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BACKGROUND: Substance use disorder (SUD) shares common clinical features, including impulsive and compulsive behaviors,
which are associated with dysfunctions in the brain’s reward circuit. Resting-state functional magnetic resonance imaging (rs-fMRI)
studies have shown inconsistent results due to variability in the substances and stages of addiction. Identifying common
neurobiological patterns in SUD could improve both our understanding of the disorder and the development of treatment strategies.
METHODS: We conducted a comprehensive meta-analysis of 53 whole-brain rs-fMRI studies involving SUD patients. The Seed-based
d Mapping toolkit was used to analyze connectivity patterns of key brain regions in the reward circuit: anterior cingulate cortex
(ACC), prefrontal cortex (PFC), striatum, thalamus, and amygdala. Additionally, we explored correlations between resting-state
functional connectivity (rsFC) patterns and impulsivity scores.

RESULTS: The meta-analysis included 1700 SUD patients and 1792 healthy controls (HCs). Compared with HCs, SUD patients
exhibited significant dysfunctions in the cortical-striatal-thalamic-cortical circuit. The ACC exhibited increased connectivity with the
inferior frontal gyrus (IFG), lentiform nucleus, and putamen. The PFC demonstrated hyperconnectivity with the superior frontal gyrus
(SFG) and striatum, as well as hypoconnectivity with the IFG. The striatum showed hyperconnectivity with the SFG and
hypoconnectivity with the median cingulate gyrus (MCG). Thalamic connectivity with the SFG, dorsal ACC, and caudate nucleus was
reduced. The amygdala exhibited hypoconnectivity with the SFG and ACC. Alterations in connectivity were also observed between
several seed regions and the parahippocampal gyrus. Notably, the total score of the BIS-11 in SUD patients was significantly
negatively correlated with reduced rsFC between the striatum and MCG. After family-wise error (FWE) correction, dysfunctions in the
cortical-striatal-cortical circuit persisted.

CONCLUSIONS: Our findings revealed specific network abnormalities in SUD patients, highlighting disrupted connectivity within the

brain’s reward circuit. These abnormalities were associated with impulsivity and may provide a theoretical basis for effective

interventions to restore normal connectivity patterns.

Translational Psychiatry (2025)15:190; https://doi.org/10.1038/s41398-025-03396-2

INTRODUCTION
Substance use disorder (SUD) is a complex, multifactorial
condition that poses a significant challenge to public health. It is
characterized by compulsive substance use, loss of control, and
significant impairments in cognitive and emotional regulation
[1-4]. SUD leads to severe physical, psychological, and social
consequences, including overdose, infectious diseases, mental
health disorders, and an increased risk of socioeconomic instability
[5, 6]. Despite advances in understanding SUD, its neurobiological
mechanisms remain poorly understood, primarily due to the
variability in substances and addiction stages, which leads to
inconsistent findings across studies [7-9]. This highlights the need
for a more systematic and integrated approach to identifying
common neurobiological patterns in SUD, which could facilitate
the development of new therapeutic strategies.

Disruptions in the brain’s reward circuitry are thought to
contribute to the compulsive and impulsive behaviors observed in
SUD [10]. The brain’s reward circuitry, comprising the anterior

cingulate cortex (ACC), prefrontal cortex (PFC), striatum, thalamus,
and amygdala, plays a pivotal role in mediating reward proces-
sing, goal-directed behavior, and cognitive control [11, 12]. The
ACC is essential for emotional regulation and impulse control,
often displaying altered connectivity in SUD patients, which
reflects their difficulties with these functions [13]. The PFC is
integral to executive functions and decision-making processes.
Previous research has shown that dysregulation of the PFC is
linked to impaired executive control in SUD patients [7, 14]. The
striatum, particularly the nucleus accumbens, is central to reward
processing and has been consistently implicated in the compul-
sive aspects of SUD [15]. The thalamus functions as a relay station
for sensory and motor signals, playing a role in the regulation of
consciousness and alertness. Altered thalamic connectivity has
been observed in SUD, contributing to cognitive deficits and
sensory processing alterations [16]. The amygdala is involved in
emotional processing and memory formation, with disruptions in
this region linked to the emotional dysregulation seen in SUD [10].
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Therefore, studying specific functional connectivity patterns
between these key nodes and whole-brain regions can provide
insights into the fundamental mechanisms driving compulsive
and impulsive behaviors in addiction.

