating Tat Tg mice with the CCR5 antagonist maraviroc exacerbates 

the potentiated morphine CPP response in these mice, which the authors hypothesized 

is due to complex mu opioid receptor (MOR)-chemokine receptor interactions whereby 

proinflammatory chemokine stimulation of CCR5 provides inhibitory tone over MOR 

signaling. Another recent study demonstrated that maraviroc attenuates cocaine CPP and 

cocaine-induced hyperlocomotion (Nayak et al., 2020). Interrogation of this effect within an 

HIV rodent model would shed light on whether the mechanisms that mediate HIV-induced 

potentiation of drug reward (e.g., CCR5 signaling) are drug-specific. Similar to HIV-1 Tat 

Tg mice, gp120 Tg mice that constitutively express gp120 in GFAP+ cells express greater 

sensitivity to the incentive motivational effects of METH, exhibiting a leftward shift in the 

dose response function for METH CPP (Kesby et al., 2014). In contrast to these mouse 

models, HIV-1 Tg rats do not show potentiation of morphine CPP but may exhibit deficits 

in extinction learning, although this effect appears to be sensitive to the environmental cues 

associated with the CPP apparatus (Chang and Connaghan, 2012; Homji et al., 2012b). 

Surprisingly, there are very few studies that have assessed drug-induced CPP in HIV-1 

Tg rats, highlighting a critical gap in the preclinical literature. Another caveat of many 

of these studies is that animals are often tested for drug-induced CPP in a drug-free state 

making it unclear whether abstinence-dependent neuroadaptations that are modulated by 

HIV protein exposure drive the observed findings in the aforementioned studies. Altogether, 

these findings highlight significant differences in drug-conditioned reward and motivation 

in animal models of HIV infection. Similar to observations from drug-induced locomotor 

sensitization studies, factors such as drug type, sex, HIV model, and hormonal status all 

likely modulate the effects of HIV on drug-induced CPP.

3.3. Drug Self-Administration

Drug self-administration procedures are widely considered the “gold standard” of preclinical 

animal models for assessing the rewarding and reinforcing properties of psychoactive drugs 

and studying the neurobiology of SUDs. The key advantage of this model over others is 
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that animals have volitional control over their drug intake, and this type of contingent drug 

use involves distinct neurobiological mechanisms relative to non-contingent, experimenter-

delivered models of drug exposure (Namba et al., 2018). Drug self-administration employs 

a complex medley of operant and classical conditioning components as well as positive 

and/or negative reinforcement whereby animals learn that the rewarding and reinforcing 

effects of a particular drug are due to distinct response-outcome contingencies. These 

contingencies, such as the pressing of a lever for the delivery of a drug reinforcer, are 

associated with contextual and discrete stimuli that, through repeated pairings with the 

drug, acquire incentive motivational value and facilitate self-administration behavior (Estes, 

1948; Davis and Smith, 1976; Arroyo et al., 1998; Carter and Tiffany, 1999; Tiffany, 1999; 

Caggiula et al., 2001; Perry et al., 2014). The majority of findings on the impact of HIV 

and its protein products on drug self-administration behavior are derived from HIV-1 Tg 

rodent models, except for two studies conducted in NHPs. Findings from these studies 

indicate significant impairments in drug-motivated behavior and associated neuroplasticity 

and immune dysfunction, which appear to depend on factors such as sex, reinforcer type, 

drug access conditions, as well as drug withdrawal and abstinence.

One of the first preclinical studies to examine the interactions between HIV infection 

and drug self-administration utilized the SIV-infected macaque model along with alcohol 

self-administration (Kumar et al., 2005). In macaques with a chronic history of alcohol 

consumption, both plasma and CSF viral loads remained persistently elevated beginning 

at 18- and 10-weeks post-inoculation, respectively, relative to control macaques with no 

alcohol history. Total alcohol consumption did not appear to escalate substantially post-

inoculation, which may suggest that HIV infection does not affect alcohol consumption 

per se. However, the low sample size of this study necessitates caution when drawing 

such conclusions. Moreover, these animals did not self-administer alcohol daily, which is 

an important caveat. Related work found that SIV infection does not alter daily alcohol 

consumption in macaques but results in reduced levels of circulating CD4+ T cells and 

elevated levels of monocytes expressing CCR5 relative to control animals (Marcondes et al., 

2008). Within the brain, alcohol self-administration reduced the expression of the anti-viral 

cytokine interferon alpha (IFNα), suggesting a reduced innate immune response to SIV 

infection. Together, these two studies provided early evidence that a history of drug use may 

alter the progression and the pathophysiological milieu of HIV. Studies building upon this 

work address important questions related to the impact of HIV on drug-seeking behavior.

Studies using transgenic rodent models of HIV in combination with self-administration 

procedures have revealed important insights into how HIV proteins dysregulate drug-seeking 

or -taking behavior. One study utilizing gp120 Tg mice in a two-bottle choice procedure, 

where mice have free access to either METH or saccharin and water within their home 

cage, found that Tg mice exhibit increased preference for both METH and saccharin 

under restricted access conditions compared to controls, but reduced METH preference 

under unlimited access conditions. This effect was greater in males compared to females 

(Kesby et al., 2014). Under certain conditions, saccharin consumption is predictive of future 

psychostimulant use in rodents (Gosnell et al., 1998; Perry et al., 2007), and restricted or 

intermittent access procedures may better represent drug use patterns observed in humans 
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(Kawa et al., 2019). This study highlights sex and drug access conditions as critical variables 

when assessing the neurobehavioral underpinnings of HIV and addiction-related behaviors.

