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INTRODUCTION

Mental states matter. Consequently, we and colleagues designed and
executed a brain-imaging experiment attempting to detect—for the first
time—differences between mental states relevant to criminal law.

Imagine you've just killed someone in Colorado. It was not your purpose
or desire to kill him. Nevertheless, another human being is dead. Arrested
and on trial, you do not dispute that your action unjustifiably caused his
death. But whereas the prosecutor argues that you knew someone would die
as an inevitable by-product of your actions, you assert in your defense that
you knew no such thing. Instead (you claim) you were merely reckless. That
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is, you acted as you did with awareness of a substantial risk that someone
would be fatally injured, but without knowing you would kill anyone.

In Colorado, as in many states, there is a huge difference in the sentencing
ranges for those convicted of knowing and reckless homicides. In Colorado it
means the difference between being sentenced to sixteen to forty-eight years
in prison and none.! So your fate rests in the hands of lay jurors who will
decide what your mental state was at the time of the fatal act. Specifically:
Did you know you would kill someone, or were you merely aware of a risk that
you would?

Now, any plausible theory of the point or purpose of meting out punishment
to offenders—whether utilitarian, retributivist or expressivist—will recognize
good reasons to condition punishment, or its amount, on the offender’s mental
state. Mental states matter to the nature and severity of incentives to which
human behavior is sensitive, to moral desert, and to society’s collective outrage.
But, whatever its rationale, the practice of predicating differences in punishment
on differences in mental state means that you now face two large problems
ignored by our current criminal justice system.

First, the criminal justice system simply assumes that most jurors can
reliably distinguish between the two mental states at issue. It is well known
to all first-year law students that the supermajority of states follows the
Model Penal Code’s long-standing approach to categorizing culpable mental
states into four types: purposeful, knowing, reckless, and negligent. Large
numbers of offenses, including homicides, are then subdivided into
corresponding categories. And the extent of legal intervention—length of
prison stay, for instance—scales accordingly. But less well known is that a
body of experimental evidence suggests that jurors are not particularly good
at understanding which category is which.2 Subjects frequently get it wrong,

1 Second degree murder, without any heat of passion mitigator, is defined and classified as a
Class 2 felony at COLO. REV. STAT. § 18-3-103(1)-(3)(a) (2010). Class 2 felonies ordinarily carry a
non-mandatory presumptive sentence of eight to twenty-four years. Id. § 18-1.3-401(1)(a)(V)(A).
However, murder is often considered to be a crime of violence, a determination that has the effects
of (1) increasing the range to sixteen to forty-eight years; and (2) making a prison sentence
mandatory. Id. § 18-1.3-406 (pertaining to murders involving deadly weapons or to crimes causing
serious bodily harm or death). By contrast, a reckless murder is classified as manslaughter, and
carries a non-mandatory sentence of two to six years. Id. § 18-3-104(1). Manslaughter is defined and
classified as a Class 4 felony in Colorado. Id. § 18-3-104(2). Class 4 felonies carry anon-
mandatory presumptive sentence of between two and six years. Id. § 18-1.3-401(1)(a)(V)(A.1).
Manslaughter is not defined as a crime of violence in Colorado. Id. § 18-1.3-406.

2 See, e.g., Francis X. Shen, Morris B. Hoffman, Owen D. Jones, Joshua D. Greene & René Marois,
Sorting Guilty Minds, 86 N.Y.U. L. REV. 1306 (2011); Matthew R. Ginther, Francis X. Shen, Richard J.
Bonnie, Morris B. Hoffman, Owen D. Jones, René Marois & Kenneth W. Simons, The Language of Mens
Rea, 67 VAND. L. REV. 1327 (2014) [hereinafter Ginther et al., The Language of Mens Rea]; Matthew R.
Ginther, Fancis X. Shen, Richard J. Bonnie, Morris B. Hoffman, Owen D. Jones & Kenneth W. Simons,
Decoding Guilty Minds: How Jurors Astribute Knowledge and Guilt, 71 VAND. L. REV. 241 (2018) [hereinafter
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even when directly instructed on the relevant legal definitions and standards.
They find it particularly difficult to sort defendants between the Model Penal
Code’s categories of “knowing” and “reckless.” They confuse the two about
50% of the time, under some conditions, and do little better under others.3 In
such a case, that’s nearly coin-flipping odds of false conviction.

The other big problem is that no one knows if the legally assumed and
statutorily instantiated distinction between knowing and reckless mental
states reflects an actual and inherent psychological difference. Sure, we
might all believe such a difference exists, on the basis of introspection
alone. But introspection seems an insufficiently sound basis on which to
lay the very foundations for policy distinctions of such large consequence.
The supposed distinction between knowing and reckless could be nothing
more than a convenient fiction, upon which countless trials—and far more
plea bargains—have been built.

To see the bite of this second problem, first consider the way in which
Legal Realists have approached the mens rea categories. The Legal Realist
tradition is well-known for the claim that many legal terms and concepts
falsely purport to classify defendants and their circumstances on the basis of
their intrinsic features.4 Instead, assert the Realists, defendants are classified
on the basis only of the judge’s desire to hold some liable and to decline to
hold others liable, even when those two groups of people do not differ in any
way other than in the eye of the judge.5 But then note that this critique has

Ginther et al., Decoding Guilty Minds]; see also, Kevin Jon Heller, The Cognitive Psychology of Mens Rea, 99
J. CRIM. L. & CRIMINOLOGY 317 (2009); James A. Macleod, Belief States in Criminal Law, 68 OKLA. L.
REV. 497 (2016); Justin D. Levinson, Mentally Misguided: How State of Mind Inquiries Ignore Psychological
Reality and Overlook Cultural Differences, 49 HOW. L.]. 1 (2005).

3 Shen et al., supra note 2, at 1351. Note that subjects are typically less able to correctly identify
knowing and reckless scenarios than to correctly identify the other mental states, even when given
definitions of the mental states. Id. at 1348. Even when the ability to classify correctly is improved
under experimental conditions, using variations on definition language, knowing and reckless mental
states remain by far the hardest to classify. Ginther et al., The Language of Mens Rea, supra note 2, at
1352. Indeed, under such circumstances, even in the best case only 59% of subjects accurately identify
reckless scenarios as reckless. And 70% of those misidentifications confuse a reckless scenario for a
knowing one. Id. at 1359.

4 The Realists were especially known for offering this critique of legal concepts like “causation”
and “corporation.” Whether the defendant “proximately caused” the plaintiff’s harm, Legal Realists
argue, turns not on the presence or absence of any liability-independent features of the case—such
as the “reasonable foreseeability” of the harm or the absence of “voluntary intervention.” Rather,
judges claim to be deciding cases on the basis of such features when what really decides the question
is something else, something about the judge or his or her views about what makes for sound policy.
See, for example, Felix S. Cohen, Transcendental Nonsense and the Functional Approach, 35 COLUM.
L. REV. 809 (1935) and KARL LLEWELLYN, THE BRAMBLE BUSH (1930).

5 Dan Kahan’s two notable papers on mistakes in criminal law are naturally construed as
offering just this kind of critique of mens rea concepts. See Dan M. Kahan, Ignorance of the Law is
an Excuse—But Only for the Virtuous, 96 MICH. L. REV. 127 (1997); Dan M. Kahan, Reply, Is Ignorance
of Fact an Excuse Only for the Virtuous?, 96 MICH. L. REV. 2123 (1998). According to Kahan, the law



2020] Detecting Mens Rea in the Brain 5

extended to juries as well. That is, the Legal Realists claim that the question
of whether you were knowing or reckless when you performed the act that
killed someone only purports to be a question about your psychology.

The important, long-lingering question—as relevant to retributivists as to
utilitarians—is therefore this. Does the distinction between Model Penal Code
mens rea categories, such as knowing and reckless, reflect an intrinsic
psychological difference, actually found in human beings? If so, we believe that
one should expect in principle that there would also be a difference between the
brains of reckless and knowing individuals, at the times of their actions. Because,
after all (and setting aside some philosophical subtletiesé) anytime there is a
psychological difference there must also be a brain difference.

So is there a neural difference or not? Regardless of where legislators choose
to draw the lines between different mental states, and regardless of how many
categories they create, those categories should reflect something real, and not
merely assumed or hoped-for. Because the lives and liberties for thousands,
each year, depend on the mental state category assigned to them.

So if we have used the supposed distinction between knowing and reckless
(and other Model Penal Code categories) to justify a different treatment
under the law, when there is in fact no detectable or meaningful psychological
distinction, then widespread injustice will have followed in the wake of the
Model Penal Code, and will continue indefinitely, if unchecked.