Resting-state functional magnetic resonance imaging (rs-fMRI)
has become a powerful tool for exploring the brain’s functional
connectivity, providing insights into the intrinsic activity of neural
networks [17-19]. However, rs-fMRI captures only the brain’s
spontaneous activity and does not provide a direct measure of
task-induced or real-time behavioral responses, limiting our ability
to understand the dynamic processes underlying addiction [20].
Furthermore, inferences regarding the association between
connectivity changes and SUD behaviors are limited. Previous rs-
fMRI studies have identified disruptions in the reward circuitry of
SUD patients [14, 21-25]. A study of abnormalities in the nucleus
accumbens (NACC) rsFC in patients with long-term heroin
withdrawal observed significantly enhanced connectivity with
the right ventromedial PFC [21]. In contrast, connectivity was
reduced between the NACC and the left putamen, left precuneus,
and the accessory motor area. Ge, et al. [14] found that the
dorsolateral PFC exhibited decreased rsFC with the right insula
and left inferior frontal gyrus in nicotine-dependent smokers,
which was associated with cravings and impulse suppression. An
important question arises as to whether patients with different
types of SUD exhibit specific and consistent rsFC abnormalities in
the reward circuit. However, results regarding rsFC changes in the
same seed region have been inconsistent. For example, some
striatal rsFC studies have reported increased frontostriatal
connectivity [22], while others have observed decreased con-
nectivity [23-25]. This inconsistency may stem from heterogeneity
across studies in terms of addictive substances, stages of
addiction, sample sizes, and populations.

To address this, we conducted a systematic meta-analysis of
whole-brain rs-fMRI studies published before April 2023 in
PubMed, Web of Science, Scopus, EMBASE, and ScienceDirect
databases. Using the Seed-based D-mapping toolkit [26], we
analyzed the connectivity patterns of key brain regions in the
reward circuit, including the ACC, PFC, striatum, thalamus, and
amygdala. This approach helped mitigate issues related to small
sample sizes and group heterogeneity. Furthermore, we
included studies on various substances (e.g., alcohol, cocaine,
amphetamine, heroin, ketamine, nicotine, betel nut, and
cannabis) [1] and addiction stages (e.g., dependence, abuse,
initial abstinence, and prolonged abstinence) to identify
common neural patterns in SUD patients. Our goal is to provide
a theoretical foundation for targeted interventions designed to
restore normal brain connectivity. Additionally, given that
impulsivity is a hallmark symptom of SUD, leading to compulsive
substance use and relapse [27]. To elucidate the neurobiological
mechanisms underlying impulsivity in SUD, we also explored the
correlation between rsFC patterns and impulsivity scores. We
hypothesize that SUD patients exhibit specific and consistent
rsFC abnormalities in the reward circuit, and that higher
impulsivity scores are associated with greater disruption of
these neural circuits.

MATERIALS AND METHODS

Literature search

We conducted a comprehensive literature search up to April 2023
across PubMed, Web of Science, Scopus, EMBASE, and Science
Direct databases using the following keywords: “addiction OR
abuse OR dependence OR substance use disorder” OR “alcohol OR
ethanol” OR “caffeine” OR “inhalants” OR “opioids OR opiate OR
opium OR heroin OR methadone OR codeine” OR “stimulants” OR
“cocaine” OR “sedatives OR hypnotics” OR “cannabis OR marijuana
OR THC” OR “amphetamine OR methamphetamine OR ecstasy OR
hallucinogens OR phencyclidine OR arylcyclohexylamine” OR
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“tobacco OR cigarette OR smoker OR nicotine” AND “fMRI OR
functional magnetic resonance imaging OR neuroimaging” AND
“rest OR resting-state OR functional connectivity”. Additionally, we
conducted manual searches of the reference lists from both
original studies and review articles to identify potentially eligible
studies.

Study selection

Eligible studies included original fMRI studies using seed-based
methodologies (such as ACC, PFC, striatum, amygdala, and
thalamus seeds) and whole-brain rsFC analysis, comparing SUD
patients with healthy controls (HCs). Inclusion criteria were: (1)
participants aged over 18 years; (2) a formal diagnosis of SUD
according to DSM or ICD criteria, or other objective laboratory or
clinical assessments (e.g., urine drug tests); (3) studies published in
English. Exclusion criteria were: (1) absence of a HC group; (2) SUD
comorbidities with serious mental illness or neurological disorders;
(3) recreational drug use or gambling; (4) high-risk family
addiction groups; (5) studies using duplicate data, with preference
given to those with higher quality and larger sample sizes; (6) non-
seed-based methodologies, such as independent component
analysis (ICA), graph theory, voxel-mirrored homotopic connectiv-
ity (VWMHC), amplitude of low-frequency fluctuations (ALFF),
regional homogeneity (ReHo), spectral dynamic causal modeling
(spDCM), and psychophysiological interaction (PPI); (7) acute
intervention studies; (8) longitudinal studies lacking baseline data;
(9) non-original research or studies without full text availability,
including guidelines, conference proceedings, reviews, books, or
evaluations; (10) studies where peak coordinates and effect values
for differential brain areas could not be obtained after author
contact.