Akin to METH self-administration in gp120 Tg mice, studies suggest that HIV-1 Tg rats 

also exhibit enhanced sensitivity to psychostimulant reinforcement. For example, one study 

found that intravenous (i.v.) self-administration of cocaine in HIV-1 Tg rats produced 

a leftward shift in the cocaine dose response function relative to control rats under a 

short-access, fixed-ratio (FR) 1 schedule of reinforcement paradigm (McIntosh et al., 

2015). This was accompanied by greater DAT affinity in striatal preparations from cocaine-

experienced HIV-1 Tg rats versus control rats, consistent with their leftward shift in the dose 

response function. HIV-1 Tg rats also exhibit mPFC hyperexcitability that is augmented by 

abstinence from i.v. cocaine self-administration (Wayman et al., 2016). Specifically, cocaine 

abstinence-induced increases in mPFC pyramidal neuron excitability are further augmented 

in HIV-1 Tg rats, which is attenuated by inhibition of L-type Ca2+ channels. Combined with 

striatal dopamine dysfunction, this type of mPFC pathology could facilitate drug-seeking 

behavior beyond normal increases across abstinence (Tran-Nguyen et al., 1998; Grimm et 

al., 2001; Pickens et al., 2011). Indeed, a recent study found that following a month of 

abstinence from i.v. METH self-administration, HIV-1 Tg rats exhibit greater escalation of 

METH intake on a long-access, fixed schedule of reinforcement. Compared to wild-type 

rats, HIV-1 Tg rats also exhibited potentiated breakpoints in a progressive ratio (PR) task 

that requires animals to exert a progressively increasing effort across a test session to receive 

a reinforcer delivery, which is thought to test the incentive motivational value of drugs and 

associated cues (Richardson and Roberts, 1996; de Guglielmo et al., 2020). Interestingly, 

these behavioral changes were accompanied by enhanced mPFC neuroinflammation in 

METH self-administering HIV-1 Tg rats relative to wild-type controls with METH 

experience. In contrast, this group also showed no differences in long-access, i.v. oxycodone 

self-administration between HIV-1 Tg rats and controls after a period of forced abstinence 

despite cognitive deficits and transcriptomic evidence of mPFC neuroinflammation (Fu et 

al., 2022). Within the hippocampus, HIV-1 Tg rats, with or without a history of METH self-

administration, show impairment of BBB protein expression and upregulation of MMP-9 

and NF-κB expression (Ohene-Nyako et al., 2021), which is associated with enhanced 

drug-seeking behavior (Bozdagi et al., 2007; Russo et al., 2009; Namba et al., 2020, 2022). 

METH self-administering HIV-1 Tg rats also exhibit enhanced expression of ΔFosB and 

downstream dopamine D1 receptor expression within the NAc (Ohene-Nyako et al., 2018). 

Importantly, ΔFosB is a critical transcription factor that regulates many addiction-related 

genes, accumulates with repeated drug exposure, and promotes drug-seeking behavior 

(Nestler, 2008). Altogether, these studies suggest that HIV-1 Tg rats may be more sensitive 

to psychostimulant reinforcement and exhibit neuropathology that may promote motivation 

to seek drug in an abstinence-mediated manner.

It is important to note that the preponderance of this work was conducted using only 

male HIV-1 Tg rats, and recent drug self-administration studies in females have revealed 

important sex differences in HIV-induced neurobehavioral adaptations. For example, 

Bertrand et al (2018) demonstrated that both the reinforcing efficacy of cocaine across a 

range of cocaine doses and the motivation to self-administer cocaine on a PR schedule are 

diminished in female HIV-1 Tg rats. Furthermore, this study also showed that female HIV-1 
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Tg rats exhibit diminished choice for cocaine over sucrose compared to controls across a 

week of repeated testing. Interestingly, DAT abundance (i.e., Bmax) observed in this study 

was lower in Tg rats compared to controls and increased by cocaine, which parallels the 

cocaine-induced increase Bmax of low-affinity DAT binding sites from male HIV-1 Tg rats 

used in Mcintosh et al (2015). However, important procedural differences exist between 

these self-administration studies, such as an extensive history of reinforced lever pressing 

prior to cocaine self-administration in the female HIV-1 Tg rats used in Bertrand et al 

(2018) compared to male Tg rats naïve to such training in Mcintosh et al (2015) and 

Wayman et al (2016). In contrast to the latter two studies, a recent study examining cocaine 

self-administration behavior in male HIV-1 Tg rats using the same initial training dose as 

Wayman et al (2016) found that these animals are highly resistant to acquiring cocaine 

self-administration (Huynh et al., 2020), similar to female Tg rats in Bertrand et al (2018). 

This is further complicated by a recent study that demonstrated enhanced response vigor for 

cocaine in female HIV-1 Tg rats (McLaurin et al., 2021). Altogether, these studies highlight 

the need to consider sex in combination with behavioral history and task parameters when 

examining the neurobehavioral impact of HIV on addiction-related behaviors.