With a grant of nearly $600,000 from the MacArthur Foundation Research
Network on Law and Neuroscience” (Research Network), we—as part of a larger

allows people with no relevant intrinsic psychological differences to be distinctly classified as having
made, or having failed to make, an exculpatory mistake. See Thurman W. Arnold, Criminal
Attempts—The Rise and Fall of an Abstraction, 40 YALE L.]. 53, 68-69 (1930) (arguing the different
concepts of “intent” are post fact ways of rationalizing verdicts reached for independent reasons);
Janice Nadler, Blaming as a Social Process: The Influence of Character and Moral Emotion on Blame, 75
LAW & CONTEMP. PROBS. 1, 4 (2012) (“[M]oral character might serve as a kind of proxy for mental
state, so that a person with a bad character is blamed as if he were reckless, whereas a person with a
good character is blamed as if he were not reckless.”).

6 The philosophical literature concerned with the view labeled “externalism about mental
content” concerns the possibility that mental states could vary even without variation in brain
activity, and without postulating the existence of some non-material aspect to mind. The classic
statement of the view is found in 2 HILARY PUTNAM, The Meaning of ‘Meaning,’ in MIND,
LANGUAGE, AND REALITY: PHILOSOPHICAL PAPERS 215 (1975). For a useful overview, see Joe Lau
& Max Deutsch, Externalism About Mental Content, STAN. ENCYCLOPEDIA OF PHIL.,
https://plato.stanford.edu/entries/content-externalism/ [https://perma.cc/Z2C2-2GEF].

7 One of us (Jones) designed and directs the Research Network, which is headquartered at
Vanderbilt University and funded by over $7,500,000 in grants from the John D. and Catherine T.
MacArthur Foundation. The Research Network partners selected leading legal scholars,
neuroscientists, and judges from around the country for intensive collaborative work on law-relevant
neuroscience experiments. For further information on the Research Network, its activities, and its
many publications, see THE MACARTHUR FOUND. RSCH. NETWORK ON L. & NEUROSCIENCE,
www.lawneuro.org [https://perma.cc/J7TP-FLPZ] (last visited Sept. 11, 2020).
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interdisciplinary team8—set out to investigate the knowing-reckless distinction
in the brain, and the boundary that may separate them. Specifically, we aimed
to see if we could use brain activity alone to detect the difference between those
who the law would classify as “knowing” and as “reckless.” By combining the
relatively new technical achievements of functional magnetic resonance imaging
(fMRI) with new advances in the analytic abilities of machine-learning
algorithms (a form of artificial intelligence) our team conducted the first assault
on this thorny legal problem.

This Essay reports and describes, for a legal audience, the results and
implications of our experiment. We found evidence strongly supporting the
existence of a brain-based distinction between knowing and reckless mental
states. Our detailed neuroscience paper was first published in a dedicated
peer-reviewed science journal, the Proceedings of the National Academy of
Sciences.9 It received some sensationalist press coverage, including headlines
such as this one from the British Daily Mail: Something On Your Mind2 AI Can
Read Your Thoughts and Tell Whether You are Guilty of Committing a Crime .10
Half-truths like these are dangerous. So our goal here is to explain for a legal,
non-scientific audience what we did and—more importantly—how it does
and does not matter for the law.

Our team’s discovery is relevant to law in two ways.!t First, it provides
new information relevant to the substantive debates over the accuracy and
legitimacy of the distinction the Model Penal Code draws between knowing
and reckless mental states. In this one important domain, that is, there is
reason to think that what the law purports to do—draw a distinction in
liability on the basis of a distinction in psychological state—is what it actually
does. Second and collaterally, our results serve as a concrete and salient
example of how new neuroscientific techniques, sometimes partnered with
artificial intelligence tools, can be used to probe matters of legal relevance.

8 One of us (Yaffe) led the Working Group on Detection and Classification in collaboration
with neuroscientist Read Montague. The full interdisciplinary team, in alphabetical order, consisted
of: Woo-Young Ahn, Richard J. Bonnie, Morris B. Hoffman, Owen Jones, Terry Lohrenz, Read
Montague, Stephen Morse, Iris Vilares, Michael Wesley, Gideon Yaffe.

9 See Iris Vilares, Michael ]. Wesley, Woo-Young Ahn, Richard ]. Bonnie, Morris Hoffman,
Owen D. Jones, Stephen ]. Morse, Gideon Yafte, Terry Lohrenz & P. Read Montague, Predicting the
Knowledge-Recklessness Distinction in the Human Brain, 114 PROC. NAT'L ACAD. SCIS. 3222 (2017)
[hereinafter Predicting].

10 Tim Collins, DAILY MAIL (Mar. 13, 2017, 3:03 PM), https://www.dailymail.co.uk/
sciencetech/article-4301796/Mind-reading-AI-knows-guilty-innocent.html [https://perma.cc/QG48
-EW;Q].

11 For overviews of ways neuroscience can be relevant to law, see Owen D. Jones, Seven Ways
Neuroscience Aids Law, in NEUROSCIENCES AND THE HUMAN PERSON 181 (Antonio M. Battro,
Stanislas Dehaene, Marcelo Sdnchez Sorondo & Wolf ]. Singer, eds., 2013); Owen D. Jones & Anthony
D. Wagner, Law and Neuroscience: Progress, Promise, and Pitfalls, in THE COGNITIVE NEUROSCIENCES
1015 (David Poeppel, George R. Mangun & Michael S. Gazzaniga eds., 6th ed., 2020).
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We proceed in three primary parts. Part I provides an overview of the
experiment and the results. Along the way, it offers a necessary but brief and
accessible introduction to how fMRI brain imaging works. Part II discusses the
important implications of this new finding. Part III provides necessary caveats
and cautions, to ensure that our results won't be over- or misinterpreted.

1. DETECTING MENS REA IN THE BRAIN

A. Background: Initial Obstacles

The central challenge was to develop an experimental paradigm that could
elicit states of mind that legal scholars and the legal system in general would
consistently classify as knowing and reckless. So suppose two different
scenarios in which a person takes something that does not belong to him
without permission. In both scenarios, our defendant emails his neighbor to
ask permission to borrow that neighbor’s car. Assume further that, in the past,
the neighbor has said yes to this request about half the time, and about half
the time has said no.

In the first scenario, our defendant checks his email and sees that the
neighbor has said no. Then the defendant borrows the neighbor’s car anyway,
knowing full well that he does not have permission to do so. He figures
(incorrectly as it turns out) that the neighbor won’t even notice. In the second
scenario, our defendant never checks his email for a reply, and therefore never
sees that the neighbor has said no. Then the defendant goes ahead and borrows
the car anyway. He figures there’s about a 50% chance he has permission, and he
also figures (incorrectly) that either way the neighbor will probably never notice.
The Model Penal Code would classify the first defendant as liable for a knowing
theft and the second as liable for a reckless theft.

As the example makes plain, a central component of the distinction
between knowing and reckless mental states, under the Model Penal Code
regime, is that a person in a knowing state of mind is essentially 100% certain
about the presence of an element of a crime. In contrast, a person in a reckless
state of mind can have a belief about the probability located within a range—
not so low as to promise a de minimis expected harm, but not so high as to be
functionally equivalent to certainty. So what we needed was an experiment in
which subjects would sometimes choose to perform an act while knowing a
certain condition was in place, and sometimes choose to perform the same act
while aware, instead, of a risk high enough to potentially qualify as
“substantial and unjustifiable” while still far enough below 100% as to fall
short of knowledge.
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B. The Paradigm: Eliciting Knowing and Reckless Mental States

We asked our subjects to imagine that they were given an opportunity to
carry a briefcase across the border.22 The briefcase might or might not contain
“valuable content” (such as documents or microchip processors), which we
refer to as “contraband.”3 And a carried briefcase might or might not be
searched at the border.

There was a significant financial incentive to choose to carry the briefcase.
Specifically, subjects who could get a briefcase across the border without
being searched could leave the lab with quite a lot of money (sixty dollars, on
top of the twenty dollars they earned for participating). But getting caught
at the border carrying the contraband resulted in a financial penalty (the
subject could leave with nothing more than the fee for participating). The
other two options—getting “caught” with an empty briefcase or crossing
successfully with an empty briefcase—had payoffs in between.