We followed the Preferred Reporting Iltems for Systematic
Reviews and Meta-Analyses guidelines (PRISMA, http://
www.prisma-statement.org/) [28]. The Flowchart of literature
retrieval is presented in Fig. 1.

Meta-analysis

To investigate brain rsFC patterns in individuals with SUD, we
performed a meta-analysis using the Seed-based d Mapping
with Permutation of Subject Images toolbox (SDM-PSI, version
6.22; http://www.sdmproject.com/). This is a robust statistical
tool for analyzing differences in brain activity or structure,
based on peak coordinates and effect sizes. First, we selected
regions of interest (ROIs) in the brain, including the striatum,
ACC, PFC, thalamus, and amygdala. These ROIs were defined
based on coordinates derived from the included studies.
Second, regions that showed statistical significance at the
whole-brain level were included in the meta-analysis, and their
peak coordinates and effect t-values were extracted. P- or
z-values from some studies were converted to t-values using the
online SDM tool. Third, the SDM tool used anisotropic non-
normalized Gaussian kernels to convert the peak coordinates to
Hedge's effect sizes and recreate voxel-level rsFC difference
maps for each study. Given the large differences in age and sex
between studies, we employed a random-effect model to
generate the mean effect-size map across studies, covarying for
age and sex [26], and weighted to account for sample size. To
minimize the false positive rate, we set a conservative threshold.
Only abnormal clusters with peak height threshold |z| >1, voxel
p < 0.005, and cluster width threshold >10 voxels were reported.
Additionally, we applied family-wise error (FWE) rate correction
to obtain more robust results, with a peak height threshold |
z|>1 and voxel p<0.05. Furthermore, we subdivided the
striatum into the ventral striatum (VS) and NACC subgroups,
exploring the potential rsFC patterns within these subgroups
through meta-analysis. Data extraction was performed inde-
pendently by two investigators and subsequently double-
checked.

Translational Psychiatry (2025)15:190
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Fig. 1

Flowchart of the literature retrieval and exclusion criteria for articles on SUD in the meta-analysis. SUD, substance use disorder;

ACC, anterior cingulate cortex; PFC, prefrontal cortex; Amy, Amygdaloid; Tha, Thalamus; MRI, magnetic resonance imaging; fMRI,

functional MRI.

Sensitivity analysis

To evaluate the reliability and reproducibility of the results, we
performed a jackknife sensitivity analysis. In each iteration, one
study was excluded, and the meta-analysis was repeated n times.
The consistency of the affected brain regions was assessed using a
reproducibility threshold, which is typically set at 75~80% in
meta-analyses [29, 30]. Accordingly, we used a threshold of 80%.

Publication bias

For each significant cluster in the SUD-HCs comparisons, the Egger
test was performed to assess funnel plot asymmetry as a means of
identifying potential publication bias.

Meta-regression analysis

To explore the relationship between the meta-analysis results and
impulsive behavior, we performed a meta-regression analysis on
SUD patients. The total score on the Barratt Impulsiveness Scale
(BIS-11) served as the regressor, while striatal rsFC was used as the
covariate, with a significance threshold of p < 0.05. FWE correction
was applied (p < 0.05).

RESULTS

Included studies and sample characteristics

Our search strategy identified 63 eligible studies. However, the
peak coordinates and effect sizes for differentially expressed brain
regions were not available in 10 studies after contacting the
authors. As a result, these studies were excluded from our meta-
analysis. Ultimately, 53 studies were included (Fig. 1), encompass-
ing nine substance types: alcohol, nicotine, cocaine, cannabis,
heroin, ketamine, amphetamine, areca nut, and methampheta-
mine. As each study included multiple seed regions, 23, 16, 13, 12,
and 7 studies were incorporated into the meta-analysis of the
striatum, ACC, PFC, amygdala, and thalamus, respectively. In total,
these studies included 1,792 healthy controls (HCs) (mean age:
37.98 years; 530 women [30%]) and 1,700 patients with SUD
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(mean age: 39.09 years; 321 women [19%)]). Significant differences
in age (t = —3.283, p=0.001) and gender (X* = 54.126, p < 0.001)
were observed between the two groups. Further details on the
study and sample characteristics are provided in Table S1 in the
supplementary materials.