One limitation of these HIV-1 Tg rat model studies, as well as several of the aforementioned 

mouse model studies, is that animals are exposed to HIV proteins prior to chronic drug 

use, which is in distinct contrast to the SIV-infected macaque studies that demonstrated an 

alcohol-induced facilitation of SIV pathophysiology without SIV-induced changes in alcohol 

consumption (Kumar et al., 2005; Marcondes et al., 2008). One recent study showed that 

EcoHIV infection via retro-orbital administration in rats with a chronic history of cocaine 

self-administration disrupted choice behavior for cocaine versus sucrose and also impairs 

extinction learning (McLaurin et al., 2022). This study also showed synaptic impairments 

on mPFC pyramidal neurons, including a shift towards increased dendritic spine head 

and neck diameter and increased spine density on distal branches. This important work 

addresses the neurobehavioral impairments produced by HIV following a chronic history 

of drug use/exposure, which is a key gap in the extant literature. Considering drug use and 

associated risky behaviors (e.g., sexual risk taking) are associated with increased risk of HIV 

infection (Durvasula and Miller, 2014), it is important for preclinical models to elucidate 

the neurobehavioral consequences of drug history on the pathophysiology of HIV and 

future addiction-related behaviors following HIV infection. In a longitudinal study assessing 

predictors of cessation of drug use and relapse among PLWH, HIV seropositivity was 

associated with a shorter time to relapse following cessation (Shah et al., 2006), suggesting 

that abstinence-dependent neurobehavioral processes that contribute to drug relapse may be 

modulated by HIV. Overall, the inconsistent findings across the self-administration literature 

and the overall paucity of HIV-related operant self-administration studies in the extant 

literature highlight the need for future investigations that attempt to parse out the individual 

contributions of these variables to drug-motivated behavior.
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4. Leveraging Advanced Behavioral Neuroscience Tools within Animal 

Models of Comorbid HIV and SUDs

Despite tremendous progress in our understanding of how HIV may alter addiction-related 

behaviors and how addictive drugs impact the pathophysiology of HIV within the CNS, 

there remains a need for a mechanistic circuit, cellular, and molecular understanding of 

the interaction between HIV and addictive drugs to gain insight into novel prevention and 

treatment strategies. Well-validated techniques used widely across behavioral neuroscience 

represent a novel future direction for preclinical HIV and SUD research. Here, we 

will discuss such techniques and how they have advanced our understanding of the 

neurobiology of SUDs. Specifically, we will briefly discuss key findings from the 

preclinical SUDs literature that highlight a myriad of techniques that demonstrate the 

cellular-, molecular-, and circuit-level contributions to addiction-related behaviors. We 

identify lingering questions related to the neurobehavioral sequelae of comorbid HIV and 

SUDs and how these techniques could help to close these research gaps. This is by no 

means an exhaustive review of the preclinical SUD literature employing such techniques. 

Nevertheless, we discuss key examples from the field of how these studies have substantially 

advanced our understanding of the neurobiology of SUDs and highlight how these findings 

may uniquely intersect with preclinical animal models of HIV.

4.1. Dissection of the Circuit-Level Contributions to HIV-Induced Dysfunction of Drug 
Motivation and Reward

The brain reward system function is especially vulnerable to HIV. However, many questions 

remain regarding neural circuit contributions to comorbid HIV and SUDs. Corticostriatal 

neural circuitry is particularly vulnerable to HIV infection (Illenberger et al., 2020; 

Nickoloff-Bybel et al., 2020), although it is not entirely clear how such circuit dysfunction 

modulates drug-seeking behavior. Circuit manipulation techniques such as optogenetics 

and chemogenetics have helped clarify the cell type- and projection-specific mechanisms 

underlying drug-induced dysfunction of mesocorticolimbic circuits, thus representing a 

novel approach towards understanding how these circuits might be differentially involved 

in addiction-related behaviors within an animal model of HIV.

Optogenetics refers to the manipulation of cellular activity on a millisecond timescale via 

optical stimulation of genetically encoded, light-sensitive proteins (Deisseroth et al., 2006; 

Miesenböck, 2009; Boyden, 2011). Like optogenetics, chemogenetics involves the use of 

genetically encoded protein receptors; however, these receptors are stimulated by small 

molecule ligands and are insensitive to endogenous ligands. Designer receptors exclusively 

activated by designer drugs (DREADDs) are the most common type of chemogenetic 

strategy used in preclinical addiction neuroscience studies, which are mutant muscarinic 

receptors that are Gq-, Gs, or Gi-coupled G-protein coupled receptors (GPCRs) that are 

activated by clozapine-n-oxide (CNO) (Armbruster et al., 2007; Guettier et al., 2009; 

Roth, 2016). More recently, a Gi-coupled kappa opioid receptor DREADD (KORD) 

was developed, which responds to the pharmacologically-inert compound salvinorin B 

(SALB), thus permitting a multiplexed DREADD approach when combined with muscarinic 

DREADD receptors (Vardy et al., 2015). Optogenetics and chemogenetics have been 
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utilized across a wide range of preclinical addiction studies and are powerful tools to 

help reveal the underlying circuit mechanisms of addiction-related behaviors (Bernstein and 

Boyden, 2011; Cao et al., 2011; Ferguson and Neumaier, 2015; Vickstrom et al., 2021).

Optogenetics and chemogenetics have revealed key insights into cell type- and circuit-

specific mediators of addiction-related behaviors, exemplifying an approach that will 

advance our understanding of how HIV dysregulates motivated behavior. Of particular 

relevance to the dopamine system and striatal dysregulation observed in models of HIV, 

optogenetic dissection of the direct and indirect striatal pathways has challenged the classic 

understanding of segregated D1 and D2 receptor-expressing MSN projection pathways. 

Canonically, it was believed that D1 MSNs project directly to output nuclei of the basal 

ganglia, while D2 MSNs do so through indirect innervation of pallidal neurons, with little 

overlap between the two pathways (Gerfen and Surmeier, 2011). However, a crucial study 

by Kupchik et al. (2015) demonstrated that expression of ChR2 within NAc D1 MSNs and 

light stimulation within the ventral pallidum (VP) results in enhanced excitatory activity in 

50% of recorded VP neurons, which was also confirmed via retrograde fluorescent labeling. 