What we were primarily interested in was the differences between our
subjects’ brain activity when they were certain that the briefcase contained
contraband and their brain activity when there was some “substantial and
unjustifiable” risk that it did. While subjects made decisions about whether
to carry briefcases across the border, we scanned their brains.

We instructed subjects before the game began on the details of the payoff
structure, as illustrated in Figure 1. Subjects began each of the 125 trials they
completed with a hypothetical $6,000 in the bank. The payoff structure then
governed how much a subject could earn or lose from the intersection of her
choice (carry or don’t carry) with two variables (1) the probability that a
carried case contained contraband (the Contraband Risk); and (2) the
probability that a carried case would be searched (the Search Risk).

12 The subjects for this experiment were 40 in number, half of them female, half of them male.
Their average age was about 29.

13 We used the phrase “valuable content” with subjects instead of, say, “illegal drugs” to reduce the
possibility that some subjects would always refuse the option to carry a case, on moral or legal grounds.
(None did.) For brevity, however, in this Essay, we refer to the valuable content as “contraband.”
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Figure 1: Payoff Structure
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Specifically, a subject gained $2,000 (in her virtual bank account) each
time she carried a case containing contraband through a checkpoint
unapprehended. But she lost $4,000 from that account if she carried a case
with contraband and got caught. If she carried a case that ultimately
contained no contraband, she lost $500, regardless of whether her case was
searched. To incentivize the subjects to make a choice, especially the choice
to carry, we added two more fees: choosing not to carry cost $1,500 and
refusing to choose whether or not to carry cost $2,500. We also informed
subjects that if they completed the experiment they would receive 1% of the
payout from one trial, chosen at random. Subjects could take this 1% home in
cash. Given the details of the payoff structure, each subject therefore received
between twenty and eighty dollars for participating. These payoff details are
illustrated in Figure 1.

At the beginning of a trial, we provided each subject with two pieces of
information. We informed them of the Contraband Risk and the Search Risk.
To communicate Contraband Risk, we showed the subject a picture of one,
two, three, four, or five cases (shown collectively in Figure 2)—only one of
which ever contained contraband. We informed subjects that (1) this was the
pool of cases from which the subject’s own case would be chosen; and (2) one,
and only one, briefcase in that pool contained contraband.
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Figure 2: Contraband Risk!4

Knowing

Reckless

Thus, if the subject saw a picture of five cases then that subject could
deduce that choosing to carry a randomly-assigned case in that trial yielded a
one-chance-in-five (or a 20% likelihood) of getting a case with contraband.
Conversely, if the subject saw only one case, and understood that only one
case would contain contraband, that subject could deduce that choosing to
carry that case yielded a one-chance-in-one (or a 100% likelihood) of getting
a case with contraband. And so on for two, three, and four cases.

To signal the probability that a carried case would be searched, we showed
each subject, on each trial, a picture of ten tunnel exits (shown collectively in
Figure 3), some number of which—either two, four, six, or eight—showed a
guard standing prominently in the exit. As with cases, subjects could readily
calculate that the probability of being searched was much higher if there were
eight guards (eight-chances-in-ten, or 80%) than if there were only two
guards (two-chances-in-ten, or 20%).

14 Pcontr, noted in Figure 2, refers to the probability of Carrying Contraband and varies from
20% to 100%.
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Figure 3: Search Risk15
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As a standard precaution, and to counterbalance any effect on our subjects
of the order in which we showed the two images that signal these two pieces
of information—Contraband Risk and Search Risk, respectively—half of the
subjects always learned of the Contraband Risk before they learned the Search
Risk. And the other half of the subjects always learned the Search Risk before
they learned the Contraband Risk. As we learned, this proved important.

After learning these two pieces of information, and mindful of the payoff
structure, subjects were tasked with indicating whether they would be willing
to carry a case through a tunnel. The subjects understood that, if they chose
to carry, both the case and the tunnel would be selected at random from those
presented. After subjects registered their choices to carry or not carry, there
was a pause of a few seconds before the subjects started over in a new trial,
with a new allotment of hypothetical money, new information, and a new
choice whether to carry or not carry a case.16

15 Psearch, as noted in Figure 3, refers to the probability of Search and varies from 0% to 80%.

16 For a given trial, subjects never learned whether a case they carried was actually searched.
Similarly, they never learned whether the case actually contained contraband. This was important
because we did not want our subjects’ decisions in any given trial to be influenced by the results of
the previous trial. That is, we did not want our subjects to make inferences of the form, “on the last
trial, I was carrying an empty case, so I bet I get one with contraband this time.” We wanted each
trial to be as close to a one-shot decision in the face of risk as we could engineer.
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C. Virtues of the Paradigm

This design has several virtues.

First, the paradigm clearly distinguishes between subjects who are in a
“knowing,” as distinct from “reckless,” mental state. For the “knowing”
condition, recall that we informed subjects that one and only one case would
ever contain contraband. For this reason, whenever a subject chooses to carry
the single case offered (i.e., a case that must contain contraband), we can
reasonably believe that, absent inconsistent behavior to the contrary, she
knows that the case she will carry contains contraband. In comparison,
consider the mental state of the subject when she is presented with two, three,
four, or five presented cases and chooses to carry. In those situations, we can
reasonably believe that the subject is aware of the respectively varying degrees
of probability that she is carrying the contraband, and is therefore in a
“reckless” state of mind.

Second, because we did not explicitly inform our subjects of the risks—
i.e. by describing those probabilities as “50%” or “1-in-2”—we mimicked an
important feature of many real cases. Specifically, people in real-world
situations ordinarily infer probabilities from evidence, rather than being
presented with numeric information about probabilities. For instance, as
someone decides whether to run the red light, there is no sign hanging in the
air that says, “the probability of killing someone by running this red light is
19%.” Rather, one reaches a judgment about the probability by looking at the
number of oncoming cars, their speed, and other similar factors. In the
experiment, our subjects had to infer the two relevant probabilities from a
picture of that round’s pool of cases, and a picture of tunnels (some fraction
of which had guards in them). This is not, of course, the form that most
evidence of probability takes in real life. But it is far closer than would be
directly presented numerical information.

Third, varying the chance of being caught from 20% to 80% allowed us to
mimic another feature of real cases: people who commit crimes often decide
to do so in part by calculating the risks of being apprehended. Juries assessing
mens rea, however, are never asked to determine what probability the
defendant assigned to his being caught; it is not relevant to the mens rea
inquiry. What matters is what probability (in lay, rather than statistical terms)
the defendant assigned to legally-relevant elements of the crime, such as
killing someone else, or not having permission to borrow, or there being drugs
in the briefcase he was carrying. Controlling the information about the chance
of detection boosted our ability to do what factfinders are asked to do:
meaningfully distinguish between the awareness of the risk that is relevant to
a recklessness assessment (namely the awareness of the risk that the case
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contained contraband) from the awareness of the risk of apprehension, which
is not relevant to the question of recklessness.

Fourth, varying the pool of cases from one to five created the possibility that
we might learn something about how brain states vary within the reckless mental
state itself. That is, the brain states might vary as a function of the changing
probabilities that one would be carrying contraband—from 20% (when five cases
were presented) to 50% (when only two cases were presented).

We discuss important limitations to this experiment in Part III. But the core
idea here is that collecting data on brain activity during each trial, and analyzing
that data in conjunction with the varying behavioral outputs (i.e., choosing, each
trial, whether or not to carry), should afford us some window on whether, and if
so how, neural activity varies between knowing and reckless conditions.

D. Tools for Detecting Mens Rea

How, exactly, did we collect and analyze the data? This subsection
provides a brief overview of how fMRI brain-imaging works and how
machine-learning algorithms assist in finding useful and predictive patterns
in the data.

1. fMRI Brain Imaging

Prior to the invention of functional magnetic resonance imaging (fMRI)
in the early 1990s, researchers had sophisticated tools (such as CT scans, using
computed tomography) for measuring the physical structure of the brain, but
somewhat limited tools (such as EEG and PET scans, using
electroencephalography and positron emission tomography) for measuring
brain function. fMRI significantly changed all that. First, fMRI enables
strong inferences about neural activity within and across the entire brain.
Second, fMRI is sufficiently noninvasive that it can be used on healthy people
without surgery or injections.

Opver the last twenty-five years, fMRI has become one of the world’s most
dominant research tools for learning about brain function. Its details are both
technical and elegant.t?

