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Alternative splicing in addiction
Akanksha Bhatnagar1 and Elizabeth A Heller1,2,3,*

Addiction is a chronic and relapsing medical condition 
characterized by the compulsive use of drugs or alcohol despite 
harmful consequences. While transcriptional regulation has 
long been recognized for its role in addiction, recent genome- 
wide analyses have uncovered widespread alternative splicing 
changes that shift protein isoform diversity in multiple brain 
reward regions central to addiction. In this review, we discuss 
emerging research and evidence that alternative splicing is 
dysregulated in cocaine, alcohol, and opioid use disorders.
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Introduction
Addiction is a chronic and relapsing medical condition 
characterized by the compulsive use of drugs (substance 
use disorder [SUD]) or alcohol (alcohol use disorder 
[AUD]) despite harmful consequences [1]. These dis
orders are marked by an inability to control the urge to 
consume substances and continued intake despite re
peated attempts to quit [2]. Addiction imposes a serious 
public health concern in the United States, with 17.1% 
of the population aged 12 years and older meeting the 
criteria for SUD and 10.2% for AUD in 2023 [3]. The 

prior literature establishes the functional relevance of 
neuronal alternative splicing in the contexts of neuronal 
activation [4,5], human development [6], autism spec
trum disorder [7], paraneoplastic disease [8], and neu
rodegenerative disorders [9]. However, there is still a gap 
in understanding the regulation of alternative splicing in 
psychiatric disorders, including addiction.

Despite distinct pharmacological targets, all drugs of abuse 
drive reinforcing behavior through activation of the meso
limbic reward circuit in humans, rodents, and model or
ganisms (Figure 1a,b) [2,10]. Dopamine lies at the center 
of this reward circuit. Dopaminergic neurons originate in 
the ventral tegmental area (VTA) in the midbrain and 
project to forebrain targets, including nucleus accumbens 
(NAc), prefrontal cortex (PFC), hippocampus (HPC), and 
amygdala (Amy) [2]. Stimulants, such as cocaine and am
phetamine, directly increase dopaminergic transmission by 
blocking dopamine reuptake transporter in the NAc [2]. In 
contrast, opioids indirectly increase dopamine release by 
binding to opioid receptors on inhibitory interneurons in 
the VTA, which in turn disinhibit dopaminergic neurons 
projecting to the NAc [11]. Similar to opioids, one of the 
key mechanisms for alcohol is enhancing gamma-amino
butyric acid (GABAA) receptor function that also disinhibits 
dopaminergic transmission to NAc [11]. Opioids can also 
directly act on NAc neurons by stimulating mu opioid re
ceptors (MORs), further boosting dopamine transmission 
in NAc [11]. Thus, irrespective of the drug-specific cas
cade, all drugs of abuse hijack the reward circuit to increase 
dopamine release in the NAc that underlies the reinforcing 
effects of drugs [11,12].

Drug addiction triggers long-term changes in the brain at 
the molecular level, affecting the transcriptome [10,13]. 
These changes occur both at the transcriptional level 
affecting gene expression and through post-transcrip
tional regulation, such as alternative splicing [13]. Al
ternative splicing is a fundamental process that allows a 
single gene to generate multiple mRNA splice variants 
by rearranging exons and introns, leading to protein 
isoforms with unique functions [14,15]. Alternative 
splicing affects more than 90% of multi-intronic human 
genes and is particularly abundant and conserved in the 
brain [9,16]. Neuronal alternative splicing provides an 
extended proteome essential for fine-tuning brain 
function in order to respond and adapt to different sti
muli [17]. Interestingly, neural genes undergoing spli
cing changes rarely overlap with genes with altered gene 
expression [7,18–21], suggesting neurons respond to 
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Figure 1  

Current Opinion in Genetics and Development

(a, b) Reward circuit in the human (a) and the rodent (b) brain. NAc receives dopaminergic neurons from the VTA and glutamatergic neurons from PFC, 
HPC, and Amy. NAc projects inhibitory GABAergic neurons into the VTA. Abbreviations: FP: frontal pole. (c) Alternative splicing of fosB gene into 
ΔFosb mRNA is a common splicing event in multiple substances of abuse. PCBP1 splicing regulator along with Smad3 binds to Fosb pre-mRNA 
favoring exclusion of the regulated intron 4. The resulting ΔFosb mRNA contains an in-frame stop codon preceding the protein degradation signals 
and is therefore translated into a truncated, highly stable ΔFosb protein form that persists for weeks after drug exposure. ΔFosb then regulates gene 
expression of several downstream targets associated with synaptic plasticity to strengthen neuronal connections mediating reward stimuli.
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stimuli via parallel signaling pathways that alter either 
transcription or alternative splicing to shift the protein 
amount or protein isoform diversity, respectively.