This study also showed that D2 MSNs can form a direct pathway that disinhibits the 

thalamus through inhibition of VP → thalamus inhibitory projections. Such findings provide 

convincing evidence that striatal MSN plasticity may have more complex and nuanced 

effects over mesocorticolimbic circuit function than what one might predict with the 

traditional direct/indirect pathway model. Other studies have revealed through optogenetics 

critical contributions of excitatory projections from the mPFC and basolateral amygdala 

(BLA) to the NAc in cue-induced motivated behavior (Stuber et al., 2011; Stefanik 

and Kalivas, 2013; Stefanik et al., 2016), the role of dopamine-independent glutamate 

transmission from the VTA to the NAc in promoting reward seeking (Zell et al., 2020), as 

well as the role of calcium-permeable AMPA receptors within mPFC → NAc subcircuits in 

cue-induced drug seeking (Lee et al., 2013; Ma et al., 2014). These studies provide a crucial 

foundation upon which similar studies could be conducted in HIV animal models to parse 

out the unique circuit contributions to drug seeking behavior within the context of comorbid 

HIV.

Pathway-specific chemogenetic strategies have also been used to dissect the function 

of specific neuronal circuits in regulating drug-seeking behavior. For example, a recent 

study by Yager et al (2019) utilized a Cre-lox recombinase strategy to express inhibitory 

DREADDs specifically within direct pathway-projecting striatal neurons to examine the 

role of this pathway in regulating cue-induced reinstatement of cocaine seeking. This 

study revealed that chemogenetic inhibition of these specific neurons suppresses cue-

induced cocaine seeking only in rats screened for a “high-risk” addiction-like phenotype 

(characterized by higher responding for cocaine on a PR schedule and despite foot shock 

punishment). This group also demonstrated using a similar approach to chemogenetically 

tag both direct and indirect pathway-projecting MSNs that direct pathway MSNs drive, 

while indirect pathway MSNs inhibit, cue-induced heroin seeking only in “high-risk” rats 

(O’Neal et al., 2019). These studies further highlight how the underlying neural circuitry 

of drug seeking is contingent upon individual differences, which raises important questions 

regarding the neural circuit contributions to drug seeking in the context of HIV. Another 

recent study demonstrated that optogenetic stimulation of VTA→NAc core dopamine 
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neurons induces reinstatement of cocaine seeking and that chemogenetic inhibition of this 

pathway prevents this behavior (Jing et al., 2022). As discussed previously, several studies 

suggest that HIV-1 Tg rats exhibit dysregulation of DAT function within the striatum, 

suggesting that HIV may impair dopamine transmission. Thus, understanding the role of 

VTA→NAc dopamine signaling within the context of HIV could reveal novel insights 

into the neural circuitry underlying comorbid HIV and SUDs. In addition to dopamine 

transmission, many studies implicate altered corticostriatal glutamate transmission as a 

consequence of HIV and comorbid SUDs (Potter et al., 2013; Vázquez-Santiago et al., 

2014; Giacometti and Barker, 2019), and there may be dissociable effects of HIV infection 

on the plasticity of NAc D1 versus D2 MSNs that receive corticostriatal glutamate input 

to drive drug-seeking behavior (Schier et al., 2017; Barbour et al., 2021). In combination 

with the HIV animal models described previously, optogenetics and chemogenetics could 

be leveraged to isolate cell type-specific neuronal subcircuits (e.g., mPFC glutamatergic 

projection neurons → NAc D1 MSNs) that are responsible for HIV-induced changes in 

drug-motivated behavior (Pascoli et al., 2014; Garcia et al., 2018).

It remains unclear whether HIV alters the recruitment and functional influence of 

these circuits in cue-motivated drug seeking and relapse-like behavior. Optogenetic 

and/or chemogenetic dissection of circuit contributions to HIV-induced dysregulation of 

drug-motivated behavior would reveal crucial insight into the development of targeted 

medications to treat SUDs in the context of comorbid HIV. In particular, combining these 

approaches with viral vectors capable of transsynaptic labeling would allow for isolation of 

cell type-specific mesocorticolimbic subcircuits that regulate the interactions between HIV 

and drug-seeking behavior (Gong et al., 2007; Sjulson et al., 2016). Another outstanding 

question that remains is whether activity of brain reward circuitry modulates neuroimmune 

function and, subsequently, the pathophysiology of CNS HIV infection. Presently, it is 

well accepted that immune signaling crucially modulates neuronal function, particularly 

within the context of SUDs and associated comorbidities (Namba et al., 2021). However, 

the concept of neuronal signaling mechanisms (particularly those regulating associative 

learning processes that critically underly SUDs) shaping immune function in a reciprocal 

manner is a re-emerging concept that could have important implications for understanding 

the neurobehavioral intersections of HIV and SUDs (Ader and Cohen, 1975; Goshen and 

Yirmiya, 2007; Sundman and Olofsson, 2014; Dantzer, 2018; Hadamitzky et al., 2020). A 

recent study leveraged optogenetics to demonstrate that vagus nerve stimulation in mice 

confers kidney protection against ischemic injury, which is likely mediated at least in part 

through stimulation of cholinergic anti-inflammatory signaling (Tracey, 2007; Tanaka et al., 