At the big picture level, the fMRI process is like a bat’s echolocation.
Similar to how a bat sends a wide high-frequency sound at small potential
targets, and then makes strong inferences about their locations from the
directions of sound reflected back, fMRI beams radio waves to the brain, and

17 See, e.g., SCOTT A. HUETTEL, ALLEN W. SONG & GREGORY MCCARTHY, FUNCTIONAL
MAGNETIC RESONANCE IMAGING (3d ed. 2014); ROBERT W. BROWN, YUCHUNG N. CHENG, E.
MARK HAACKE, MICHAEL R. THOMPSON & RAMESH VENKATESAN, MAGNETIC RESONANCE
IMAGING (2d ed. 2014).
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enables inferences from the differential patterns in energy that returns from
within brain tissues. More specifically, fMRI allows researchers to discover
and monitor both the locations of changes in blood flow, and the amounts of
those changes, correlated with the different moments in each subject’s
information-gathering, information-processing, and decisionmaking tasks, as
well as with the final decision itself.

Researchers place a subject on her back within a large tube that is surrounded
by massive, super-cooled, super-conducting wire coils arranged to move
electrical energy in a particular pattern. The coils are arranged to create a very
strong magnetic field within the scanner that can be exquisitely manipulated
(and even graduated in strength) along the axes of length, width, and height.

To understand how this works, you must also understand that: First, all
atoms (including those in the body) contain some spinning particles, each
bearing an electrical charge. Second, spinning objects with an electrical
charge are, in themselves, tiny magnets. Third, placing a person within a
strong magnetic field of an MRI tends to align the axes of spin of their
subatomic particles, just as metal filings on paper will align with a field of a
magnet held underneath.

Let’s now connect this to neurons in the brain. Neurons are the cells that
carry electrical impulses from one end to another and that, by virtue of their
interactions within the brain, enable everything from perception to decision
to action. Like all cells, they need nutrients supplied by the blood, like
oxygen, to live and function. The more active neurons are, the more
oxygenated blood they need.

Which brings us to the happy fortuity that enables fMRI to discover
things about brain function: oxygenated blood cells (which bring oxygen to
the neurons) and de-oxygenated blood cells (which have already off-loaded
their oxygen to neurons) have different magnetic properties. The significance
is this: when an MRI “pings” (so to speak) a brain in the scanner, certain
subatomic particles that are all spinning in the same axis are temporarily
bumped out of alignment. When the signal stops, and those subatomic
particles snap back into alignment with the magnetic field, they release a
certain amount of energy, which can be spatially located, in the brain, by an
array of receivers in the MRI machine.

Because fMRI technology can detect changing ratios in oxygenated and
deoxygenated blood, over both time and space, researchers can make inferences
about where different brain regions are most and least active during each trial of
the experiment. Researchers then compare that information either to a baseline
of brain activity (the so-called “resting state,” when an awake brain is simply
talking quietly to itself, without any specific task to perform, other than normal
bodily functions) or to a contrasting set of decisions that task the brain in
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different ways. This enables researchers to learn about how the brain operated
during the particular decisions they are studying.

Put another way, just as a bat can place a mosquito in airspace, on the basis
of reflected sound waves, fMRI can detect increases and decreases, within
brain space, in the ratio of oxygenated to deoxygenated blood. And this in
turn enables strong inferences about where and when, in the brain, neurons
are working harder.

2. fMRI in Our Experiment

Our experiment used fMRI technology, as just described, to scan a subject
continuously as that subject (1) sees each scenario stimulus on a screen; (2)
processes what it means; (3) makes decisions about whether or not to carry a
case; and (4) registers that decision behaviorally by pressing one of two
buttons with her fingers.

Neurons work harder when a person is seeing, processing information,
deciding, and pressing a button than when the person is not engaged in these
activities. That calls up more blood to deliver more resources. In the same
way that transitioning from a jog to a sprint has our muscles calling up more
oxygen and energy from the blood, neurons that are working harder call up
more oxygen and energy as well.

Throughout the entire process through which our subjects assessed the
probabilities and decided whether to carry the case across the border, the
scanner recorded data from the entire brain about where, when, and how
oxygenated and deoxygenated blood ratios were changing. Because we knew
exactly what each subject was seeing when, and also knew exactly when and
what the decision output was (i.e. to carry or not to carry), we could correlate
different patterns of brain activity with the different probability combinations
and with the different decisions each subject reported.

Each subject was in the scanner for about forty minutes. Since we
measured changing oxygenated blood levels in tens of thousands of brain
locations during that period, there were literally millions of pieces of data
collected about each subject. To analyze those data, we deployed a form of
artificial intelligence known as a machine learning algorithm.

3. The Machine Learning Algorithm

“Machine learning” describes a process by which a software program can
“learn” the associations between various inputs, conditions, and outputs.!8 In our
case, the inputs are the brain data. The conditions are the separate risks, within

18 See, e.g., IAN GOODFELLOW, YOSHUA BENGIO & AARON COURVILLE, DEEP LEARNING
96-161 (2016).
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each given trial of carrying contraband and being searched. And the outputs are
the subjects’ choices whether or not to carry, given these conditions.

The core idea is that if you train the algorithm by showing it actual data
from actual subjects, the software attempts to find the most common patterns
within that data set. It can then use those patterns to predict how to classify
the subject’s mental state, during a given trial, into a knowing or reckless state
of mind, using brain data alone. The machine “learns” what patterns of brain
activity are associated with being in a knowing mental state by comparing the
fMRI data gathered when subjects were contemplating carrying a single
briefcase. And the machine “learns” how those patterns differ from the brain
activity associated with being in a reckless mental state by comparing them
with the brain activity when the subjects were contemplating a pool of two,
three, four, or five briefcases.

We used a particularly sophisticated algorithm, known as “the elastic
net,”®9 that learned not just from the data, but also from the failures and
successes of other efforts to learn from the data. We can clarify what that
means with an analogy.

Imagine a teacher who, in her first year in the classroom, tries to teach her
students to identify birds by showing them pictures. She puts a slide up on
the screen and says, “Robin!” and then another and says, “Cardinal!” and then
moves on to other slides of other species. Before her second year of teaching,
she reviews the students’ performance from the first year and finds that some
of the pictures she showed were more useful than others for teaching the
students. The students were confused by some pictures and found others
more helpful. Perhaps they did exceptionally well at identifying cardinals
shown from the front, on their final exam, and there is only one picture in
the stack of a cardinal from that angle. From that result, she concludes that
that one picture in the stack was particularly pedagogically useful. She repeats
the process for other species and makes extra copies of the useful pictures,
adding them to her stack.

Our hypothetical teacher then tries again the following year with a new
group of students. They see all the original pictures, shown to the prior set of
students, but the pictures that were useful last year they see more than once.
The teacher reviews again. She finds that, even among the pictures she made
extra copies of, some were exceptionally helpful to the students. She makes
further extra copies of those and adds them to the stack, creating a new, even
better stack to use for next year’s students. And so on. In her tenth year of
teaching, she has a great stack of photos, far better than her first-year stack.

19 See, e.g., Hui Zou & Trevor Hastie, Regularization and Variable Selection Via the Elastic Net, 67
J. ROYAL STAT. SOC’Y SERIES B 301 (2005).
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The tenth-year students, as a result, are fantastic at identifying birds from
pictures, much better than the first-year cohort.

Our algorithm learned in a way analogous to this and so became better
and better at classifying knowing and reckless mental states across several
generations. Algorithms that work this way are sometimes called “pattern
classifiers.” And using such classifiers with respect to brain data is sometimes
called “multi-voxel pattern analysis” or MVPA for short (where a “voxel” is
like a three-dimensional pixel volume in the brain, such as a two-by-two-by-
two-millimeter cube).

Another example makes clearer how this can work. Suppose we wanted to
see if a machine learning algorithm could reliably determine whether a person
whose brain was scanned with fMRI was looking, at the time the brain data
in question were acquired, at a photo of a face, or a photo of a place.

We could feed the algorithm brain data from when a bunch of different
subjects are seeing faces, and “tell” the algorithm, essentially: “These data are
all from condition one, which we will call ‘faces.” We could then feed the
algorithm brain data from a bunch of subjects who were at the time seeing
places and “tell” the algorithm “These data are all from condition two, which
we will call ‘places.”” Then we could show the algorithm new unlabeled brain
data from a single subject and ask it to determine, on the basis of differences
it observes between the two conditions, whether this person was in fact
looking at a face or a place at the time the brain data were acquired.

