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of pain – both physical [2, 3] and socioemotional [4, 5]. 
Individuals with substance use disorders (SUDs) exhibit 
structural and functional alterations in the salience network 
(SN) that are linked to various cognitive and behavioral def-
icits [6–8]. In this article, we review the growing evidence 
from functional neuroimaging research that highlights the 
SN in underlying the mutually reinforcing effects of SUDs 
and physical/socioemotional pain as well as the therapeutic 
prospects of targeting the SN for SUD treatment.

The Brain Salience Network

Studies of interregional brain connectivity using functional 
MRI have unveiled distinct large-scale networks of brain 
regions that support various cognitive processes. The SN is 
one of the most well-characterized brain networks and is 
involved in dynamically monitoring internal and external 

Introduction

Allocating attentional resources wisely to relevant and 
important information is vital for overall adaptability in a 
constantly changing world. The brain’s salience network 
(SN), which primarily comprises the anterior insula (AI) 
and the anterior cingulate cortex (ACC), plays a pivotal role 
in facilitating information prioritization by directing atten-
tion to salient stimuli that are emotionally charged, novel, 
or otherwise behaviorally relevant or important for survival 
[1]. Notably, the SN is strongly implicated in the processing 
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Abstract
Purpose of Review  The brain’s salience network (SN), primarily comprising the anterior insula and anterior cingulate cortex, 
plays a key role in detecting salient stimuli and processing physical and socioemotional pain (e.g., social rejection). Mount-
ing evidence underscores an altered SN in the etiology and maintenance of substance use disorders (SUDs). This paper aims 
to synthesize recent functional neuroimaging research emphasizing the SN’s involvement in SUDs and physical/socioemo-
tional pain and explore the therapeutic prospects of targeting the SN for SUD treatment.
Recent Findings  The SN is repeatedly activated during the experience of both physical and socioemotional pain. Altered 
activation within the SN is associated with both SUDs and chronic pain conditions, characterized by aberrant activity and 
connectivity patterns as well as structural changes. Among individuals with SUDs, functional and structural alterations in 
the SN have been linked to abnormal salience attribution (e.g., heightened responsiveness to drug-related cues), impaired 
cognitive control (e.g., impulsivity), and compromised decision-making processes. The high prevalence of physical and 
socioemotional pain in the SUD population may further exacerbate SN alterations, thus contributing to hindered recovery 
progress and treatment failure. Interventions targeting the restoration of SN functioning, such as real-time functional MRI 
feedback, neuromodulation, and psychotherapeutic approaches, hold promise as innovative SUD treatments.
Summary  The review highlights the significance of alterations in the structure and function of the SN as potential mecha-
nisms underlying the co-occurrence of SUDs and physical/socioemotional pain. Future work that integrates neuroimaging 
with other research methodologies will provide novel insights into the mechanistic role of the SN in SUDs and inform the 
development of next-generation treatment modalities.
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stimuli, directing attention toward salient and relevant infor-
mation while filtering out distractions [1]. It is primarily 
anchored in two hub regions: the bilateral AI and the dorsal 
portion of the ACC [8–10] (see Fig. 1). Other brain regions, 
such as the ventrolateral prefrontal cortex, the inferior pari-
etal lobule/temporoparietal junction, the thalamus, and the 
amygdala have also been considered components of the SN 
though with less clear consensus [8, 9]. While the exact 
anatomical boundaries of the SN are not well-defined, the 
reciprocal anatomical connections among the SN regions 
are assumed to underpin their coordinated neurocognitive 
functions [11, 12] that extend beyond mere sensory process-
ing but also include affective processing, decision making, 
error monitoring, social cognition, interoceptive aware-
ness, among others [1]. Stimuli of high perceived impor-
tance and relevance consistently activate brain regions in 
the SN, which guides the direction of attention and cogni-
tive resources toward the process of decision-making and 
behavior selection [10, 13]. The SN closely interacts with 
other brain networks such as the default mode network 
(DMN), which is involved in internally directed tasks (e.g. 
self-reflection) and mind-wandering [14], and the central 
executive network, which is involved in working memory 
and goal-directed cognitive processes [15]. The seminal 
paper by Sridharan et al. [16], later replicated by Goulden 
et al. using a different methodology [17], evidenced the 
role of the SN in cognitive flexibility, facilitating the switch 
between DMN and CEN in response to internally and exter-
nally salient stimuli, respectively [8, 9, 13, 18]. The SN is 
also functionally connected to various subcortical and lim-
bic structures such as the amygdala, thalamus, and striatum, 
which collectively contribute to the encoding of stimuli that 
are of high emotional, hedonic, and homeostatic salience 
[10, 19].