Recent advances in next-generation sequencing have re
volutionized our ability to analyze gene expression and al
ternative splicing at an unprecedented depth and resolution 
[22]. Short-read RNA-sequencing, in combination with 
splicing analysis tools such as rMATS [23], LeafCutter [24], 
and MAJIQ [25], has been instrumental in identifying dif
ferential splicing events across various conditions and cell 
types. Now, long-read sequencing marks a significant leap 
forward in capturing the entire splicing events within full- 
length transcripts by obviating the need for cDNA frag
mentation [26,27]. In this review, we discuss emerging re
search and evidence that alternative splicing is dysregulated 
in cocaine, alcohol, and opioid use disorders (OUDs) [28].

Alternative splicing in opioid use disorder
Exogenous opioids, such as morphine, heroin, and fen
tanyl, activate the MOR encoded by Opioid Receptor Mu 
1 (OPRM1). OPRM1 undergoes extensive alternative spli
cing to form 21 distinct MOR isoforms with clinically re
levant differences in opioid responsivity and analgesia 
[29,30]. In addition to direct receptor binding, opioid alters 
OPRM1 pre-mRNA splicing to produce distinct MOR 
isoforms with varying binding affinities, receptor activation, 
and downstream signaling, ultimately influencing opioid 
analgesic efficacy and side effects [31]. OPRM1 undergoes 
alternative splicing in the medial PFC of heroin self-ad
ministering male rats and male human heroin abusers, 
showing conservation of morphine-mediated OPRM1 
splicing [32]. Acute subcutaneous administration of mor
phine alters splicing of Oprm1 from the canonical MOR-1 
to MOR-1X variant in the HPC and striatum (STR) of 
mixed-sex rats that distinctly activates mitogen-activated 
protein kinase (MAPK) signaling, likely impacting mor
phine-mediated analgesia [33]. In contrast, a morphine- 
induced conditioned place preference (CPP) paradigm is 
used to study chronic dosing with repeated injections that 
is persistent over time and can be reinstated by morphine 
after extinction. A morphine CPP paradigm finds transient 
alternative isoform expression of brain-derived neuro
trophic factor (BDNF) in the HPC, NAc, and caudate 
putamen (CPu) of male mice. Specifically, BDNF splice 
variants II, IV, and VI increase during the acquisition of 
morphine preference suggesting a role in learning and 
memory but are short lived and return toward baseline 
during drug extinction and reinstatement [34]. Since 
BDNF modulates GABAergic activity–mediated neuro
transmission in the reward circuit [35], these BDNF splice 
variants may contribute to neuronal signaling and growth. 
Although there is no known mechanistic link between 
Oprm1 and BDNF splicing, both these events contribute 
to opioid dependence.

Although the effect of opioids on splicing of OPRM1 
and other single targets are well characterized, genome- 
wide analyses of opioid-induced alternative splicing 
have only recently emerged. Huggett et al. [36] com
pared alternative splicing in dorsolateral PFC (50% fe
male), NAc (50% female), and midbrain (100% female) 
in the postmortem brain of 90 OUD patients and their 
matched controls. A total of 1788 differential splicing 
events, about half of which were exon skipping, in 788 
differentially spliced genes (DSGs) were associated with 
chronic opioid use across brain regions [36]. Notably, 
although chronic opioid use was also associated with 922 
differentially expressed genes (DEGs), only 3% of 
DEGs were also differentially spliced [36]. Differential 
splicing was largely brain region specific, but five DSGs 
were present across all three brain regions: SNHG14, 
HERC1, HILPDA, METTL2B, and BIN1. Across all 
samples and brain regions, BIN1 (Bridging integrator 1 
or Amphiphysin 2) shows consistent opioid-associated 
splicing in the clathrin and AP-2-binding (CLAP) do
main, which facilitates clathrin-mediated endocytosis 
[36]. This splicing event in the CLAP domain may alter 
MOR receptor endocytosis and desensitization resulting 
in reduced drug responsiveness and promoting opioid 
tolerance. Additionally, the CLAP domain is included 
only in the neuronal isoforms of BIN1, and its skipping 
is associated with reduced Aβ endocytosis and clearance- 
mediated neurotoxicity in Alzheimer’s disease [37,38], 
warranting further investigation into BIN1 isoform 
switching in OUD. Finally, spliceosome genes, such as 
U1 and U2 small nuclear RNAs, were upregulated and 
perturbations in the spliceosome pathways were en
riched in OUD brains [36], suggesting spliceosomal 
dysregulation could underlie splicing changes in opioid 
addiction. In contrast to short-lived splicing changes 
detected via polymerase chain reaction (PCR) after 
chronic morphine administration in mice, postmortem 
human brains from OUD patients with a history of 
opioid misuse reveal widespread splicing alterations 
even after death, suggesting prolonged opioid exposure 
and RNA-sequencing techniques might improve our 
ability to detect splicing changes [36].