The greater the differences between the aggregate sets of condition one
and condition two brain data, the better will be the algorithm’s ability to
predict what the unknown subject was looking at. In laboratory conditions,
when researchers actually know what this mystery subject was looking at, but
are testing the effectiveness of the algorithm, the accuracy of that prediction
can be quantified (such as, say, 89% accurate). The more accurate the
algorithm, the more confidence researchers can have about the predictions
the algorithm can make with respect to subjects whose stimuli are 7ot known
to researchers. Consequently, if researchers are using a training method like
the elastic net, they can then use their degree of confidence to alter their
training method, emphasizing the particularly useful, and representative parts
of the first round training data to retrain in the second round, in order to
improve predictive power. And so on.

In like fashion, we first set our algorithm the task of predicting whether
one of our research subjects was in a knowing or reckless mental state, during
any particular trial in the scanner. Second, we set our algorithm the task of
predicting whether a subject in a reckless mental state was seeing two, three,
four, or five cases. Third, we set our algorithm the task of predicting how
many guarded tunnels (representing search risk) the subject was seeing at a
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given moment. Finally, we set the algorithm to predict whether or not, given
the brain data observed, a subject was about to choose to carry, or to decline
to carry, the case.

4. Testing the Machine Learning Algorithm

Many statistical techniques can test the accuracy and reliability of a
machine learning algorithm. We used a common technique rather
descriptively called “leave-one-out cross-validation.”20

There are more subtleties and complexities to this technique than we
expect readers will want to know.2! But the key idea is that you can train the
algorithm repeatedly, and independently, on one subset of data already
collected, and ask it to make predictions about the other subset. By
continuously and precisely changing the subsets, you can get a very clear
sense of the algorithm’s accuracy.

For instance, if you have collected brain data on forty subjects, you can
have the algorithm learn from subjects one through thirty-nine, and then
make a prediction about subject forty. Then you can start over, having the
algorithm learn from subjects two through forty, and then make a prediction
about subject one. And so on, always leaving one subject out, systematically
varying which subject that is. This method of repeated testing gives clear
indications of the algorithm’s accuracy. If the algorithm does well in
classifying the subject who was left out of the training set, no matter which
subject that is, then that gives you greater confidence that the algorithm is
tracking what it should be tracking.22

20 See Leave-One-Out Cross-Validation, ENCYCLOPEDIA OF MACH. LEARNING, https://doi.org/
10.1007/978-0-387-30164-8_469 [https://perma.cc/Q7XV-E4VW] (last visited Sept. 13, 2020).

21 Interested readers can find much more information on our methods for training the
classifiers in Predicting, supra note 9, and on pages four and five of the associated Supporting
Information. See Vilares et al., Supporting Information for Predicting the Knowledge-Recklessness
Distinction in the Human Brain, PROC. OF THE NAT'L ACAD. OF SCIS., https://www.pnas.org/
content/pnas/suppl/2017/03/08/1619385114. DCSupplemental/pnas.201619385SI.pdf (last visited Oct.
18, 2020) [https://perma.cc/3NQZ-UL2U]. For more on classifiers, see Kenneth A. Norman, Sean
M. Polyn, Greg J. Detre & James V. Haxby, Beyond Mind-Reading: Multi-Voxel Pattern Analysis of
fMRI Data, 10 TRENDS COGNITIVE SCI. 424 (2006); Frank Tong & Michael S. Pratte, Decoding
Pazterns of Human Brain Activity, 63 ANN. REV. PSYCH. 483 (2012); Thomas Naselaris, Kendrick N.
Kay, Shinji Nishimoto & Jack L. Gallant, Encoding and Decoding in fMRI, 56 NEUROIMAGE 400
(2011); John-Dylan Haynes, A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and
Perspectives, 87 PRIMER 257 (2015).

22 We did some further work to assess the algorithm’s accuracy, an appreciation of which
requires that we introduce here, for more technically inclined readers, some additional subtleties
about the way these algorithms work. So far, we have been speaking as though the post-training
algorithm tells you, full stop, whether the brain data that you offer it was recorded from a reckless
or a knowing subject. But, in fact, that’s not what these algorithms produce. Rather, they provide
you with a degree of confidence that the subject was reckless or knowing. They say that, for instance,
there is a probability of 0.2 that the subject was knowing, or a probability of 0.75. They assign a
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E. Primary Findings

To recap, we asked our subjects to play a game while we scanned their
brains. They each made 125 decisions as to whether to carry a briefcase across
the border when given varying information about the probability that the
briefcase contained contraband (the Contraband Risk) and the probability
that the case would be searched at the border (the Search Risk).

We then built an algorithm—a digital machine, essentially—that takes
brain data as an input and returns one of two outputs: reckless or knowing
(with respect to the contents of the briefcase). The output is the machine’s
best guess about the mental state of the person whose brain data it takes as
an input. We then used a variety of tools for measuring how well the machine
worked. We measured how well it did with the very job that we ask factfinders
to do whenever we ask them to determine whether a criminal defendant was
reckless or knowing. However, unlike the factfinder, we used only
information about a person’s brain instead of evidence admitted in court.

Here are the two most important results.

number between 0 and 1 that represents the likelihood that the subject was in the same mental state
as those in the training set, given what it learned from studying the training set.

What this means is that a further decision needs to be made in order to use the algorithm to actually
classify subjects into the knowing or the reckless category: we need to decide how confident the algorithm
needs to be in its classification before we will put the subject in the knowing or reckless category that the
algorithm recommends. Do we want to classify the subject as knowing when the algorithm’s confidence
is above 0.3? How about 0.5? Or above 0.75? Or above 0.95? Or what? What is the appropriate threshold
above which we pull the trigger and classify the subject as knowing (or reckless)?

Note that wherever you place the threshold, there will be inaccuracy that could have been
avoided by placing the threshold elsewhere. If you place the threshold at 0.75, for instance, then
subjects that the algorithm identifies as 0.6 will not be classified as knowing, even though quite a
few of them were looking at a single briefcase when the relevant brain data was recorded. However,
if you lower the threshold to 0.6, in order to classify them correctly, you will thereby misclassify
those subjects who were merely reckless and who the algorithm assigned values between 0.6 and
0.75. Wherever you set the threshold, there will be false positives (reckless people who are classified
as knowing), and false negatives (knowing people who are classified as reckless).

The question is where the optimal threshold is. At what threshold do you get the best mix of
false positives and false negatives? This is a statistically soluble problem. Another important
question, however, is how many choices of threshold provide you with a powerful classificatory tool?
Does the algorithm do quite well when the threshold is set anywhere between 0.5 and 0.9, for
instance? Or does it only perform well between 0.75 and 0.78? As a general rule, an algorithm used
for classification is better if it is more robust, if it performs well for a wider range of choices of
threshold. So that, itself, provides a measure of an algorithm’s value. If it performs well over a wide
range of choices of threshold, then that is a good reason to think that it is learning the right things
from the training data. This was also part of our analysis. We assessed the value of the algorithm by
seeing how robustly it provided accurate results over a range of thresholds.
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1. Knowing and Reckless Brain States Differ

Our paramount finding is this: our algorithm correctly classified people
as knowing or reckless 71% of the time, in some conditions.

Recall that prior empirical work has demonstrated that ordinary people,
asked to classify people as knowing or reckless, are only slightly more likely
to get a correct answer than we would get if we were to flip a coin. (That is,
just above 50%.)

Our algorithm, by contrast, outperformed ordinary people, not to
mention coin-flips, by a significant margin; we outperformed chance by 21%
and outperformed ordinary people by almost that same amount. And unlike
ordinary people, who draw on a wide range of evidence about human behavior
in making their decisions about another’s mental state, the algorithm used
only information about brain activity supplied by an fMRI.

It is this result that makes this experiment worth reporting to a legally-
minded audience. In a sense, our algorithm was able (again, in some
conditions) to read minds by looking at brains. And it did not read a trivial
aspect of mind; it read an aspect of mind crucial to mens rea, and therefore
to criminal punishment.

Put simply: by combining fMRI brain-imaging techniques with a machine
learning algorithm, we were able to distinguish among guilty minds.

2. Order of Information Matters

Last section we twice indicated that we could make distinctions, on brain
data alone, “in some conditions.” That is an important caveat, and one we
wish to clarify. The caveat concerns the order in which subjects received risk-
relevant information.

Recall that half our subjects were first presented with information about the
size of the pool of briefcases and then shown information about the likelihood
that they would be searched at the border (we called this “the Contraband-First
Condition”). The other half of our subjects saw these two pieces of information
in reverse order (we called this “the Search-First Condition”).