Abnormal rsFC in multiple seed regions in SUD patients
compared with HCs

Anterior cingulate cortex (ACC). The study selected bilateral ACC
and its subregions (dorsal [dACC], ventral [VACC], rostral [rACC],
subcallosal [sACC], and perigenual [pACC]) as seed regions.
Compared with HCs, SUD patients exhibited significantly
increased connectivity of the ACC with the right paracingulate
gyrus (PCG), bilateral inferior frontal gyrus (IFG), left middle frontal
gyrus (MFG), right lentiform nucleus (LN), and right inferior parietal
gyrus (IPG), along with decreased connectivity with the right
hippocampus (HIP)/parahippocampal gyrus (PHG). After FWE
correction (p <0.05), the hyperconnectivity between the ACC
and right PCG (z=4.042, p=0.021) and right IFG (z=4.249,
p = 0.034) remained significant (Table 1).

Prefrontal cortex (PFC). The study selected bilateral PFC,
dorsolateral PFC (dIPFC), medial PFC (mPFC), and orbitofrontal
cortex (OFC) for seed analysis. Compared with HCs, SUD
patients exhibited hyperconnectivity between the PFC and
the left superior frontal gyrus (SFG) as well as the right striatum,
and hypoconnectivity between the PFC and the bilateral IFG.
After FWE correction (p < 0.05), the hypoconnectivity between
the PFC and right IFG (z=-4.208, p=0.008) remained
significant (Table 1).

Striatum. The seed regions in this study included the ventral and
dorsal striatum and their subregions (caudate, ventral and dorsal
putamen, globus pallidus, and nucleus accumbens [NACC]).
Compared with HCs, the striatum of SUD patients exhibited
significantly increased connectivity with the right cerebellum and

SPRINGER NATURE
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Table 1. Meta-analysis of seed-based abnormal rsFC in SUD patients compared with HCs.

Seed region Effect region MNI coordinates (x, y, z) Cluster SDM-Z p value Jackknife
Size analysis
SUDs > HCs (Hyperconnectivity)
ACC (16 datasets) Right ACC / PCG, BA 24 2,28, 24 458 4.042 <0.0001* 15 (93.8%)
Right IFG, triangular part, BA 45 56, 24, 0 266 4.068 <0.0001 15 (93.8%)
Right IFG, triangular part, BA 45 52,32,18 240 4.249 <0.0001* 15 (93.8%)
Left IFG, triangular part, BA 48 —52,20,6 215 3.904 <0.0001 14 (87.5%)
Left MFG, BA 45 —38, 48, 18 123 3509  <0.001 14 (87.5%)
Right LN, putamen, BA 48 30, 4, -2 98 3.245  <0.001 13 (81.3%)
Right IPG (excluding 54, —38, 52 52 3502  <0.001 14 (87.5%)
supramarginal and angular), BA
40
PFC (13 datasets) Left SFG, orbital part, BA 11 —14, 30, —18 66 3.33 <0.001 11 (84.6%)
Right striatum 10, 8, —6 59 3.308 <0.001 11 (84.6%)
Striatum Right cerebellum, hemispheric 12, —54, —24 306 3.798 <0.0001 22 (95.7%)
(23 datasets) lobule IV / V
Right SFG, medial orbital, BA 10 8, 64, —2 113 3.443 <0.001 22 (95.7%)
Right SFG, dorsolateral, BA 10 26, 60, 4 53 3.783 <0.0001 22 (95.7%)
Amygdaloid Right PHG, BA 28 24, -2, —-30 20 297 0.001 8 (61.5%)
(13 datasets)
SUDs < HCs (Hypoconnectivity)
ACC (16 datasets) Right HIP, BA 20 30, —18, —18 61 —3.34 <0.001 15 (93.8%)
Right PHG, BA 20 32, —-18, —30 48 —3.092 <0.001 15 (93.8%)
PFC (13 datasets) Right IFG, orbital part, BA 47 46, 40, —10 677 —4.208 <0.0001* 12 (92.3%)
Left IFG, orbital part, BA 47 —38,22, —6 254 —3.604  <0.001 13 (100%)
Striatum Right PHG, BA 20 32, —26, —18 100 —3.19 <0.001 20 (87.0%)
(23 datasets) Right MTG, BA 21 60, —52, 8 71 3638 <0.001 21 (91.3%)
Right MCG/PCG, BA 23 2, -8, 40 75 —2.988 0.001 23 (100%)
Left STG, BA 48 —38, -8, —10 58 —2.61 0.004 23 (100%)
Lef PHG, BA 37 —26, —38, —6 55 —3.314 <0.001 20 (87.0%)
Left ITG, BA 20 —38, 8, —36 50 —3.026 0.001 19 (82.6%)
Amygdaloid Left SFG, medial, BA 10 —4,62,0 193 —3.435 <0.001 13 (100%)
(13 datasets) Left ACC/PCG, BA 32 2, 42,20 44 —2897 0,002 12 (92.3%)
Thalamus Left SFG, medial, BA 32 2,42, 28 237 —3.543  <0.001 5 (71.4%)
(7 datasets) Left CN ~12,2,18 23 ~2925 0002 4 (57.1%)

SUD substance use disorder; HC healthy control; ACC anterior cingulate cortex; PFC prefrontal cortex; PCG paracingulate gyrus; MCG median cingulate gyrus; IFG
inferior frontal gyrus; MFG middle frontal gyrus; SFG superior frontal gyrus; IPG inferior parietal gyrus; LN lenticular nucleus; CN caudate nucleus; HIP
hippocampus; PHG parahippocampal gyrus; MTG middle temporal gyrus; STG superior temporal gyrus; ITG inferior temporal gyrus; NACC nucleus accumbens.