Salience Network in the Processing of Physical and 
Socioemotional Pain

The processing of physical pain recruits a widespread col-
lection of cortical and subcortical regions, known as the 
“pain matrix”, that largely overlaps with the SN [20]. The 
AI is postulated to be responsible for integrating sensory 
and interoceptive inputs to form subjective perceptions 
about the intensity and emotional aspects (i.e., unpleasant-
ness) of pain. This information is transmitted to the ACC 
for evaluation of the saliency of the pain stimuli to inform 
attention allocation and decision-making [9, 21]. Meta-
analysis shows robust activations of the insula and ACC in 
response to experimentally induced pain stimulation [2]. 
Instead of transient responses to the onset and offset of non-
painful somatosensory stimuli, SN activation is prolonged 
throughout the delivery of painful stimuli [22]. Activation 
of SN regions is associated with the objective intensity of 
the pain stimuli [3] but is additionally modulated by vary-
ing cognitive processes and environmental factors to shape 
individuals’ perception of pain. The ability of the SN to 
integrate internal and external stimuli in processing pain 
allows individuals to prioritize attention to potential harm 
and execute adaptive responses [20], such as attributing 
more saliency to stimuli previously associated with harm or 
less to pain in the context of competing cognitive demands 
(i.e., fighting a war). Reducing expectation of pain intensity 
without changing the actual pain intensity attenuates neural 
responses to pain in SN regions (e.g., ACC, insula, and thal-
amus) as well as subjective ratings of pain intensity (i.e., the 
“placebo analgesia” effect) [23, 24]. Similarly, engaging in 
a cognitively demanding task that serves to distract subjects 
from pain stimulation reduces the neural response of the SN 

Fig. 1  The anterior insula and anterior cingulate cortex (yellow) (Montreal Neurological Institute coordinates: x/y/z=–5/15/–5) defined in the 
Neuromorphometrics atlas (www.neuromorphometrics.com)
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to pain stimulation [25], possibly by diverting saliency from 
the painful stimuli to the cognitive task.

Alterations in SN structure and function were reported in 
individuals with chronic pain. Meta-analysis of voxel-based 
morphometry data across chronic pain disorders indicates 
reduced gray matter volume within the SN, including the 
bilateral insula, cingulate cortex, and thalamus [26]. Meta-
analysis of functional MRI data further shows that chronic 
pain elevates SN response to acute pain stimuli [27]. Func-
tional connectivity within the SN also differs between 
healthy controls and individuals with chronic pain, but the 
directionality of change varies across studies, such that 
both enhanced [28, 29] and decreased [30] connectivity in 
chronic pain patients vs. controls have been reported. None-
theless, aberrant SN functioning may contribute to impaired 
connectivity with other brain networks and have implica-
tions for altering pain processing. The activity of the SN is 
normally negatively correlated with that of the DMN [31], 
but individuals with chronic pain show increased SN-DMN 
functional connectivity (i.e., attenuated negative correla-
tion) [32, 33]. These changes were associated with clini-
cal pain symptomatology and pain sensitivity [29, 32] and 
may reflect deficits in cognitive flexibility that bias attention 
toward pain. Studies demonstrating increased SN functional 
connectivity with the attention and sensorimotor networks 
in pain patients compared to healthy controls [28, 33] fur-
ther support the role of attentional focus to nociceptive 
afference in chronic pain.

Socioemotional pain encompasses feelings of distress 
stemming from social disconnectedness, rejection, disap-
proval, or loss. Research indicates similarities in the neural 
mechanisms involved in both physical and socioemotional 
pain. The mu-opioid system is implicated in both physi-
cal pain relief and social bonding [34]. Mu-opioid receptor 
agonists such as buprenorphine alleviate both the physical 
[35] and socioemotional pain [36], while mu-opioid recep-
tor antagonist naloxone exacerbates them [37, 38]. The non-
opioid pain reliever acetaminophen has also been found to 
alleviate socioemotional pain resulting from social rejec-
tion [39]. Clinically, pain disorders often coincide with 
psychological problems including feelings of social exclu-
sion and loneliness, which in turn intensify physical pain 
[40, 41]. Addressing socioemotional pain and providing 
social support are crucial for the effective management of 
chronic physical pain [42]. Interestingly, there is a signifi-
cant overlap between the neural substrates for physical and 
socioemotional pain. The ACC and AI are consistently acti-
vated during experiences of socioemotional pain [4, 5]. The 
AI is further involved in the processing of general physi-
ological and psychosocial stress [43]. Protective factors 
such as self-esteem [44] and social support [45] are linked 
to reduced activity in these regions during socioemotional 

pain. Moreover, the ACC and AI facilitate the interplay 
between physical and socioemotional pain: physical pain 
reliever acetaminophen reduces SN brain response to social 
rejection [39], while social rejection heightens SN response 
to physical pain [46]. Together, these data highlight the role 
of the SN in the shared neural representation of physical and 
socioemotional pain.