2021). Another recent study showed that optogenetic stimulation of phasic dopamine neuron 

firing within the VTA of mice stimulates serum IL-2, IL-4 and TNF-α expression, and that 

pharmacological suppression of VTA activity (induced naturally in males by an encounter 

with females) can inhibit behavior-induced increases in serum IL-2 expression (Kayama et 

al., 2022). This work showcases the utility of circuit-manipulating tools such as optogenetics 

and chemogenetics, which could be combined with preclinical HIV models to study how 

the activity of specific reward circuits modulate immune function and, subsequently, the 

pathophysiology of HIV (for reviews of this approach, see Ben-Shaanan et al., 2017; Korin 

& Rolls, 2018).
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4.2. Cell type-specific Identification of Vulnerable Neuronal Subpopulations in Comorbid 
HIV and SUDs

One limitation of the classic application of optogenetics and chemogenetics is the inability 

to distinguish and directly manipulate distinct subpopulations of neurons that are specifically 

activated during discrete addiction-related behaviors. The proportion of cells that are 

activated by drug exposure or drug-associated experience (e.g., cue exposure) is surprisingly 

small – about 5% or less (Mattson et al., 2008; Koya et al., 2009; Cameron and Carelli, 

2012). These cells comprise a neuronal ensemble that is specific to discrete addiction-related 

behaviors and is largely non-overlapping with non-drug reward ensembles (Carelli et al., 

2000; Cameron and Carelli, 2012; Bobadilla et al., 2017). A variety of techniques have been 

used to identify and manipulate neuronal ensembles. For example, the Daun02 inactivation 

method allows for selective, pharmacological reduction of neuronal excitability in c-fos-lacZ 
transgenic rodents that produce the enzyme beta-galactosidase (β-gal) in cells that express 

the immediate early gene (IEG), c-Fos. In the presence of β-gal, the Daun02 prodrug is 

converted to daunorubicin and reduces neuronal excitability (Cruz et al., 2013, 2015). This 

technique was used to demonstrate that only 2–3% of NAc neurons are activated by cocaine 

within a cocaine-associated environment and mediate context-dependent psychomotor 

sensitization to cocaine (Koya et al., 2009). This cocaine context-dependent increase in Fos 

activity was later shown to be associated with silent synapse generation in Fos-expressing 

neurons of Fos-GFP transgenic mice (Whitaker et al., 2016). Another similar approach, 

known as Targeted Recombination in Active Populations (TRAP), utilizes transgenic mice 

that express a tamoxifen-dependent recombinase under the control of an IEG promotor 

such as c-Fos (FosTRAP mice; Guenthner et al., 2013). This permits activity-dependent 

expression of an effector gene, such as a fluorescent reporter, DREADDs, etc., in a cell 

type-specific manner. A recent study using FosTRAP mice found that peripheral immune 

activation activates neurons in the insular cortex, and activation of DREADDs expressed 

by these activated neurons is sufficient to recapitulate peripheral inflammation (Koren et 

al., 2021). This bidirectional relationship between CNS function and peripheral immunity, 

as highlighted above, represents an important area of future research into the mechanisms 

of comorbid HIV and SUDs. Leveraging this type of approach within an animal model of 

HIV would facilitate understanding of what cell types (e.g., D1 vs. D2 MSNs) contribute 

to drug-associated neuronal ensembles within the context of HIV infection or viral protein 

exposure, and whether activation of these specific ensembles alters peripheral immunity and 

the pathophysiology of HIV.

One limitation of these studies is that transient Fos expression is not restricted to 

neurons (Cruz-Mendoza et al., 2022), which can make it difficult to parse out drug-

induced transcriptomic and proteomic alterations within neuronal ensembles. One study 

using fluorescence-activated cell sorting (FACS) to isolate neurons found that cocaine 

sensitization in c-Fos-lacZ transgenic rats produces a unique gene expression profile within 

activated neurons compared to nonactivated neurons (Guez-Barber et al., 2011). This 

could be potentially extended to examining Fos-activated glial cells as well and whether 

they participate with neurons in drug-specific ensembles. Indeed, a recent study showed 

chemogenetic activation of astrocytes induces robust cFos expression within hippocampal 

astrocytes 90 mins after CNO exposure (Adamsky et al., 2018). Recent evidence also 
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suggests that microglial calcium events coincide with spikes in neuronal activity (Umpierre 

et al., 2020). Such studies highlight the potential role of glial cell activation in the formation 

and expression of drug memories. These experimental techniques could provide crucial 

insights into whether cocaine-associated neuron-glia ensembles are functionally distinct in a 

rodent model of HIV. Specifically, one important question that emerges from these studies is 

whether the transcriptomic and proteomic profiles of cocaine-associated neuronal ensembles 

(or neuron-glia ensembles) are altered by HIV, which could reveal novel treatment targets 

that are specific to comorbid HIV and SUDs.

Increases in cytosolic calcium are associated with enhanced neuronal activity (Ghosh and 

Greenberg, 1995; Kawamoto et al., 2012; Brini et al., 2014). Thus, genetically-encoded 

calcium indicators (GECIs) are an important tool for studying cell type-specific neuronal 

activity that could yield crucial insights into the pathophysiology of comorbid HIV and 

SUDs (for a thorough review of GECIs, see Lin & Schnitzer, 2016; Wang et al., 2019). 