Interestingly, our algorithm was excellent at classifying the mental states
of those in the Search-First Condition and abysmal at classifying the mental
states of those in the Contraband-First Condition. Where, as just mentioned,
the algorithm correctly classified subjects 71% of the time if they first saw the
information about the likelihood of being searched, the algorithm succeeded
in correctly classifying only 32.1% of the time when examining information
about the brains of those who first saw information about the likelihood that
their briefcase contained contraband.
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The difference between the two sequences in which subjects received
information was also reflected in the behavior of our subjects. They were far
less likely to choose to carry the briefcase across the border if they were
presented first with the likelihood of being searched, and second with the
likelihood that the case contained contraband, than if they saw the pieces of
information in reverse order. For instance, when our subjects were faced with
a 40% chance of being searched, and were presented with only one case to
carry, our subjects chose to carry under 40% of the time in the Contraband-
First condition, but over 60% of the time in the Search-First condition. This
same behavioral discrepancy was found, importantly, when the probabilities
of the various possible payoffs from carrying were held constant. Put another
way: tell someone that they have a high chance of being searched, but almost
no chance their briefcase contains contraband, and they are much less likely
to choose to carry it than if you tell them that there is almost no chance the
case contains contraband, but there is a high probability of being searched.

ITI. IMPLICATIONS OF DETECTING MENS REA IN THE BRAIN

A. Immediate Legal Implications

The primary finding of our study has several important implications.
First, our team’s experiment provides a clear answer to the question: Does
the distinction between knowing and reckless mens rea reflect a detectable
distinction between brain states? The answer is: yes.

Based on current evidence, the distinction is not simply projected onto
people who are intrinsically no different from one another. Put another way,
the supposed distinction is no more in the eye of the beholder than detectable
differences in the brain are in the eye of the beholder.

The alternative hypothesis, recall, is that the legal definitions of knowing
and reckless do not apply differentially thanks to different psychological
features of defendants. They instead reflect, on that view, independently
formulated judgments about which defendants should be punished more
severely. But that hypothesis is not consistent with the data we collected.

Using a combination of fMRI brain imaging and an algorithmic artificial
intelligence, we were able to quite reliably predict—on the basis of brain activity
alone—whether or not a subject was in a knowing or reckless mental state. This
suggests that differential liability can legitimately rest, if we retain our collective
decision for it to do so, on there being a distinction between knowing and
reckless mental states of the kind that is reflected in distinct neural activity. Our
main finding is inconsistent with any argument that these distinctions between
knowing and reckless are arbitrary, invented, or merely provide cover for juries
or judges to punish some defendants more than others.
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Although our main finding was not true in all conditions (recall that when
subjects receive Contraband Risk information before receiving Search Risk
information the algorithm could not accurately distinguish the reckless from
the knowing) the fact that it was true in any conditions strongly suggests
(subject, of course, to future studies that may replicate and extend our
findings) that there is a brain difference between those the law classifies as
knowing or as reckless.

Of course, it is possible that there are some real-world circumstances
under which there is no meaningful difference between the knowing and the
reckless mental states. But, given that we found an intrinsic difference in
some experimental conditions, a more parsimonious hypothesis is that there
is a brain difference, even under those other circumstances, that fMRI cannot
(so far) detect.

The Model Penal Code’s assumption that those whom it classifies differently
based on their mental states actually differ psychologically has never before been
directly tested. While we do not suggest that the results of a single study in any
domain could ever lay a question to rest forever, our study should be seen as
significantly increasing the likelihood that there are brain-based differences
between people who are in knowing and reckless mental states. The main
implication of our study is: whatever the relative merits of keeping or
eliminating the distinction, calls for reform to eliminate the distinction are on
considerably weaker ground, empirically, than they were previously.

Second, our results lend support for the idea that jurors need more help
figuring out how to distinguish knowing from reckless mental states in real
cases. Behavioral experiments in a separate set of published studies strongly
suggest that jurors are quite poor at distinguishing between these two mental
states in the way the Model Penal Code instructs they must. If our brain-
imaging results had found no differences between the two mental states, and
people cannot reliably distinguish them anyway, then a concern for justice
would recommend possible elimination of the distinction between the two.
But if instead there are distinctions in the brain, and jurors have a hard time
sorting defendants between the two mental states, this recommends that we
find a way to do a better job at instructing jurors how to sort accurately. If we
are going to keep a system that punishes people in the knowing category more
than people in the reckless category, then we should ensure that jurors
perform very significantly above chance (50%) when assigning defendants to
one category or the other.

Third, our neuroscientific methods suggest the Model Penal Code mental
state categories may not be nearly as unitary as currently supposed. That is, there
may be important subcategories, and multiple subtypes, of culpable mental
states. More specifically, our study suggests that the distinction between
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knowing and reckless mental states may be greatest when subjects perceive
information about the presence or absence of an element of a crime after they
learn information about the likelihood of being caught. The distinction may be
less obvious, or absent, when subjects perceive risks in the reverse order.

This suggests, but does not prove, that the criminal justice system is on
shakier ground, perhaps, in sorting some defendants into reckless and
knowing compared to other defendants. Those who are mistaken, for
instance, about the illegality of their conduct—they think what they are doing
is legal and so not subject to punishment—at the time that they commit a
crime are possibly worse targets for classification into the categories of
knowing and reckless than those who know when they act that they are
engaging in illegal activity, and so are at risk of being caught. There may be
a far less meaningful distinction between knowing and reckless conduct when
the actor is uncertain, or unaware, of the illegality of his conduct.

This, in turn, raises the question whether policymakers should consider
keeping the knowing versus reckless bifurcation for some defined
circumstances or types of crimes, and eliminating it for others. To be clear,
we are not advocating this (or any other) legal reform; rather we are pointing
out the possibility of such reform as a potential application of our findings.

Fourth, our team’s experiment provides a concrete example of how
neuroscientific methods can open new avenues for discovering answers to
some of the law’s enduring questions. On the one hand, we hasten to add that
we are not zealots at the altar of a brain-scanning machine. We do not think
that brain-scanning will entirely upend long-standing legal approaches to
issues in either criminal law or civil law. We are pragmatists, observing the
potential utility of new technology and associated methods. On the other
hand, we believe this study clearly and amply demonstrates that there are
some questions relevant to law as to which brain scanning can provide
valuable new information. And the significance of this—entirely independent
of the experiment’s value in the substantive context of mens rea—should not
be underestimated.

B. Implications for Future Work

The implications of our study extend beyond the boundary between
knowing and reckless mental states. Our study points the way toward future
studies and avenues of research, each with distinct legal implications of their
own. These avenues concern: (1) other lines between mental states, drawn by
the Model Penal Code; (2) other defined elements of crimes; and (3) the
interaction of mental illness and criminal mental states.

First, the line between knowing and reckless, which our experiment
investigated, is only one mens rea line drawn by the Model Penal Code. Similar
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studies, therefore, could be done to determine whether purpose and knowledge
can be distinguished based on brain data alone, or whether recklessness and
negligence can be. Further, the Model Penal Code’s divisions are not the only
mens rea distinctions drawn in American law. The Model Penal Code also
equates awareness of high probability with knowledge under -certain
circumstances.23 Do we lose the ability to distinguish between those two under
the special circumstances in which the Model Penal Code equates them, or not?

Second, when we move beyond the Model Penal Code’s mens rea regime
we find various other questions that could be explored using the sort of tools
we developed for this study. For instance, many jurisdictions in the United
States reserve the most severe penalties for murders that are “willful,
deliberate and premeditated.”24 Is it possible to distinguish acts performed
with that frame of mind, from those that are not, solely based on brain data?

Third, our study specifically concerned knowledge and recklessness with
respect to a circumstantial element of a crime—the presence or absence of
contraband in the case, a fact that accompanies, but need not be caused by,
the act of crossing the border. It is possible that we would not find the same,
or any, brain-based difference even when it comes to other circumstantial
elements of crimes.

Perhaps, for instance, the line between knowledge and recklessness when it
comes to another’s consent—the absence of which can also be a circumstantial
element of a crime—cannot be drawn neurally, or must be drawn differently.
Further work could investigate different forms of potentially illegal behavior also
involving circumstantial elements. Further work could also expand beyond
circumstantial elements to result and act elements of crimes. We do not know
whether our results would extend to mens rea at the time of the act with respect
to future harms that the act might cause.