Alternative splicing in cocaine treatment
Cocaine is a psychostimulant that blocks dopamine re
uptake from the synaptic cleft, resulting in increased 
dopamine postsynaptic signaling [39]. Chronic cocaine 
exposure induces persistent changes in synaptic struc
ture and function [40] through global changes in gene 
expression [41,42] and the epigenome [43,44]. The ef
fect of cocaine treatment on alternative splicing is evi
dent by studies focusing on single gene targets after 
chronic or acute drug exposure. Over 30 years ago, 
Nestler et al. found that cocaine exposure in humans and 
animals leads to the alternative splicing of Fosb tran
scription factor into ΔFosb in neurons in NAc [45]. 
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ΔFosb initiates and sustains expression of multiple 
downstream targets, such as Cdk5, NFκB GluA2, Gria2, 
and CAMKII, to promote dendritic spine formation and 
regulate synaptic plasticity [46]. Accordingly, ΔFosb 
accumulation has been implicated in as critical neuro
biological functions, including learning and memory and 
aggression phenotype [46,47]. Today, ΔFosb accumu
lation is a common addiction link observed for cocaine, 
morphine, amphetamine, alcohol, nicotine, and phen
cyclidine, making it a critical molecular switch in SUD 
[47,48]. Despite the long-established role of ΔFosb in 
addiction, the mechanism of splicing was only recently 
elucidated. Krapacher et al. [49] find that acute cocaine 
administration activates PCBP1, an RNA splicing reg
ulator, that favors the exclusion of intron 4 in Fosb pre- 
mRNA resulting in a stop codon preceding the protein 
degradation signals in the ΔFosb mRNA. Upon trans
lation, the truncated ΔFosb splice isoform is highly 
stable [49] and activates gene expression that induces 
synaptic changes in NAc promoting drug-seeking be
havior (Figure 1c) [47].

Beyond ΔFosb, only scant data are available on specific 
gene targets spliced in cocaine use disorder. Unlike 
chronic morphine administration, acute cocaine admin
istration but not repeated drug exposure induces BDNF 
IV splice variant in the rat striatum transiently for pro
moting neuron growth in the NAc [50]. Additionally, in 
human cocaine abusers, alternative splicing of dopamine 
receptor D2 reducing formation of D2 short isoform [51]
and reduced expression of a truncated isoform of ser
otonin 2A receptor (HTR2A) [52] likely affecting 
memory processing and cocaine dependence. Moreover, 
repeated investigator-administered cocaine injections in 
male mice induce splicing of the transcription factor 
E2F3 to produce E2F3a isoform that regulates both 
transcription and splicing of key cocaine response tar
gets, including Ptbp1 splicing regulator, Fgfr1 growth 
factor, and Tle2 transcriptional corepressor [53]. Re
markably, E2F3a overexpression is sufficient to re
capitulate gene expression and splicing changes in NAc 
caused by cocaine, establishing E2F3a as a novel up
stream regulator of cocaine action in NAc [53].

With recent advances in sequencing technology, 
genome-wide alternative splicing changes have now 
been associated with cocaine treatment across brain re
ward regions [18,44]. RNA-sequencing of NAc in male 
mice after repeated investigator-administered cocaine 
treatment finds far greater changes in alternative pro
moter usage and alternative splicing (2998 DSGs) than 
differential expression (92 DEGs) [44]. Using a cocaine 
self-administration paradigm on mixed-sex mice, we also 
find widespread differential alternative splicing of 339, 
369, and 799 DSGs in the NAc, PFC, and VTA, re
spectively [18]. Since cocaine self-administration in 
mice involves volitional drug intake, cognitive learning T

ab
le

 1
 

D
ru

g
-i

nd
uc

ed
 a

lt
er

at
io

ns
 in

 R
N

A
 a

lt
er

na
ti

ve
 s

p
lic

in
g

. 