Recently, a technique for observing calcium signaling and manipulating neuronal activity, 

known as Fast Light- and Activity-Regulated Expression (FLARE), was developed. This 

approach utilizes a unique transcription factor that, when activated by coincidental increases 

in intracellular calcium and blue light exposure, drives the expression of a transgene (e.g., 

a fluorescent reporter, light-sensitive opsin, etc.) that can be observed or manipulated 

at a later timepoint (Wang et al., 2017). This approach would be useful for tagging 

cellular ensembles that are activated during the acquisition, maintenance, and expression 

of various addiction-related behaviors and manipulating these ensembles at a later timepoint 

(e.g., via optogenetics). One interesting question that arises from this type of approach is 

whether the architecture of corticostriatal ensembles associated with drug self-administration 

are uniquely altered by HIV infection. The EcoHIV model would be particularly useful 

here, where cellular ensembles associated with drug self-administration could be tagged 

with a light-sensitive opsin prior to inoculation with EcoHIV. Ultimately, integration of 

these approaches into preclinical models of comorbid HIV and SUDs would be useful in 

dissecting the cell type-specific neuronal ensemble contributions to the many motivational 

deficits observed in rodent models of HIV.

4.3. Glial Cell Contributions to HIV-Induced Modulation in Neuronal Plasticity and 
Addiction-Related Behaviors

As highlighted throughout this review, glial cells are highly susceptible to HIV infection. 

While recent evidence suggests microglia are the primary CNS reservoir HIV that may 

support productive infection (Joseph et al., 2015; Wallet et al., 2019), many studies implicate 

astrocytes as mediators of HIV-induced neurocognitive dysfunction (Valcour et al., 2004b; 

Ton and Xiong, 2013). HIV and addictive drugs produce similar impairments in glial 

cell function within mesocorticolimbic reward circuitry (Hauser et al., 2007; Hauser and 

Knapp, 2014; Namba et al., 2021), thus representing a key area of interest for studying the 

pathophysiology of comorbid HIV and SUDs. For example, both addictive drugs and HIV 

proteins downregulate expression of the glial glutamate transporter EAAT-2 (i.e., GLT-1), 

and rescuing this deficit inhibits drug-seeking behavior (Wang et al., 2003; Knackstedt 

et al., 2010; LaCrosse et al., 2016; Melendez et al., 2016). Similarly, restoration of drug-

induced impairments in the catalytic subunit of the cystine-glutamate antiporter (Sxc−), xCT, 
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reduces drug-seeking behavior (Reissner et al., 2015; Namba et al., 2020). Interestingly, 

xCT function promotes cellular anti-HIV-1 activity in human macrophages (Rabinowitz et 

al., 2021). These shared glial mechanisms mediating HIV- and drug-induced plasticity may 

underlie the unique pathophysiological milieu of comorbid HIV and SUDs. Recent technical 

innovations such as optogenetic and chemogenetic control of glial cell activity, calcium 

imaging, and other genetic techniques to manipulate glial cell function have advanced the 

study of glial cell morphology and physiology within the context of substance use, thus 

representing a unique opportunity for future investigations to dissect glial cell contributions 

to comorbid HIV and SUDs.

Glial cell physiology is a key area of interest for preclinical SUD research, and recent 

studies utilizing optogenetics and chemogenetics to target glia have revealed important 

insights into non-neuronal mechanisms underlying drug-seeking behavior. One recent study 

utilizing optogenetics found that activation of VTA astrocytes induces real-time avoidance 

behavior and that genetic ablation of GLT-1 expression prevents this effect (Gomez et 

al., 2019). Moreover, this study also showed that concurrent optogenetic inhibition of 

VTA GABA neurons along with stimulation of VTA astrocytes inhibits dopamine neurons 

and prevents this avoidance behavior. These findings highlight how astrocytes can play 

a causal role in the formation of conditioned behavioral responses through modulation 

of neuronal microcircuit interactions. In another study utilizing a chemogenetic approach 

to modulate astrocyte function, Scofield et al (2015) demonstrated using a Gq-coupled 

DREADD driven by a GFAP promoter within the NAc core that chemogenetic activation of 

astrocytes promotes glutamate release and attenuates cue-induced cocaine (but not sucrose) 

seeking. Importantly, this effect was blocked by pharmacological inhibition of presynaptic 

mGlu2/3 autoreceptors, suggesting that astrocytic glutamate transmission within the NAc 

core contributes to presynaptic glutamate release properties and subsequent drug-seeking 

behavior. Morphological deficits in astrocytes (e.g., smaller cell volume and surface area) 

and reduced astrocyte-synapse colocalization were also observed within the NAc following 

cocaine self-administration and extinction. These effects were reversed by treatment with 

ceftriaxone, which is an antibiotic that reduces cue-induced cocaine seeking (Knackstedt 

et al., 2010; LaCrosse et al., 2016). One lingering question that remains from this work 

is whether astrocytes express spatial and/or functional plasticity around specific neuronal 

subtypes, such as between D1 and D2 MSNs. A recent study identified two functionally 

distinct forms of transient astrocyte plasticity (i.e., enhanced D2 MSN colocalization or 

increased extrasynaptic GLT-1 expression) that suppress cue-induced heroin seeking (Kruyer 

et al., 2022), suggesting that astrocytes can coordinate synaptic plasticity in a cell type-

specific manner, underscoring the nuances of drug-induced astrocyte plasticity that may be 

relevant to HIV-induced dysregulation of astrocyte physiology.