Fourth, with further development, our team’s work could be extended to
investigate the interaction of mental illness with criminally-culpable mental
states, about which we have almost no evidence-based knowledge. Except in
those rare states that bar the use of evidence of mental disorder to negate
mens rea,?s defendants routinely introduce evidence of the existence of
certain recognized mental disorders—schizophrenia, post-traumatic stress
disorder, autism spectrum disorder, and depression, for example—to raise

23 See MODEL PENAL CODE § 2.02(7) (AM. LAW INST. 1985) (“When knowledge of the
existence of a particular fact is an element of an offense, such knowledge is established if a person is
aware of a high probability of its existence, unless he actually believes that it does not exist.”).

24 According to Kimberly Kessler Ferzan, this is true in 29 states and D.C., as well as at the
federal level. See Kimberly Kessler Ferzan, Plotting Premeditation’s Demise, 75 LAW & CONTEMP.
PROBS. 83, 84 & n.3 (2012).

25 See Paul H. Robinson, Murder Mitigation in the Fifty-Two American Jurisdictions: A Case Study
in Doctrinal Interrelation Analysis, 47 TEX. TECH L. REV. 19, 24 (2014).
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reasonable doubt about the presence of the required mens rea element of the
crime. But there are to date no studies that directly examine the impact of
mental disorders on mens rea.

Factfinders receive some guidance from clinicians and forensic
psychiatrists. But these experts’ judgments are not supported by systematic,
experimental findings. It is not hard to see why: to investigate the question
of whether PTSD sufferers, for example, are more likely than non-PTSD
sufferers to know, as opposed to being reckless about, features of their
environment that bear on their criminality, we would need a way of measuring
which mental state they are in, under lab conditions. Our study shows that
tools for making such measurements can be developed, from combining
existing fMRI technology with methods of artificial intelligence.

For similar reasons, our study shows that these tools can help to measure the
impact of intoxicants on mens rea. Although there are significant limitations on
how voluntary intoxication can be used to negate mens rea, most states allow
defendants to shield themselves from liability on the grounds that due to
intoxication they failed to know something, even if they would have known it
had they been sober.26 There are many different intoxicants, of course, and they
vary enormously in their psychological effects. Yet there is no data-driven work,
akin to the experiment we’ve just described, that investigates the differential
impact of, for instance, alcohol, cocaine, methamphetamine or marijuana on the
“knowing” mental state. There now could be.

III. CAUTIONS & CAVEATS

The brain imaging method we used—fMRI—is a fairly recent
technological advance, and a remarkable technique for learning about brain
activity in a relatively non-invasive way. For this reason, publication of MRI
and fMRI studies from major universities (which can pay several million
dollars for a high field-strength machine) has exploded. For instance, a
literature search in the widely-used PubMed database revealed that although
in 1987 fewer than 200 articles using these two methods were published each
month, by 2014 that figure was typically greater than 2,000 per month?7—a
ten-fold increase in twenty-six years. Looking just at fMRI publications, a

26 This is the case under Model Penal Code § 2.08, which many states have adopted. See, e.g.,
N.J. STAT. ANN. § 2C:2-8(b) (West 2016). Other states have reached the same result with different
statutory language. See, e.g., KAN. STAT. ANN. § 21-5205(b) (2011).

27 Nikki Marinsek, 30 Years of Trends in the MRI and fMRI Literatures, NIKKI MARINSEK: BLOG
(Dec. 18, 2017), https://nikkimarinsek.com/blog/fmri-bursts [https://perma.cc/ TG68-EC7Z].
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2010 study in the same database found a rise in annual publications from
effectively zero in 1992 to well over 2,000 annually in 2009.28

At the same time, we want readers to understand that we pitch down the
middle—neither more zealous nor more skeptical about the technology than
fMRI is due. Studies by our working group, by other working groups in our
Research Network, and by other research teams around the world, have
demonstrated that neuroscientific techniques can add value to law’s efforts.
But brain-scanning is not magic. It has limitations, many of which we have
helped to explore and detail.2® For this reason, we believe it is appropriate to
lay on the table a variety of cautions that might help readers to strike the
right balance between under- and over-interpreting the specific findings we
describe here, as well as fMRI studies in general.30

A. General Cautions & Caveats

First, there is always a trade-off between how closely experimental
conditions align with the real world and how many potential variables, any
one of which might influence a subject’s behavior, can be controlled. Increased
realism decreases confidence in conclusions about what actually caused what.
Yet increased control over variables decreases confidence in the
generalizability of a study’s findings, which might only hold true in identically
controlled circumstances. Although we have no reason at present to think that
brain activity differences between knowing and reckless frames of mind are
only different inside the scanner, transparency requires that we at least
mention the possibility.

Second, although our sample size of forty subjects is within the norm in
fMRI brain imaging studies, for investigating brain activity with sufficient
statistical power to publish findings in top peer-reviewed neuroscience
journals, there is always the possibility that a larger study would find either
more or fewer differences between the knowing and reckless mental states.

28 Lars Muckli, What Are We Missing Here? Brain Imaging Evidence for Higher Cognitive Functions
in Primary Visual Cortex V1, 20 INT'L J. IMAGING SYS. & TECH. 131, 132 (2010).

29 See Owen D. Jones et al., Law and Neuroscience: Recommendations Submitted to the President’s
Bioethics Commission, 1 ].L.. & BIOSCIENCES 224 (2014); see also OWEN D. JONES, JEFFREY D. SCHALL
& FRANCIS X. SHEN, LAW AND NEUROSCIENCE 127-50 (2d ed., 2021); Owen D. Jones, Joshua W.
Buckholtz, Jeffrey D. Schall & Rene Marois, Brain Imaging for Legal Thinkers: A Guide for the Perplexed,
2009 STAN. TECH. L. REV. g [hereinafter Brain Imaging for Legal Thinkers]; Russell A. Poldrack, The Role
of fMRI in Cognitive Neuroscience: Where Do We Stand?, 18 CURRENT OP. NEUROBIOLOGY 223 (2008);
John T. Cacioppo, Gary G. Berntson, Tyler S. Lorig, Catherine J. Norris, Edith Rickett & Howard
Nusbaum, Just Because You're Imaging the Brain Doesn’t Mean You Can Stop Using Your Head: A Primer and
Set of First Principles, 85 ]. PERSONALITY & SOC. PSYCH. 650 (2003).

30 For more on these subjects, see Brain Imaging for Legal Thinkers, supra note 29.
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Third, sampling different demographic groups might yield different results.
Our subjects are from the Roanoke/Blacksburg, Virginia area. Although there is
at present no reason to believe that different groups will use their brains quite
differently with respect to mens rea, we would be remiss not to mention the
possibility that variables such as age, profession, education, sex, nationality,
nutrition, health, or socioeconomic status could affect the results.

Fourth, fMRI is an indirect, rather than direct, measure of neuronal
activity. Instead of measuring the electrical activity of individual neurons, or
even a group of them, fMRI detects changes in blood oxygenation levels, over
time, in discrete locations within a subject’s brain that include neurons, as
well as other brain tissue. There is every physiological reason to believe that
the more various neurons fire, the more resources (such as oxygen and
glucose) they demand. Still, it is a little like distinguishing cities from
countryside by measuring differential regional light outputs from space at
night. In the same way that that would measure something very reliably
associated with cities, but would not be a direct observation of cities
themselves, fMRI measures something very reliably associated with neuronal
activity, without measuring the neuronal firings themselves.

Fifth, fMRI cannot identify differences between the kinds of neurons that
are active. fMRI compares total activity within voxels (which are, as
mentioned earlier, cubic volumes of brain tissue). But each voxel contains a
great many neurons in number—usually estimated as over 600,000—and can
also contain many different types of neurons. Some neurons, for instance, fire
in a way that activates other neurons. But some neurons fire in a way that
inhibits the activation of other neurons. Because fMRI does not distinguish
among these sometimes competing purposes of neurons, it is akin to
recording the decibel level in a crowd of people, many of whom are yelling
“go,” some of whom are yelling “no,” and some of whom are keeping quiet.

Sixth, the fMRI brain images that researchers present and publish are not
like x-ray images, which are the direct result of imaging technology
interacting with brain tissue. fMRI images are, instead, statistical parametric
maps. Which means they are structural images (akin to an x-ray image) of a
single, typical brain onto which has been overlaid a patchwork variety of
colors, in various locations, that represent the voxels with the most
statistically significant differences between conditions. (Such as, in our case,
the knowing and reckless conditions.) The colors are calibrated to the range
of greater and lesser differences.