D
ru

g 
cl

as
s

R
N

A
-S

eq
 s

p
lic

in
g 

an
al

ys
is

?a
M

aj
or

 s
p

lic
in

g 
al

te
ra

tio
ns

P
ot

en
tia

l f
un

ct
io

na
l i

m
p

lic
at

io
ns

M
od

el
 o

rg
an

is
m

 a
nd

 t
is

su
e

R
ef

G
en

e
S

p
lic

e 
va

ria
nt

O
p

io
id

- 
m

or
p

hi
ne

–
O

P
R

M
1

↑ 
M

O
R

-1
X

M
A

P
K

 s
ig

na
lin

g
M

ic
e:

 H
P

C
, 

S
TR

[3
3]

O
p

io
id

- 
he

ro
in

–
O

P
R

M
1

↑ 
hM

O
R

-1
X

, 
hM

O
R

-1
H

, 
hM

O
R

-1
G

2 
↓ 

hM
O

R
-1

A
, 

hM
O

R
-1

B
2

B
ia

se
d

 G
 p

ro
te

in
-c

ou
p

le
d

 
re

ce
p

to
rs

(G
P

C
R

) 
ag

on
is

m
 

b
et

w
ee

n 
β-

ar
re

st
in

 a
nd

 G
-p

ro
te

in
; H

er
oi

n 
an

al
ge

si
a

H
um

an
: 

m
P

FC
[3

2]

↑r
M

O
R

-1
G

1 
↓ 

rM
O

R
-1

A
, 

rM
O

R
-1

B
1

R
at

: 
m

P
FC

O
p

io
id

- 
m

or
p

hi
ne

–
B

D
N

F
↑ 

B
D

N
F 

II,
 I

V
, 

V
I

N
eu

ro
na

l g
ro

w
th

; 
le

ar
ni

ng
 a

nd
 

m
em

or
y

M
ic

e:
 H

P
C

, 
N

A
c,

 C
P

u
[3

4]

O
p

io
id

- 
fe

nt
an

yl
, 

he
ro

in
, 

ox
y

co
d

on
e

Y
es

, 
Le

af
C

ut
te

r
B

IN
1

A
lte

rn
at

iv
e 

sp
lic

in
g 

of
 C

LA
P

 
d

om
ai

n

P
ro

te
in

 p
ho

sp
ho

ry
la

tio
n,

 e
ar

ly
 

en
d

os
om

e,
 G

TP
as

e 
ac

tiv
at

or
 

ac
tiv

ity

H
um

an
: 

d
lP

FC
, 

N
A

c,
 

m
id

b
ra

in
[3

6]

C
oc

ai
ne

Y
es

, 
C

uf
fd

iff
N

uc
le

ot
id

e 
an

d
 io

n 
b

in
d

in
g,

 
p

ro
te

in
 lo

ca
liz

at
io

n
M

ic
e:

 N
A

c
[4

4]

4 Molecular and Genetic Basis of Disease 

www.sciencedirect.com Current Opinion in Genetics & Development 2025, 92:102340



T
ab

le
 1

(c
on

tin
ue

d
)  

   
   

 

D
ru

g 
cl

as
s

R
N

A
-S

eq
 s

p
lic

in
g 

an
al

ys
is

?a
M

aj
or

 s
p

lic
in

g 
al

te
ra

tio
ns

P
ot

en
tia

l f
un

ct
io

na
l i

m
p

lic
at

io
ns

M
od

el
 o

rg
an

is
m

 a
nd

 t
is

su
e

R
ef

G
en

e
S

p
lic

e 
va

ria
nt

Tt
c2

3,
 

S
p

10
0,

 
S

ep
t7

↑ 
ex

on
 in

cl
us

io
n,

 
↑ 

ex
on

 in
cl

us
io

n,
 

↓ 
ex

on
 in

cl
us

io
n

C
oc

ai
ne

–
Fo

sb
↑ 

Δ
Fo

sb
 la

ck
in

g 
in

tr
on

 4
Tr

an
sc

rip
tio

na
l a

ct
iv

at
io

n
M

ic
e:

 N
A

c,
 P

FC
, 

H
P

C
, 

d
S

TR
, 

A
m

y
[4

5]

C
oc

ai
ne

–
B

D
N

F
↑ 

B
D

N
F4

A
ct

iv
at

e 
ty

ro
si

ne
 r

ec
ep

to
r 

ki
na

se
 B

, 
p

ro
m

ot
e 

ne
ur

on
 

gr
ow

th

R
at

: 
S

TR
[5

0]

C
oc

ai
ne

–
D

2 
re

ce
p

to
r

↑ 
D

2 
lo

ng
D

op
am

in
e 

si
gn

al
in

g;
 m

em
or

y 
p

ro
ce

ss
in

g
H

um
an

: 
P

FC
, 

p
ut

am
en

[5
1]

C
oc

ai
ne

–
H

TR
2A

↓ 
tr

un
ca

te
d

 e
xo

n 
2

S
er

ot
on

in
 s

ig
na

lin
g;

 c
oc

ai
ne

 
re

in
fo

rc
em

en
t 

an
d

 s
en

si
tiz

at
io

n
H

um
an

: 
d

lP
FC

[5
2]

C
oc

ai
ne

Y
es

, 
rM

A
TS

 a
nd

 M
A

JI
Q

S
rs

f1
1,

 
C

ac
na

1b
, 

S
hi

sa

↑ 
in

cl
us

io
n 

of
 

b
le

ed
in

g 
ex

on
S

p
lic

e 
fa

ct
or

; 
ca

lc
iu

m
 v

ol
ta

ge
- 

ga
te

d
 c

ha
nn

el
, 

G
A

B
A

 s
ig

na
lin

g
M

ic
e:

 N
A

c,
 V

TA
, 

P
FC

[1
8]

C
oc

ai
ne

Y
es

, 
rM

A
TS

E
2F

3,
 

Tl
e2

, 
P

tb
p

1

↑ 
E

2f
3a

, 
↓ 

ex
on

 1
0,

 
↑ 

ex
on

 8

Tr
an

sc
rip

tio
na

l a
ct

iv
at

or
, 

sp
lic

e 
re

gu
la

to
r

M
ic

e:
 N

A
c

[5
3]

A
lc

oh
ol

Y
es

, 
rM

A
TS

, 
Le

af
C

ut
te

r
G

R
IA

2
↑ 

E
xo

n 
14

 
sk

ip
p

in
g

A
lp

ha
-a

m
in

o-
3-

hy
dr

ox
y-

5-
m

et
hy

l- 
4-

is
ox

az
ol

ep
ro

pi
on

ic
 a

ci
d 

(A
M

P
A

) 
re

ce
pt

or
 n

eu
ro

tra
ns

m
is

si
on

, 
in

tra
ce

llu
la

r 
si

gn
al

in
g,

 a
nd

 d
ru

g/
 

al
co

ho
l m

et
ab

ol
is

m

H
um

an
: 

S
FC

, 
N

A
c,

 
B

LA
, 

C
N

A
[5

4
,5

5]

A
lc

oh
ol

Y
es

, 
rM

A
TS

E
LO

V
L7

↑ 
sk

ip
p

ed
 e

xo
n 

in
 5

’U
TR

In
na

te
 im

m
un

e 
sy

st
em

H
um

an
: 

d
lP

FC
[5

6]

A
lc

oh
ol

Y
es

, 
ed

ge
R

 e
xa

ct
Te

st
()

H
ap

ln
2

↑ 
A

3S
S

 in
 e

xo
n 

4
E

xt
ra

ce
llu

la
r 

m
at

rix
 (E

C
M

) 
co

m
po

ne
nt

; 
N

er
ve

 c
on

du
ct

io
n 

ve
lo

ci
ty

R
at

 a
nd

 h
um

an
: 

H
P

C
[5

7]

A
lc

oh
ol

–
Li

p
in

 1
↑ 

lip
in

 1
β

In
cr

ea
se

d 
lip

id
 p

ro
du

ct
io

n 
in

 li
ve

r
H

um
an

, 
M

ic
e:

 li
ve

r
[5

8]
A

lc
oh

ol
Y

es
, 

D
E

X
-S

eq
S

p
ag

9,
 

C
ac

nb
1,

S
rs


f5

–
sy

na
p

tic
 s

ig
na

lin
g,

 m
R

N
A

 
p

ro
ce

ss
in

g
M

ic
e:

 f
ro

nt
al

 p
ol

e
[5

9]