Salience Network Dysfunction in Substance Use 
Disorders

SUDs encompass a chronically relapsing cycle of binge/
intoxication, withdrawal/negative affect, and preoccupation/
anticipation that propels continual substance use despite 
negative consequences [47]. Studies examining the neurobi-
ological underpinnings of SUDs traditionally focused on the 
reward pathways but have shifted toward recognizing the 
role of other brain networks [8, 48]. Specifically, structural 
and functional connectivity aberrations in the SN have been 
identified in individuals with SUDs. Across substances, 
patients with SUDs display lower gray matter volume in 
SN brain structures [6, 7, 49–52] and alterations in the con-
nectivity pattern between the SN and other brain networks 
[53, 54]. Compared to healthy controls, individuals with 
opioid and cocaine use disorders demonstrate lower insula 
and ACC connectivity with brain regions of the CEN (e.g., 
dorsolateral prefrontal cortex, posterior parietal cortex) and 
the DMN (e.g., medial prefrontal cortex, posterior cingulate 
cortex) [55–57]. Additionally, opioid and alcohol use dis-
orders are associated with increased connectivity between 
the ACC and regions of the reward circuitry, such as the 
nucleus accumbens and caudate nucleus, suggesting abnor-
mal incentive salience processing [57–59]. Changes in func-
tional connectivity within the SN have also been observed, 
with decreased within-network insula/ACC connectivity 
in cocaine use disorder [60] and increased connectivity in 
alcohol use disorder [61].

The impaired Response Inhibition and Salience Attribu-
tion (iRISA) model of addiction underscores SN neuroadap-
tations in perpetuating SUDs by heightening the saliency of 
substances of abuse at the expense of other non-drug-related 
processes, such as inhibitory control and natural reward pro-
cessing [48]. In line with this model, meta-analyses of task-
based functional MRI studies indicated drug cue-induced 
activation in SN regions in individuals with SUDs that is 
linked to increased drug craving [62–64]. Behavioral data 
further corroborated the model by demonstrating atten-
tional biases toward drug vs. neutral cues across substances 
[65–68]. In cocaine use disorder, such attentional bias has 
been linked to increased functional connectivity among 
brain regions involved in salience attribution, including 
the bilateral frontoinsular cortex, dorsal ACC, and bilateral 
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Salience Network at the Intersection of Pain and 
Substance Use Disorders

Chronic physical pain is highly comorbid with nicotine [95], 
alcohol [96], cannabis [97], opioid [98], and stimulant [99] 
use disorders [(see review [100]]. People struggling with 
chronic pain often turn to these substances as a way to cope 
[101]. In a cross-sectional analysis of individuals with illicit 
drug use in the last 3 months, 51% of individuals who used 
marijuana, cocaine, or heroin and 81% of individuals who 
misused prescription drugs reported having used drugs to 
self-medicate for physical pain [102]. More severe physical 
pain has been linked to a higher risk of relapse in patients 
being treated for opioid use disorder (OUD) [103]. Health-
care providers caring for patients with both pain and SUDs, 
especially OUD, face the challenge of weighing the ben-
efits of prescribing opioids for pain relief against the risks 
of misuse, dependence, and diversion [104]. The task is 
further complicated by alterations in patients’ pain percep-
tion as a result of chronic exposure to opioids (e.g., opioid-
induced hyperalgesia) [105, 106] and other drugs (nicotine 
[107, 108]; stimulants [109]; alcohol [110]), combined 
with impaired interoception [111] and poor self-awareness/
insight [112, 113] that may hamper the accuracy in self-
reported pain. In addition, patients grappling with SUDs 
are often confronted with various socioemotional difficul-
ties, such as financial constraints [114], loneliness [115], 
interpersonal conflict [116], and experience of stigma and 
discrimination [117]. Such difficulties can lead to various 
consequences, including increased stress sensitivity [118], 
poor treatment adherence [119], and heightened risk of 
relapse [120]. The impact of socioemotional adversity can 
be particularly fatal in OUD, as socially isolated patients are 
more likely to die from opioid overdose [121]. The COVID-
19 pandemic has further compounded these issues, with 
increased unemployment rates and social distancing mea-
sures exacerbating social adversities [122], contributing to a 
surge in opioid overdose deaths [123].