Seventh, as tempting as it can be to laud the breakthrough capabilities of
partnering machine-learning algorithms with brain-scanners, it is also
important for legal thinkers to see their limitations with a clear eye, and to
not succumb to temptation to overinterpret results. Specifically, we believe



28 University of Pennsylvania Law Review [Vol. 169: 1

that although multivoxel pattern classification is a powerful tool for
identifying the existence of salient brain differences, it will rarely provide
strong support for claims about either (1) the precise function of any brain
region; or (2) any brain region’s centrality to any particular and complex form
of psychological functioning. Although algorithms are capable of learning to
apply complex, disjunctive rules for classification, rules of that kind are not
automatically useful for gaining insight into the basic psycho-physical laws
that govern the relationship between brain activity and psychological states.

B. Specific Cautions & Caveats

There are a variety of things that our experiment could be taken to imply
that it does not imply. And these are important to highlight.

First, and most importantly, scientific findings never provide automatic
support for a change in policy (or, conversely, a continuation of existing
policy). So our findings don't either. Sound policymaking or policy-reform
always requires that policy-makers view facts through the prism of values and
consider them in light of fundamental normative principles. Put another way,
there is no automatic pathway from description to prescription, or from
explanation to justification. Facts warrant attention, of course. But whether
they should inspire change depends on what it is that society is trying to
accomplish, and what principles it must comply with in the effort. In context,
that means that if a state’s statutory regime establishing different criminally
culpable mental states is structured by and grounded on the assumption that
there really are brain-based differences in those mental states, then facts
supporting that assumption tend to increase our confidence in the regime.
And facts inconsistent with that assumption tend to weaken it.

Neither the results of our experiment, nor the results of any experiment,
can alone answer the question whether we should or should not keep four
categories of mental state, much less the four particular categories defined in
the Model Penal Code. The fact that our experiment has found a brain-based
distinction between knowing and reckless mental states cannot automatically
justify the continued division of those states in the law, any more than would
the absence of such a finding demand the elimination of the distinction. To
be clear, the implication of our finding is not that the law must retain the
knowing-reckless distinction; it is, instead, that to the extent that the best policies
require that the mens rea categories reflect differences in brain states, our finding
provides some support for maintaining the distinction. But whether the best
policies require that is a profoundly difficult question that cannot be answered
by doing experiments.

Second, our team’s neuroscientific techniques can discover brain-based
differences between mental states that exist at the time of scanning, not at
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some prior time. Although we have developed and deployed a powerful tool for
exploring whether such differences exist, it is not (at least not so far) a tool
for reliably exploring what mental state a subject was in minutes, hours, days,
or even years beforehand. Put another way, our current experiment has
implications for criminal justice policy, but not for forensic evaluation of
individual defendants.

Third, the extent to which our study read the minds of subjects should
not be exaggerated. True, it is remarkable, frankly, that the algorithm could
classify subjects as knowing or reckless taking only information about their
brains, collected non-invasively, into account. Such a thing would have been
inconceivable twenty-five years ago. But that does not imply we now have a
general-purpose mind-reading capability. Instead, our experiment showed
that there were sufficiently great differences between knowing and reckless
brain activity that the combination of fMRI and artificial intelligence could
learn that difference (not just—on its own—discover and name the difference).
The crucial distinction, and the point we are emphasizing here, is that human
instructors had to provide the algorithm with two potentially different
conditions to examine, in the first place. Had we not asked the algorithm to
look for differences in subjects between these two conditions, it would not,
on its own, have looked for (or thereby found) any.

Fourth, it is worth noting that we have not yet said in this article what
kinds of activities, in which particular brain structures, enabled our algorithm
to distinguish between subjects in knowing and reckless states of mind. The
reason we have said nothing about this so far is not that our study has nothing
to say. It does.3t The region known as the dorsomedial prefrontal cortex, for
instance (a region known to be involved in planning, analysis, and
deliberation) was among the regions of the brain that behaved distinctively
in subjects in states of knowledge. For purposes of our specific research
question—whether knowing and reckless mental states are distinguishable in
the brain—the locations of differences is simply less legally relevant than the
fact that discernable differences exist. That is, the central result that we
reached—distinguishing knowledge from recklessness solely on the basis of
brain data—is significant quite independently of what aspects of the brain
made the result possible.

Fifth, the stimuli we used in the lab to elicit the mental states to be studied
may or may not elicit those mental states perfectly. We strongly believe that

31 Interested readers can find details in Predicting, supra note 9. In brief, areas more predictive
of being in a knowing situation included the anterior insula (often involved in risk and uncertainty
representation), dorsomedial prefrontal cortex (associated with executive decisions and
computation) and temporo-parietal junction (often involved in moral decisions). Areas more
predictive of being in a reckless mental state include the occipital cortex (sometimes involved in
circumstances of high uncertainty). See id. at 3223-25; Vilares et al., supra note 21.
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the essence of the distinction between knowing and reckless mental states, as
envisaged under the Model Penal Code, reflects different probabilities—such
that (1) judging there to be a 100% likelihood that something will happen is
“knowing” that it will; and (2) lesser likelihoods reflect lessening degrees of
“recklessness.” Nevertheless, one could always argue that manipulating
certainty and uncertainty in the laboratory misses something essential about
the Model Penal Code mental states.

Sixth, context may matter. It is possible that the particular brain-based
distinctions our team has identified between knowing and reckless decisions,
when deciding whether or not to carry contraband, may not generalize to all
knowing and reckless decisions, when deciding whether or not to engage in
other kinds of activities.

Seventh, it seems appropriate to acknowledge that as researchers we can’t
be certain what a subject actually “knew” in the scanner. We told subjects that
one (and only one) case each trial would contain “valuable content.” And we
also told them that each trial they would be presented with between one and
five cases. Therefore, subjects shown only one case on a given trial could
straightforwardly deduce that that case logically must contain the valuable
content, because the probability that it would do so is 100%. When only one
case was on offer, subjects indeed behaved as if they knew. But we cannot
claim that all subjects actually knew what they clearly should have known.

CONCLUSION

Pick any weekday, and you will find hundreds of felony trials underway
in America. With rare exceptions, the question is whether the accused did
something prohibited while in a culpable state of mind. In the supermajority
of states that follow the Model Penal Code, there are four culpable states of
mind: purposeful, knowing, reckless, and negligent.

The law predicates differences in criminal liability on what the law
supposes to be independently specifiable psychological differences that
underlie and constitute differences in criminal culpability. But is this
presupposition true? If there are such psychological differences, there must
also be brain differences. Consequently, the moral legitimacy of the Model
Penal Code’s taxonomy of culpable mental states—which punishes those in
defined mental states differently—depends on whether those mental states
actually correspond to different brain states in the way the Model Penal Code
categorization assumes.

The experiment described here is the first to investigate whether one long-
standing assumption underlying the Model Penal Code’s approach to culpable
mental states stands up to empirical scrutiny. More specifically, we and our
colleagues coupled fMRI brain imaging techniques and a machine learning
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algorithm (a form of artificial intelligence) to see if the brain activities during
knowing and reckless states of mind can ever be reliably distinguished.

The answer is Yes. So our experiment provides a concrete example of how
neuroscientific methods can contribute information relevant to legal policy.
First and foremost, however, our experiment demonstrates that it is possible to
predict, with high accuracy, which mental state a subject is in using brain
imaging data alone. The results therefore provide the first empirical support for
the law to draw a line between, and to establish separate punishment amounts
for, knowing and reckless criminality. This discovery could be the first step
toward legally defined mental states that reflect actual and detectable
psychological states, grounded in neural activity within the brain.

Our results do not by themselves suggest that there should or shouldn’t
be reform of the law of mens rea. We have provided evidence that knowing
and reckless mental states are—at least in some contexts—different in the
brain. We believe that information is valuable if one cares about whether or
not the Model Penal Code’s approach to culpable mental states can bear the
weight that the law asks it to. But our finding that the mental states can
indeed reflect different brain activity does not mean the Model Penal Code
distinction between knowing and reckless states should remain intact, any
more than a contrary finding would mean that the Model Penal Code
distinction between knowing and reckless mental states should be abandoned.
Support for policy change comes from the intersection of values, facts, and
fundamental principles, and not from the facts alone.

We should all be interested in evidence-based legal reforms. But such
reforms require evidence on which they can be based. When it comes to the
law of mens rea, the relevant source of such evidence is psychology, cognitive
science and, thanks to increasingly sophisticated technology for measuring
the brain, neuroscience. As we hope to have demonstrated here, when
neuroscientific techniques are aimed directly at questions of legal relevance,
they can provide exactly the kind of evidence that can aid, although not
dictate, intelligent, thoughtful legal reform.