#, pFWE < 0.05, cluster level FWE correction.

right SFG, along with decreased connectivity with the bilateral
PHG, right middle cingulate gyrus (MCG)/PCG, left superior
temporal gyrus (STG), right middle temporal gyrus (MTG), and
left inferior temporal gyrus (ITG) (Table 1).

Amygdaloid. The bilateral amygdala and its subregions (baso-
lateral and medial cortex) were selected for seed analysis.
Compared with HCs, SUD patients exhibited hyperconnectivity
between the amygdala and the right PHG, and hypoconnectivity
between the amygdala and the left SFG as well as the left ACC/
PCG (Table 1).

Thalamus. The bilateral thalamus and its mediodorsal sub-
region were selected for seed analysis. Compared with HCs,
SUD patients exhibited hypoconnectivity between the thala-
mus and the left SFG, left dACC, and left caudate nucleus (CN)
(Table 1).
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Subgroup analysis: abnormal rsFC in ventral striatum

and NACC

Ventral striatum (VS). The ventral striatum and its subregions
(ventral caudate nucleus, ventral putamen, NACC) were selected
as seed regions (See Table S2 in Supplementary Material). In
patients with SUD, abnormal rsFC in the ventral striatum mirrored
that observed in the global striatum. Compared with HCs, it
exhibited hyperconnectivity with the right SFG and hypoconnec-
tivity with the left ACC/PCG, left medial temporal lobe (BA48), and
left HIP (Table 2).

Nucleus accumbens (NACC). The bilateral NACC and its subre-
gions (shell and core) were selected as seed regions (See Table S2
in Supplementary Material). Compared with HCs, the NACC of SUD
patients exhibited significantly increased connectivity with the
right SFG and left precuneus, and decreased connectivity with the
left striatum, left fusiform gyrus, and corpus callosum. After FWE
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Table 2. Meta-analysis of striatum subgroup abnormal rsFC in SUD patients compared with HCs.
Seed region Effect region MNI coordinates (x, y, z) Cluster Size SDM-Z p value Jackknife
analysis
SUDs >HCs (Hyperconnectivity)
Ventral Striatum Right SFG, dorsolateral, BA 24, 62, 4 183 3.183 <0.001 14 (93.3%)
(15 datasets) 10
NACC (11 datasets) Right SFG, medial orbital, 6, 64, —2 365 3.84 <0.0001* 9 (81.8%)
BA 10
Left precuneus, BA 7 —10, —62, 60 35 3.293 <0.001 7 (63.6%)
SUDs <HCs (Hypoconnectivity)
Ventral Striatum Left ACC/PCG, BA 32 —6, 32, 22 586 —3.523 <0.001 15 (100%)
(15 datasets) Left LN, putamen, BA 48 —32, —12, 2 440 3784  <0.0001 14 (93.3%)
Left HIP, BA 28 —18, —4, —20 17 —3.079 0.001 9 (60%)
NACC (11 datasets) Left striatum —-28, -2, -8 796 —4.426 <0.00001* 11 (100%)
Left fusiform gyrus, BA 37 —30, —40, —22 558 —-4.615 <0.00001* 9 (81.8%)
Corpus callosum 8, —16, 58 67 —3.281 <0.001 11 (100%)

SUD substance use disorder; HC healthy control; ACC anterior cingulate cortex; PCG paracingulate gyrus; SFG superior frontal gyrus; LN lenticular nucleus; HIP

hippocampus; NACC nucleus accumbens.
#, pFWE < 0.05, cluster level FWE correction.

correction (p <0.05), hyperconnectivity between NACC and the
right SFG (z=3.84, p =0.039) remained significant. Additionally,
hypoconnectivity between the NACC and left striatum
(z=—-4.426, p=0.002), as well as the left fusiform gyrus
(z=—4.615, p=0.005), also remained significant (Table 2).

Further subgroup analysis revealed similar abnormal rsFC
patterns in the striatum, ventral striatum, and NACC in SUD
patients. Hyperconnectivity with the SFG and hypoconnectivity
with the medial temporal lobe or HIP were observed in all the
aforementioned regions.