Altered SN function in SUDs may impair normal salience 
detection and result in aberrant responses to physical and 
socioemotional pain [8]. Among the limited MRI research 
that examined pain processing in SUDs patients, one study 
found that compared to healthy controls, patients with 
comorbid OUD and chronic pain had increased connectiv-
ity among regions of the SN and the reward circuitry dur-
ing acute pain stimulation [124]. However, it is unclear to 
what extent the abnormal SN connectivity can be attributed 
to OUD or chronic pain. Another study showed a lack of 
the characteristic SN activation in response to physical and 
socioemotional pain in OUD patients, but direct comparison 
between OUD and control individuals did not reveal sig-
nificant differences under stringent whole-brain correction 

frontoparietal regions [66]. Likewise, attentional bias posi-
tively correlated with cue-induced brain activation in the 
insula and ACC in individuals with alcohol use disorder 
[68] and with ACC connectivity with the hippocampus in 
opioid use disorder [69].

In addition to contributing to biased salience attribution, 
SN aberrations in individuals with SUDs are also linked to 
impairments in cognitive control. Functional MRI studies 
(reviewed in [70]) demonstrated reduced activation of SN 
brain regions during cognitive control (e.g., measured by 
the Stroop and go/no-go paradigms) in smokers [71] and 
individuals with methamphetamine [72], cocaine [73], and 
opioid [74, 75] use disorders compared to healthy controls. 
Meta-analyses corroborated the findings of hypoactivity 
of the ACC [76] and insula [77, 78] across SUDs, though 
more research is warranted given potential publication bias 
and insufficient behavioral evidence [78]. Interestingly, a 
meta-analysis that focused on alcohol use disorder revealed 
increased rather than decreased ACC activation during 
inhibitory control in patients than healthy controls [79], 
suggesting potential discrepancy across substances and the 
need for future studies.

Additionally, SUDs are associated with increased risk 
propensity in decision-making [80] that may be attributable 
to increased ACC and reduced prefrontal activity [81, 82]. 
Several studies examining risky decision-making in indi-
viduals with SUDs reported less engagement of the insula 
during monetary gain and loss processing [83, 84]. ACC 
hypoactivity during decision-making was also reported in 
one meta-analysis of functional MRI data in individuals 
with alcohol use disorder [84]. Contrarily, individuals with 
cocaine use disorder exhibit increasing ACC activity when 
choosing riskier options, whereas ACC activity in control 
participants decreased with increasing risk-taking [85]. 
Gowin et al. also demonstrated increased ACC activation 
and lower insula activation during risky decision-making in 
individuals with methamphetamine use disorder compared 
to healthy controls [86]. In addition to functional MRI-mea-
sured SN activity during cognitive and decision tasks, struc-
tural deficits (e.g., reduced gray matter volume) and reduced 
connectivity within the SN have been implicated in poor 
executive performance [87, 88], increased impulsivity [89], 
and slower decision making in individuals with alcohol use 
disorder [90]. Similar associations were found between SN 
connectivity with other brain networks (e.g., DMN, CEN, 
reward circuitry) and increased behavioral impulsivity and 
executive dysfunction in alcohol [91, 92] and cocaine use 
disorders [93, 94].
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TMS targeting the insula and ACC may reduce the craving 
for and/or the consumption of alcohol [147–149], tobacco 
[150–153], and cocaine [154] (but see [155]). Invasive neu-
romodulation such as deep brain stimulation has mostly 
focused on the effect of blocking neural transmission in the 
nucleus accumbens [146, 156]. Nevertheless, two studies 
showed the feasibility and effectiveness of ACC stimulation 
via implanted electrodes for reducing alcohol craving and 
consumption [157, 158].