A
lc

oh
ol

Y
es

, 
D

E
X

-S
eq

G
rin

1
E

xo
ns

 4
, 

5,
 6

, 
an

d
 8

N
M

D
A

R
1 

sy
na

p
tic

 f
un

ct
io

n
M

ic
e:

 H
P

C
[6

0]

A
lc

oh
ol

Y
es

, 
ju

nc
B

A
S

E
S

H
A

N
K

2,
 

P
TP

R
D

↑ 
ex

on
 s

ki
p

p
in

g,
 

↑ 
ex

on
 s

ki
p

p
in

g
C

el
l d

ea
th

, 
ap

op
to

si
s,

 a
nd

 c
el

l 
ju

nc
tio

ns
H

um
an

: 
fe

ta
l c

or
te

x
[6

1]

A
lc

oh
ol

Y
es

, 
V

A
S

T-
TO

O
LS

, 
rM

A
TS

, 
M

A
JI

Q
S

F1
, 

C
H

D
2,

 
W

TA
P

–
R

N
A

 p
ro

ce
ss

in
g,

 c
hr

om
at

in
 

re
m

od
el

in
g

H
um

an
 a

nd
 m

ic
e:

 f
et

al
 

co
rt

ex
, 

em
b

ry
on

ic
 c

el
ls

[6
2]

A
lc

oh
ol

–
M

cl
-1

↑ 
M

cl
-1

S
A

nt
i-

ap
op

to
tic

; 
ne

ur
ot

ox
ic

ity
H

um
an

: 
fe

ta
l n

eu
ro

ns
[6

3]
A

lc
oh

ol
Y

es
, 

rM
A

TS
, 

Le
af

C
ut

te
r

K
dm

7a
, 

U
sp

15
, 

D
ap

p1
, 

B
ro

x

E
ar

ly
 b

ra
in

 d
ev

el
op

m
en

t 
an

d
 

fu
nc

tio
n

M
ic

e:
 p

er
ip

he
ra

l b
lo

od
 

m
on

on
uc

le
ar

 c
el

ls
[6

4]

a
R

N
A

-S
eq

 s
p

lic
in

g 
an

al
ys

is
 r

ev
ea

le
d

 t
ra

ns
cr

ip
t-

w
id

e 
D

S
G

s,
 o

nl
y 

m
aj

or
 s

p
lic

in
g 

al
te

ra
tio

ns
 a

re
 s

ho
w

n 
he

re
. 

Alternative splicing in addiction Bhatnagar and Heller 5

www.sciencedirect.com Current Opinion in Genetics & Development 2025, 92:102340



to obtain the drug and faster absorption intravenously, 
these splicing changes [18] are expected to better mimic 
drug-seeking behavior in humans than repeated in
vestigator-administered treatment [44,53]. Only four 
cocaine-driven DSGs are common to all three brain re
gions, and there is negligible overlap between any two 
brain regions, suggesting a high degree of regional spe
cificity [18]. Notably, cocaine-induced alternative spli
cing of the serine- and arginine-rich splice factor Srsf11 
and Srsf11 motifs is highly enriched at exon junctions 
across DSGs, making Srsf11 a putative splicing factor 
regulating cocaine-driven alternative splicing [18]. Of 
note, Srsf11 regulates splicing of Cacna1b gene into 
calcium channel CaV2.2 that regulates neurotransmitter 
release and has been implicated in cocaine reward be
havior and nociception [18].

It is well established that epigenetic changes underlie 
cocaine-driven differential gene expression. An emer
ging literature suggests that epigenetic changes may also 
drive alternative splicing [65–68]. We find that the his
tone modification, H3K36me3, is enriched at cocaine- 
driven alternative exons, but not at constitutive exon 
junctions, implicating a role for chromatin in cocaine- 
induced alternative splicing [18]. Furthermore, to dis
tinguish a direct role of H3K36me3 in splicing via re
cruitment of splicing machinery from an indirect role via 
altered splice factor expression, we apply targeted epi
genetic editing to enrich H3K36me3 specifically at 
Srsf11 splice junctions [18]. Srsf11-targeted H3K36me3 
enrichment is sufficient to drive splicing of Srsf11 and 
partially recapitulate cocaine-induced DSGs genome 
wide, as well as to enhance cocaine-reward behavior. 
Taken together, these data support a direct functional 
role of H3K36me3 in cocaine-driven alternative spli
cing [18].