Meta-regression analysis

Seven studies from the striatum seed region, which included BIS
scores, were selected for further meta-regression analysis (see
Table S3 in Supplementary Material). The results showed a
significant negative correlation between the total BIS-11 score in
SUD patients and the decrease of rsFC between the striatum and
left MCG/PCG (peak voxel coordinates: 0, 16, 32; r= —0.9609;
p =0.0006) (Fig. 2). After FWE correction (p < 0.05), the correlation
remained significant (voxel: 573; z= —3.472; p=0.002). In other
words, in multiple SUD studies involving cocaine, nicotine, alcohol,
and ketamine, higher impulsivity scores were associated with
lower rsFC between the striatum and left MCG/PCG. Decreased
frontostriatal connectivity was associated with impulsive behavior.

Disruption of the reward circuit

Our study identifies disruptions in two critical reward circuits:
the cortical-striatal-thalamic-cortical (CSTC) circuit and the
cortical-striatal- HIP/PHG-amygdala-cortical (CSHAC) circuit.
The structural connectivity of the CSTC circuit originates in the
frontal cortex, including the ACC, dIPFC, and OFC. The striatum
receives information from the frontal cortex and transmits it to
the CN. This information is then projected back through the
thalamus to the frontal cortex, forming a closed loop (Fig. 3A).
The CSHAC circuit also originates in the frontal cortex. However,
unlike the CSCT circuit, the striatum sends information to the
HIP/PHG, which then projects it back to the frontal cortex via the
amygdala (Fig. 3B).

Jackknife analysis

In the rsFC models based on the ACC, PFC, and striatum, the
jackknife sensitivity analysis revealed that all affected brain
regions showed high reproducibility (all >80%). In the striatal
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Fig. 2 Meta-regression analysis showed that the total score of
BIS-11 in SUD patients was significantly negatively correlated
with decreased rsFC between the striatum and the left MCG/PCG
(peak voxel coordinates: 0,16,32; r = —0.9609; p = 0.0006). After
FWE correction (p < 0.05), the correlation remained significant (voxel:
573; z=—3.472; p=0.002). In the plot, the effect size required to
create the plot is extracted from the peak of maximum slope
significance, and each dataset is represented by a single point. BIS-
11, Barratt Impulsiveness Scale 11th version.

subgroup analysis, the abnormal rsFC between the NACC and the
left precuneus exhibited lower reproducibility (63.6%), as did the
abnormal rsFC between the ventral striatum and the left
hippocampus (60%). In the amygdala-based rsFC model, the
reproducibility of the right PHG was relatively low (61.5%). In the
thalamus-based rsFC model, the robustness of the left SFG (71.4%)
and left CN (57.1%) was slightly lower. Overall, the results for most
affected brain areas were robust under the jackknife sensitivity
analysis (Tables 1, 2).

Publication bias

The results of Egger's test were not significant (p>0.05),
suggesting no publication bias (see Tables S4 in the supplemen-
tary material for details).
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Fig. 3 Schematic diagram of reward circuit disorders in patients with SUD. (A) Cortical-striatal-thalamic-cortical (CSTC) circuit; (B) Cortical-
striatal-HIP/PHG-amygdala-cortical (CSHAC) circuit. Solid black lines indicate increased inter-regional rsFC, while dashed lines indicate
decreased inter-regional rsFC. The red arrows represent specific pathway models that help explain common clinical features in SUD patients.
SUD, substance use disorder; ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; OFC, orbitofrontal cortex; CN, caudate
nucleus; PUT, putamen; GP, globus pallidus; NACC, nucleus accumbens; Tha, thalamus; Amy, amygdaloid; HIP, hippocampus; PHG,

parahippocampal gyrus.

DISCUSSION

Through a comprehensive meta-analysis, we present, for the first
time, a specific pattern of network abnormalities in SUD patients
based on key nodes of the reward circuit, offering new insights
into functional deficits within and between these networks. We
found significant dysfunction in the cortical-striatal-thalamic-
cortical circuit in SUD patients compared with HCs. Additionally,
in SUD patients, we found that the total score of BIS-11 was
significantly negatively correlated with decreased rsFC between
the striatum and the left MCG/PCG.

Abnormal rsFC patterns of ACC seed

Compared with HCs, the ACC in SUD patients showed significantly
increased connectivity with the right PCG, bilateral IFG, left MFG,
right LN, and right IPG, while showing decreased connectivity with
the right HIP/PHG. The ACC is a key brain region of the salience
network and is associated with reward-related decision making
[31], impulse monitoring [32, 33], and false awareness [34, 35]. The
PCG is a critical region involved in emotional and pain processing.
The enhanced connectivity between the ACC and PCG may reflect
an exaggerated response in emotional regulation or an abnormal
focus on drug-related emotional stimuli in SUD patients [11]. One
study examined the relationship between regional network
connectivity and neuropsychological performance in alcoholics,
finding that increased rsFC between the ACC and IFG/caudate
nucleus was associated with worse visuospatial working memory
[36]. Increased rsFC between the ACC and MFG/caudate in
alcoholics is associated with slower perceptual-motor processing.