Calcium signaling is a crucial mechanism through which astrocytes regulate 

neurotransmission and synaptic plasticity (Kang et al., 1998; Vesce et al., 1999; Bazargani 

and Attwell, 2016; Covelo and Araque, 2016). Utilizing fiber photometry and expression 

of the GECI GCaMP6f under control of an astrocyte-specific promoter, Corkrum and 

colleagues demonstrated that NAc astrocytes exhibit increases in intracellular calcium 

signaling in response to synaptically-released dopamine, which triggers the release of 

adenosine and subsequent stimulation of presynaptic autoreceptors to dampen excitatory 
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transmission (Corkrum et al., 2020). This study reveals the critical role astrocytes play 

in mediating dopamine-glutamate synaptic interactions, which could have significant 

implications for HIV. Indeed, HIV protein exposure can impact MSN morphology and 

physiology and D1- versus D2-MSNs may exhibit differential vulnerabilities to HIV 

infection (Brailoiu et al., 2017; Schier et al., 2017; McLaurin et al., 2018).

Plasma membrane calcium ATPase (PMCA) pumps that deplete astrocytes of intracellular 

calcium have been used to study astrocyte calcium signaling regulation of neuronal 

physiology and behavior (Strehler, 2015). A recent study virally expressed a splice variant of 

human PMCA2 (hPMCA2w/b) and GCaMP6f in striatal astrocytes, resulting in significant 

reductions in both spontaneous and evoked calcium signaling (Yu et al., 2018). Reducing 

striatal astrocyte calcium signaling promoted repetitive self-grooming behavior and led 

to enhanced GABA-mediated tonic inhibition of striatal MSNs. Another study utilizing 

hPMCA2w/b in astrocytes found that abolishing astrocytic calcium signaling fully impairs 

LTP following burst firing of DA neurons and that this form of plasticity is also dependent 

on astrocytic expression of the D2 dopamine receptor and CB1 cannabinoid receptor 

(Requie et al., 2022). These findings suggest that astrocytic calcium signaling plays a critical 

role in modulating the enduring plasticity of VTA dopamine neurons as well as striatal MSN 

plasticity, which are both vulnerable to HIV-induced impairment.

Microglia are the primary cellular reservoir of HIV within the CNS and are also involved in 

the pathophysiology of SUDs. Thus, understanding the functional contributions of microglia 

to the neurobehavioral sequelae of combined HIV and SUDs is crucial. Several studies have 

utilized optogenetics and chemogenetics as a tool to study microglia, particularly within the 

context of chronic pain (Parusel et al., 2022), which represents a novel future direction for 

the preclinical study of HIV and SUDs. In the first study to demonstrate chemogenetic 

manipulation of microglia, Grace et al., 2016 demonstrated that stimulation of a Gi-

DREADD within the spinal cord, the expression of which was driven by a CD68 promotor, 

attenuates morphine-induced pain sensitization. Chemogenetic manipulation of microglia 

has been leveraged to advance the study of neuropathic pain and the spinal cord across 

several other studies (Grace et al., 2018; Saika et al., 2020, 2021), although its use within the 

brain has been limited. In particular, studies manipulating brain-resident microglia within 

the context of learning and memory are scarce. However, one recent study using Cx3cr1-Cre 

transgenic mice and Cre-dependent Gq- or Gi-coupled DREADDs within the dorsal striatum 

found that Gq-DREADD stimulation of microglia induces conditioned place aversion and 

proinflammatory cytokine signaling, while Gi-coupled DREADD stimulation blocks the 

formation of conditioned place aversion to an inflammatory stimulus (Klawonn et al., 2021). 

This study also showed ex vivo chemogenetic stimulation of striatal microglia inhibits MSN 

excitability and that this is dependent on prostaglandin signaling from activated microglia. 

One gap in our understanding of the pathophysiology of comorbid HIV and SUDs is 

whether persistent dysregulation of microglial physiology and activation states by HIV 

infection directly contributes to altered functional plasticity of neurons within the reward 

system. The use of microglial DREADDs represents a unique approach towards closing this 

knowledge gap. However, one must carefully consider the HIV model used in combination 

with microglial DREADDs, as varying HIV models may differentially alter host immune 
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responses and susceptibility to viral infection in ways that may impact the effectiveness of 

this experimental approach.

While HIV and addictive substances may share common mechanisms of action within glial 

cells, it is possible that they mediate these effects through distinct forms of plasticity. 

Examination of corticostriatal astrocyte and microglia activation and morphology within 

rodent models of HIV would provide critical insights into how HIV uniquely alters drug-

induced glial cell plasticity. Modulators of glial cell function, such as the antioxidant 

N-acetylcysteine (NAC), have consistently shown success at the preclinical level at reducing 

drug-seeking behavior and restoring corticostriatal glutamate homeostasis (Moran et al., 

2005; Reissner et al., 2015; Israel et al., 2019; Namba et al., 2020). However, clinical 

translation of such compounds have shown checkered success (LaRowe et al., 2013; 

Deepmala et al., 2015). Comorbidities such as HIV may alter the efficacy of medications 

targeting glutamate neurotransmission and glial cell function. Thus, studying these 

mechanisms within the context of HIV is paramount towards improving our understanding 

of the pathophysiology of SUDs.

5. Conclusions

Comorbid disorders and diseases are a norm, not an exception, for individuals living with 

SUDs. Rates of substance misuse among PLWH are substantially higher than among the 

general population, and drug use is one of several risk factors for HIV transmission. 

Translation of findings from preclinical studies to the clinic has faced many challenges, 

and many medications that have shown preclinical success in suppressing addiction-

related behavior demonstrate only modest clinical efficacy. This pipeline of medications 

development could be improved by utilizing translational animal models that account for 

common comorbidities experienced by those living with SUDs. Indeed, the animal models 

of HIV discussed herein clearly demonstrate the unique effects of combined HIV and 

drugs of abuse on the brain and behavior, which raises important questions regarding the 

therapeutic efficacy of novel medications to treat SUDs in PLWH.