Alternative splicing in alcohol use disorder
Alcohol exposure produces wide-ranging effects on in
tracellular signaling and molecular mechanisms resulting 
in pan-neuronal adaptations that underlie AUD [69]. To 
advance the knowledge of alcohol-induced global 
changes in gene expression [70] and characterize al
cohol-induced genome-wide changes in alternative 
splicing, Van Booven et al. [54] performed RNA-Seq on 
postmortem human AUD brain tissues (77% male). In 
contrast to just 23 DEGs, profound mis-spliced events 
were observed in all four brain regions studied (1421 
events in superior frontal cortex [SFC], 394 in NAc, 1317 
in basolateral amygdala [BLA], and 469 in central nu
cleus of amygdala [CNA]) [54]. Importantly, the DSGs 
displayed high-regional specificity with only 14 DSGs 
overlapping in all four brain regions [54]. These alcohol- 
induced splicing abnormalities were attributed to the 
increased expression of the splicing factor HSPA6 and 
aberrant expression of long noncoding RNAs, but 

expression of small nuclear RNAs involved in the spli
ceosome was unaffected [54]. Interestingly, another 
AUD study revealed exon skipping events in ELOVL7, 
LINC00665, and NSUN4 that are upstream of HSPA6 
splicing factor, to be a risk factor for AUD, supporting a 
role for HSPA6 in global mis-splicing across the brain 
[56]. Furthermore, Huggett et al. [55] reanalyzed the 
Van Booven et al.’s [54] AUD data set to investigate 
genetic links underlying alternative splicing in AUD. 
The 713 DSGs identified were enriched for neuro
transmission, intracellular signaling, and drug/alcohol 
metabolism and did not overlap with the 53 DEGs [55]. 
Additionally, 6463 splicing quantitative trait loci that are 
specific genetic variants associated with DSGs in AUD 
were observed across the four brain regions, suggesting 
genetic contributions of alternative splicing in AUD [55]. 
In a chronic 15-day ethanol exposure study, upregulation 
of the PCBP1 splicing factor was associated with en
riched binding and increased intron retention of Hapln2 
only in the male rat HPC, suggesting sex differences in 
alcohol-induced alternative splicing [57]. The Hapln2 
splicing event is predicted to result in a truncated pro
tein with loss of function for nerve conduction velocity, 
therefore affecting HPC function in AUD [57]. In con
trast, splicing factors SRSF1 and SRSF11 were enriched 
after chronic ethanol exposure in male monkeys that is 
relevant to human AUD [71]. Similarly, a study on al
cohol-associated liver disease in humans and chronic- 
binge alcohol treatment in mixed-sex mice reveals 
SRSF10 splicing factor to be critical for favoring pro
duction of lipin 1β isoform that increases liver lipid 
production and contributes to disease progression [58]. 
Consistent with the splicing studies in humans, ethanol- 
induced behavioral sensitization in male mice led to 
differential exon usage of 1067 exons in 746 genes re
levant to mRNA processing, protein stability and trans
lation, and synaptic function in the synaptoneurosome 
[59]. Although this study found little to no splicing 
perturbations after acute ethanol exposure in frontal pole 
(42 exons in 36 genes, synaptoneurosome) [59], another 
study found 13 770 exons to be differentially expressed 
after acute ethanol treatment in the HPC of male 
mice [60].

Similar to a developed adult brain, alcohol exposure has 
widespread implications on alternative splicing during 
early nervous system development as well [61–64]. Ka
wasawa et al. [61] performed RNA-Seq on ethanol-ex
posed fetal human female cortex to identify genome- 
wide splicing alterations. A total of 382 (174 novel) al
cohol-induced alternative splicing events were dis
covered with intron retention as the most common 
splicing event [61]. To further uncover the effect of 
prenatal ethanol exposure on alternative splicing, 
Fuentes-Beals et al. [62] used four different ethanol 
exposures on early development data sets from mice and 
human to predict alcohol-induced splicing perturbations. 
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Of the eight common genes that were predicted to be 
alternatively spliced by all splicing analysis tools in 
human embryonic cortex, four genes (CHD2, 
HNRNPH1, SF1, WTAP) are relevant to splicing reg
ulation, suggesting ethanol exposure affects the control 
of splicing process [62]. Importantly, pathway-enriched 
analysis revealed that the genes involved in RNA pro
cessing and protein synthesis were frequently alter
natively spliced in different data sets [62], supporting 
ethanol-induced splicing abnormalities during early de
velopment. When fetal neurons were exposed to 
ethanol, expression of the splicing factor SRSF1 was 
drastically reduced, resulting in mis-splicing of its 
downstream target, anti-apoptotic myeloid cell leukemia 
1 (Mcl-1) [63] that is suggested to reduce neuron viabi
lity and mediate alcohol exposure–associated neuro
toxicity [72]. Finally, in prenatal ethanol exposure of 
mixed-sex mice, transcript-wide changes in alternative 
splicing were observed that have the potential to be 
utilized as peripheral biomarkers for early prediction of 
motor learning deficits [64].