Abnormal rsFC patterns of PFC seed

Relative to HCs, SUD patients showed hyperconnectivity between
the PFC and the left SFG, as well as the right striatum, and
hypoconnectivity between the PFC and the bilateral IFG. These
findings are consistent with previous research suggesting that the
PFC plays a crucial role in cognitive control and reward processing,
both of which are often dysregulated in addiction [11].
Hyperconnectivity between the PFC and SFG may reflect an
overactivation of executive functions, as the SFG is a key region
involved in decision-making, impulse inhibition, and cognitive
control [37, 38]. Such overactivation could contribute to the
heightened sensitivity to drug-related cues observed in SUD
patients. Furthermore, the increased connectivity between the
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PFC and the right striatum supports the idea that addiction
involves disrupted reward processing, as the striatum is integral to
reinforcement learning and habit formation [39]. In contrast,
reduced connectivity between the PFC and bilateral IFG may
indicate a dysfunction in cognitive control, particularly in areas
related to inhibition and self-regulation. The IFG is involved in
controlling impulsive behavior and regulating emotional
responses [40], and its weakened connectivity with the PFC may
contribute to the impulsivity and poor decision-making that
characterize SUD [41]. Taken together, these findings suggest that
SUD is associated with an imbalance in both cognitive control and
reward processing, further emphasizing the need for targeted
interventions aimed at addressing these mechanisms.

Abnormal rsFC patterns of striatum and its subregions seed
Compared with HCs, the Striatum of SUD patients showed
significantly increased connectivity with the right cerebellum
and right SFG. It showed decreased connectivity with the bilateral
PHG, right MCG/PCG, left STG, right MTG, and left ITG. Further
subgroup analysis revealed similar abnormal rsFC results. Addi-
tionally, we found reduced rsFC between the VS and the left
medial temporal lobe, left hippocampus, and left ACC. Connectiv-
ity between the NACC and the left precuneus increased, while
connectivity between the NACC and the left striatum, left fusiform
gyrus, and corpus callosum decreased. The VS/NACC is a key
region in the subcortical reward network (RW). By connecting with
other brain regions, they collectively support learning reward
contingencies, hedonic responses, generating motivation to
pursue rewards and goals, forming and implementing plans to
obtain rewards, and adjusting behaviors and plans according to
changing contingencies [42]. The striatum plays a central role in
motivation and reward, and its hyperconnectivity with the SFG
may indicate an overactive response to drug-related cues or an
imbalance in cognitive control mechanisms, a hypothesis sup-
ported by previous studies [11, 43]. The MCG/PCG is involved in
processing of pain and emotional responses, and decreased
connectivity with the striatum may indicate impaired emotional
regulation, which is commonly observed in addiction [44].
Additionally, in SUD patients, we observed that the total score
on the BIS-11 was significantly negatively correlated with the
decline in striator-right MCG/PCG rsFC, which further supports the
above conclusions. However, this meta-regression analysis
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included only seven studies, and the small number of studies may
lead to unstable results and an increased risk of false positives
[45]. Future studies should incorporate more research to enhance
the statistical power of meta-regression and further explore the
neural mechanisms underlying impulsive behavior in SUD.
Moreno-Lopez, et al. [46] found coupling between the striatum
and cerebellar regions in alcohol addicts, suggesting an unusually
strong correlation between feedback representations and exercise
habits. Muller-Oehring, et al. [36] found that alcoholics showed
increased frontostriatal connectivity and decreased connectivity
with the limbic system (HIP/PHG, temporal lobe, fusiform gyrus) in
the RW network. This may be related to heightened anxiety
symptoms and increased alcohol cravings [36].

Abnormal rsFC patterns of amygdaloid seed

Compared with HCs, SUD patients showed significantly increased
amygdala connectivity with the right PHG and decreased
connectivity with the left SFG and left ACC/PCG. As a key hub in
emotional processing, the amygdala plays a crucial role in the
mechanisms of addiction [47]. It mediates withdrawal symptoms
of addiction, including the generation of negative emotions such
as stress, anxiety, and depression. The decreased rsFC between
the amygdala and the left SFG suggests a top-down inhibitory
effect of the SFG [48]. The SFG primarily guides decision-making
and goal-directed behavior in response to emotional or rewarding
stimuli, while the amygdala is involved in detecting the valence of
emotional stimuli. Both play a synergistic role in regulating
objective behavior [49, 50].