We have reviewed the utility of multiple animal models of neuroHIV and their potential for 

integration with preclinical SUD models. While these models have generated convergent 

findings across the literature with regards to the HIV-associated neuropathology they 

produce, each model has its own unique set of advantages and disadvantages. Likewise, 

there are many models of drug-seeking behavior that model different components of SUDs, 

such as acquisition and escalation of drug taking, tolerance and withdrawal, craving, 

and relapse. Combining multiple different animal models of neuroHIV with preclinical 

SUD models can generate complementary data sets that can address different aspects 

of comorbid HIV and SUD. For example, one major gap in our understanding of the 

biobehavioral interactions between HIV and SUDs is the characterization of immunological 

changes across the addiction cycle and across various addictive drugs, how HIV modulates 

these changes, whether the timing of infection relative to drug exposure differentially 

impacts these interactions, and whether these interactions depend on important variables 

such as biological sex, hormone status, age, co-infection status, among many others. 

Integration of multiple animal models can help address these gaps to reveal novel and 
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effective treatment avenues. Moreover, complementary preclinical datasets across animal 

models will also help inform future clinical investigations into the neuropsychological 

and behavioral impact of HIV within the context of SUDs. Much of the existing clinical 

literature related to HAND does not directly assess important features of SUDs, such as 

drug craving and relapse, patterns of drug use, polypharmacy, among many others. Many 

of the neurocognitive domains involved in the diagnosis of HAND, including attention-

information processing, learning and recall memory, and executive functioning (Antinori et 

al., 2007), are also implicated in SUDs, which highlights the important overlap between 

HAND and SUDs. However, there remains a paucity of studies examining addiction-specific 

neuropsychological and behavioral domains within the context of HIV irrespective of 

HAND. For example, brain imaging studies in humans examining neural reactivity to 

drug and stress cues, which can predict future drug use patterns, have revealed important 

insights into the neural correlates of addiction-related domains that parallel preclinical data 

sets (Jasinska et al., 2014; Everitt et al., 2018; Smith et al., 2023). Moreover, clinical 

studies have also attempted to parse the types of motivation (e.g., reward, relief, habit, 

etc.) underlying drug use (Grodin et al., 2019), which can be captured by complementary 

animal models. However, it is unknown whether HIV status is an important modulator of 

these neurobehavioral relationships, and preclinical animal models of HIV are a useful tool 

in helping close these knowledge gaps. PLWH may also experience unique environmental 

and psychosocial stressors that could detract from the success of standard SUD treatment 

efforts (Avants et al., 1998; Krishnan et al., 2018). More clinical studies are needed 

to further investigate this issue, and clarifying this clinical framework would facilitate 

preclinical studies probing neural mechanisms underlying environmental and psychosocial 

stress effects on addiction-related behaviors. Altogether, these caveats represent important 

future directions for translational bridges to be built between preclinical and clinical research 

that may improve SUD treatment outcomes for PLWH.

Another major limitation of the extant preclinical literature is the lack of studies 

investigating the impact of chronic ART on mesocorticolimbic circuit function and 

addiction-related behaviors. While some of the models discussed here produce 

neurobehavioral impairments that resemble those observed in PLWH on ART, this is not 

the same as investigating the effects of ART on CNS function in the presence of HIV 

proteins. Future studies incorporating ART into these existing models would greatly advance 

our current understanding of the neurobehavioral sequelae of comorbid HIV and SUDs. 

Furthermore, integration of novel techniques and tools in neuroscience with models of HIV 

will provide a pathway to (1) characterizing brain and system-wide changes in comorbid 

HIV and SUDs across key levels of analysis, (2) identifying potential therapeutic targets, 

and (3) performing preclinical testing of potential therapeutic approaches for reducing 

drug seeking and taking behaviors that characterize SUDs within the context of HIV. 

Indeed, overcoming technical limitations associated with these models and techniques while 

attempting to combine them in a way that is informative and translationally relevant is a 

challenge. Regardless, we posit that careful consideration of the strengths and limitations 

of each of these models and techniques prior to their combined implementation will yield 

unique datasets that will substantially improve our understanding of the neurobehavioral 

complexities underlying comorbid HIV and SUDs.
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Figure 1. Pathophysiology of HIV-induced dysregulation of CNS function.
Upon primary infection of monocytes and T cells by HIV-1, there is an initial 

antiviral immune response to rapid viral replication that is accompanied by a burst of 

proinflammatory immune signaling and flu-like symptoms within the first 2–4 weeks 

post-infection. After this acute phase of HIV infection, HIV continues to replicate at 

low levels, where individuals may be asymptomatic during this period of clinical latency. 

However, without daily ART treatment, HIV remains transmissible. Infected monocytes 

and T cells can cross the blood brain barrier (BBB) and infiltrate the CNS, especially 
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during the acute infection phase, where the virus infects brain-resident microglia. Here, 

proinflammatory cytokine and chemokine signaling by microglia and astrocytes can directly 

dysregulate neuronal function or do so indirectly through impaired glial cell regulation 

of homeostatic neuronal activity (e.g., suppression of glial glutamate transport function). 

Specifically, HIV-induced neuroimmune impairments can alter dendritic spine plasticity and 

neuronal excitability, leading to downstream alterations in cognition and behavior. Chronic 

proinflammatory neuroimmune signaling induced by HIV can also further damage the BBB, 

further contributing to HIV neuroinvasion.
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