Conclusion and future directions
Alternative splicing has now emerged as a shared mole
cular brain adaptation in addiction (Table 1) [28]. 
Genome-wide studies have identified global alternative 
splicing changes in multiple brain reward regions asso
ciated with opioid [36], cocaine [18,44], and alcohol 
treatment [54,55,59,61,62]. These splicing changes show a 
high degree of regional specificity, suggesting that dif
ferent neural circuits and processes may be uniquely af
fected by substance use. Additionally, the negligible 
overlap between genes undergoing expression and spli
cing changes suggests independent signaling pathways 
regulate transcriptional and post-transcriptional processes. 
Despite differences in aberrantly spliced genes by dif
ferent drugs of abuse, two emerging common pathways 
include (1) neuronal signaling and neurotransmission: 
MAPK [33], dopamine [51], serotonin [52], AMPA [55], 
GABA [59], NMDAR [60], and calcium signaling [18,59]; 
(2) RNA transcription and processing: ΔFosb [45,49], 
E2f3a [53], Srsf11 [18], Srsf5 [59], SF1, and WTAP [62].

Despite these recent advancements, a comprehensive 
understanding of causes and consequences of these 
splicing events remains limited, restricting therapeutic 
intervention in addiction. Although several splicing fac
tors, such as HSPA6 [54], PCBP1 [49], SRSF1/10/11 
[18,71,58], and H3K36me3 [18] epigenetic modification 
have been implicated, additional studies are needed to 
validate their functional relevance in addiction and 
identify upstream regulatory mechanisms governing 
drug-induced alternative splicing. Current splicing 
therapeutic tools are limited by the need to deliver DNA 
expression (trans-splicing and modified small nuclear 
RNAs) or lack of specificity (small molecules) [73]. 

Alternatively, splice-switching antisense oligonucleo
tides (ssASO) are currently being explored for highly 
specific, low toxicity, and ease of delivery for treatment 
of neurological diseases [74,75]. An ssASO hybridizes to 
splice-factor recognition-specific sequences within target 
pre-RNA to either block or promote splicing. Putative 
ASO splice-switching targets include OPRM1 [32,33], 
BDNF [34], and BIN1 [36] for opioid; BDNF [50], 
HTR2A [52], Srsf11 [18], and E2F3 [53] for cocaine; 
ELOV7 [56], GRIA2 [55], Hapln2 [57], and GRIN1 [60]
for alcohol treatment. The recent discovery that PCBP1 
drives splicing of the ‘addition switch’, ΔFosb [49], re
presents a promising ssASO target in SUD [47,48].

Moreover, these findings underscore the need for in- 
depth studies analyzing neural alternative splicing in re
sponse to other substances of abuse to delineate similarity 
and differences between their mechanisms. So far, ly
sergic acid diethylamide has been shown to increase the 
number of splicing junctions used in rat mPFC [76], while 
methamphetamine decreases total splicing events in the 
mice brain [77]. Additionally, cannabinoid exposure mis- 
splices Npas2 transcription factor and Hdac4 histone 
deacetylase [78], while nicotine exposure mis-splices 
NEAT1 lncRNA likely affecting mRNA transport [79]. 
These PCR studies reveal splicing changes with multiple 
drugs of abuse but limit our ability to determine splicing 
mechanisms. Finally, most addiction studies primarily use 
male subjects or mixed sex, limiting our understanding of 
sex-specific differences in splicing. Since sex differences 
in alcohol-induced alternative splicing have been specu
lated [57], future studies must explore splicing changes in 
both sexes.
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