Abnormal rsFC patterns of thalamus seed

SUD patients showed hypoconnectivity between the thalamus
and the left SFG, left dACC, and left CN relative to HCs. These
results are consistent with previous studies, emphasizing the
critical role of the thalamus in SUD [51]. The reduction in
thalamus-SFG rsFC may be linked to impaired cognitive control.
The SFG is a critical area for executive functions and top-down
cognitive control [11], and its dysfunction may impair the ability of
SUD patients to suppress impulsive drug-seeking behavior.
Previous studies have also shown that the prefrontal-thalamic
network is dysfunctional in SUD patients, closely associated with
deficits in decision-making and impulse control [52]. The
reduction in thalamus-dACC rsFC may reflect deficits in emotion
regulation and conflict monitoring, both associated with addic-
tion. The dACC plays a crucial role in regulating motivationally
driven behaviors and error monitoring [53], and its dysfunction
may lead to increased attention to drug-related cues [54].
Moreover, structural connectivity between the thalamus and
ACC is enhanced in smokers [55], while functional connectivity is
reduced, suggesting that chronic substance use may lead to
maladaptive changes in the thalamus-ACC network. The reduction
in thalamus-CN rsFC supports the hypothesis of dysfunctional
reward processing in SUD. The thalamus influences reward
learning by modulating dopamine signaling in the striatum [56],
and the CN plays a central role in reinforcement learning and
habit formation (Everitt & Robbins, 2005). Our findings are
consistent with previous studies showing impaired thalamus-
striatum connectivity in SUD, which may be related to increased
craving and severity of drug dependence [57, 58].

In summary, our study identifies disruptions in two critical
reward circuits: the cortical-striatal-thalamic-cortical (CSTC) circuit
and the cortical-striatal- HIP/PHG-amygdala-cortical (CSHAC)
circuit. The CSTC circuit is crucial for mediating reward-related
behaviors, emotional regulation, and addiction mechanisms [59].
Furthermore, the CSTC circuit is associated with impaired decision-
making, a hallmark feature of addiction [60]. The CSHAC circuit
integrates sensory information from the amygdala and episodic
memory from the hippocampus and projects back to the frontal
cortex via the striatum. This loop’s involvement in emotional
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regulation and memory formation suggests its crucial role in
reward-based learning and addiction [39]. While the CSTC loop
has been extensively studied, the role of the CSHAC loop in
addiction and reward processing remains relatively underex-
plored. The identification of these disrupted reward circuits aligns
with existing theories on the neural mechanisms underlying SUD.
Volkow, et al. [15] propose that addiction involves alterations in
brain circuits related to reward, motivation, memory, and
inhibitory control. The disruptions in the CSTC and CSHAC loops
observed in our study support this model, highlighting the critical
neural pathways involved in SUD. Previous studies have also
suggested that insights derived from mapping intrinsic brain
connectivity networks can provide a framework for understanding
various aspects of human behavior [61, 62].

LIMITATIONS

Our study has several limitations. First, the included studies varied
in sample characteristics, imaging protocols, and analysis meth-
ods, which may introduce variability and affect the robustness of
our results. Second, most of the results in this study were
uncorrected, which could affect the generalizability of our
findings. Third, studies involving severe psychiatric disorders in
the context of SUD were excluded, and this exclusion strategy may
limit the external validity of the findings, particularly regarding
their applicability to patients with SUD and co-occurring
psychiatric disorders in clinical practice. Fourth, due to the scarcity
of rsFC studies using the dorsal striatum (DS) as a seed region, we
did not include striatal subgroup analysis. Future research should
further investigate the interaction and functional differentiation
between the VS and DS in the reward system of SUD. Finally, the
cross-sectional design of the included studies limits our ability to
infer causal relationships between rsFC alterations and SUD.
Longitudinal studies are required to determine whether the
observed connectivity changes are a cause or consequence of
SUD. Future studies should consider other connectivity measures
and multimodal imaging approaches to provide a more compre-
hensive understanding of the neurobiological mechanisms
underlying SUD.

CONCLUSION

We identified common cortical-striatal-thalamic-cortical functional
connectivity patterns in SUD patients through a seed-based
whole-brain rsFC meta-analysis. This circuit mediates reward
processing, goal-directed behavior, cognitive control, and impul-
sive behaviors, which are central to current research on the
neurobiological mechanisms of addiction [42]. Our study provides
a neurobiological foundation for personalized treatment strategies
for SUD and contributes to the innovation and optimization of
therapeutic methods, such as deep brain stimulation [63, 64],
repetitive transcranial magnetic stimulation [65], electrical stimu-
lation [66], and deep brain-machine interfaces [67] in key brain
regions.
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