Psychotherapies have also shown promise for improv-
ing SUD treatment outcomes, potentially by influencing 
the SN. Cognitive behavioral therapy (CBT) is a highly 
effective psychotherapeutic approach that teaches individu-
als to identify and counteract harmful thought patterns and 
environmental risk factors [159, 160]. One functional MRI 
study revealed decreased ACC engagement during cogni-
tive control among individuals with SUDs following CBT, 
which might reflect reduced cognitive effort [161]. Another 
psychotherapeutic technique, mindfulness meditation, 
trains individuals to develop and maintain non-judgmental, 
non-overly reactive, and present-moment awareness of their 
thoughts and feelings. Mindfulness meditation has demon-
strated efficacy in treating SUDs and related comorbidities 
(e.g., depression, anxiety) [162–165]. In healthy individu-
als, a month-long mindfulness meditation training increased 
SN functional connectivity with brain regions of the DMN 
and the CEN [166]. In individuals with OUD, mindfulness 
increased the correlation between the gray matter volume of 
the SN and that of the striatum and prefrontal cortex [167]. 
Lastly, among smokers, mindfulness increased ACC activ-
ity during resting state [168] and attenuated ACC activity 
and ACC-insula connectivity during exposure to smoking 
cues [169]. These findings demonstrated the SN’s involve-
ment in psychotherapeutic interventions for SUDs, though 
more research is needed to further elucidate the mechanistic 
role of the SN.

Conclusions and Future Directions

The review highlights the significance of the SN in medi-
ating the interplay between SUDs and physical/socio-
emotional pain. It also identifies several critical gaps in 
knowledge that require future research. First, despite the 
emphasis of this review on the SN, it is important to rec-
ognize SUDs as a group of multifaceted neurocognitive 
disorders affecting a broad range of brain structures. The 
SN interacts with other brain regions, such as the prefrontal 
cortex and the limbic system [8–10, 13, 18, 19], that collec-
tively contribute to the etiology and maintenance of SUDs 
[48, 170]. Similarly, both physical and socioemotional pain 
have profound effects on the brain that extend beyond the 

for multiple comparisons [125]. The same team additionally 
found a negative correlation between insular gray matter 
volume and social pain in OUD patients [126]. Non-imag-
ing studies on OUD revealed blunted subjective emotional 
reactions, heightened physiological responses, and deficient 
regulation in response to social rejection [127, 128], which 
was further associated with increased drug craving [128]. 
Lastly, we recently found preliminary evidence that family/
social problems (e.g., abuse, interpersonal conflict, paren-
tal drug use, etc.) increased AI response to drug-related 
stimuli compared to natural reward stimuli in OUD patients 
[129]. It should also be noted that both SUDs and physi-
cal/socioemotional pain are closely related to various psy-
chiatric problems (e.g., depression, anxiety, posttraumatic 
stress disorder) [130–132]. Functional and structural altera-
tions in the SN are a recurring phenomenon across psychi-
atric disorders and may serve as a key mechanism for their 
comorbidity with SUDs and pain [133, 134]. Therefore, the 
identification of better treatment options for physical and 
socioemotional pain is critical and may have implications 
for preventing SUD, and vice versa.

The involvement of the SN in the processing of physi-
cal and socioemotional pain and its perturbations in SUDs 
underscore its potential as a target for treatment. Functional 
MRI-measured ACC and insula hyperactivity in response 
to drug cues and hypoactivity during cognitive tasks have 
been prospectively linked to treatment outcomes in patients 
with SUDs (e.g., relapse) [135–137]. Similar findings were 
obtained for the treatment of pain disorders, such that indi-
vidual differences in the baseline connectivity and structural 
integrity of the SN were shown to predict treatment effec-
tiveness [138, 139] and future recovery [140, 141]. There-
fore, interventions targeting the SN may have therapeutic 
potential for treating SUDs. Real-time functional MRI neu-
rofeedback is a technique that allows subjects to observe 
and modulate their own brain activity by viewing feedback 
provided in the form of a graphical “thermometer” of real-
time neural responses in brain regions of interest. One study 
has shown the effectiveness of real-time functional MRI in 
helping smokers reduce cigarette cravings by volitionally 
reducing their ACC activity [142]. The method has also 
been examined in the intervention for alcohol use disorder, 
though with less success [143, 144]. In addition to real-
time functional MRI, neuromodulation has been explored 
for its potential in SUD treatment [145, 146]. Non-invasive 
neuromodulation techniques include transcranial magnetic 
stimulation (TMS) and transcranial direct current stimula-
tion (tDCS), which apply magnetic fields and low-intensity 
electrical currents, respectively, to the scalp to modulate 
regional neuronal activity [145]. While most TMS and 
tDCS research on SUDs have focused on the dorsolateral 
prefrontal cortex [145, 146], several studies suggest that 
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use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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