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Abstract

Drug addiction or substance use disorder (SUD), has been conceptualized as a three-stage (i.e. binge/intoxication, withdrawal/negative
affect, and preoccupation/anticipation/craving) recurring cycle that involves complex changes in neuroplasticity, reward, motivation,
desire, stress, memory, and cognitive control, and other related brain regions and brain circuits. Neuroimaging approaches, including
magnetic resonance imaging, have been key to mapping neurobiological changes correlated to complex brain regions of SUD. In
this review, we highlight the neurobiological mechanisms of these three stages of addiction. The abnormal activity of the ventral
tegmental, nucleus accumbens, and caudate nucleus in the binge/intoxication stage involve the reward circuit of the midbrain limbic
system. The changes in the orbitofrontal cortex, dorsolateral prefrontal cortex, amygdala, and hypothalamus emotional system in
the withdrawal/negative affect stage involve increases in negative emotional states, dysphoric-like effects, and stress-like responses.
The dysregulation of the insula and prefrontal lobes is associated with craving in the anticipation stage. Then, we review the present
treatments of SUD based on these neuroimaging findings. Finally, we conclude that SUD is a chronically relapsing disorder with
complex neurobiological mechanisms and multimodal stages, of which the craving stage with high relapse rate may be the key
element in treatment efficacy of SUD. Precise interventions targeting different stages of SUD and characteristics of individuals might

serve as a potential therapeutic strategy for SUD.
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Introduction

Substance use disorder (SUD), also known as drug addiction, is a
state of compulsive drug use despite substantial harm and ad-
verse consequences (Franklin, 1995; Nathan et al., 2016; Volkow
and Boyle, 2018). Generally, SUDs include alcohol use disorder,
tobacco use disorder, and other illicit drug-use disorder (such
as methamphetamine, ketamine, and heroin) (Petry et al.,, 2018).
SUDs are characterized by (i) compulsion to seek and take the
drug, (ii) loss of control in limiting intake, and (iii) emergence of
a negative emotional state (e.g. dysphoria, anxiety, irritability) re-
flecting a motivational withdrawal syndrome when access to the
drug is prevented (Koob and Volkow, 2016). According to George
F. Koob and Nora D. Volkow’s conceptual framework (Koob and
Volkow, 2010), SUD can be summarized as a composite cycle com-
posed of the three stages: binge/intoxication, withdrawal/negative
affect, and preoccupation/anticipation (craving). The intoxicat-
ing and incentive salience, rewarding effects of drug use, and
pathological habits (e.g. drug-seeking habits) are dysregulation
of function in the binge/intoxication stage. Negative reinforce-
ment mainly driven by negative emotion is a common presen-
tation in the withdrawal/negative affect stage. In the preoccu-
pation/anticipation (craving) stage, abnormal executive function
results in a decline in cognitive control, which is a key element in
relapse (reviewed in Koob and Volkow, 2016).

The neuroimaging findings in human and animals indicate that
the binge/intoxication stage of drug addiction involves changes
in dopamine (DA) and opioid peptides as well as other neuro-

transmitters in basal ganglia (Belin et al., 2009). Once addicted,
the brain mesolimbic and mesocortical DA levels, crucial for rein-
forcing effects, are increased (Hyman et al., 2006). The neurons in
the ventral tegmental area (VTA), both DA-releasing and non-DA-
releasing projecting neurons, play a central role in rewarding cir-
cuitry and related drug seeking behaviour (Morales and Margolis,
2017). In parallel, the withdrawal stage mainly involves changes
in the orbitofrontal lobe, dorsolateral prefrontal cortex (DLPFC)
(Parvaz et al, 2011) and extended amygdala (EA) (Carmack
et al., 2019; Volkow et al., 2019) related to withdrawal symp-
toms such as negative emotion states and stress. The preoccupa-
tion/anticipation stage involves changes in prefrontal cortex (PFC)
and insula related to craving (Parvaz et al.,, 2011) and changes in
dorsolateral prefrontal and cingulate gyrus related to disrupted
inhibitory control (Goldstein and Volkow, 2002).

Regarding the current clinical therapy for SUD, this mainly in-
cludes pharmacological and nonpharmacological interventions
(Volkow and Boyle, 2018; Kalin, 2020). To date, the Food and Drug
Administration (FDA) has approved several medications for the
treatment of different types of substance use disorder, such as
buprenorphine/naloxone and methadone for opioid use disorder,
acamprosate for alcohol use disorder, nicotine replacement ther-
apies, bupropion, and varenicline for tobacco use disorder. How-
ever, some medicines are addictive with large side-effects, and
most of them show unsatisfactory long-term efficacy (Volkow
and Boyle, 2018). Similarly, psychological therapies, such as cog-
nitive behavioral therapy (CBT), mindfulness-based interventions
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(MBIs), interpersonal psychotherapy, and social support therapy,
are commonly applied in the treatment of SUD with limited
long-term effectiveness. For example, we and other researchers
found that mobile-based CBT can improve quitting smoking rate
in the early stage, but most of quitters eventually relapsed (Liao
et al., 2018b).

Here, we review recent advances in neuroimaging studies un-
derlying the addictive behaviors and brain circuits related to the
three stages of addiction, and expect to provide considerable in-
sight into the neurobiological mechanisms of SUD. We also focus
on the related treatment and promising interventions.

Diagnostic criteria, definition, and conceptual
framework of SUD

From the perspective of diagnostic concepts, SUD s a broader con-
cept that encompasses the term of drug addiction. Since 2013,
SUD has appeared in DSM-5, with the combination of two sepa-
rate conceptions used previously (substance abuse and substance
dependence) (Hasin et al., 2013). According to the DSM-5, SUD
is chronic relapsing neuropsychiatric disorder characterized by
three main features: (i) compulsive seeking and taking of drugs,
(ii) loss of control and craving in limiting intake, and (iii) emer-
gence of a negative emotion states (e.g. dysphoria, anxiety, and
irritability) and stress. Over 10 types of addictive substance can
lead to SUD, with alcohol, tobacco, caffeine, cannabis, metham-
phetamine, heroin, and cocaine as most common ones (Vahia,
2013).

SUD has been associated with severe economic and social con-
sequences (e.g. illness, death, low productivity, and crime). The
number of cases of SUD reached an estimated 71.2 million peo-
ple globally in 2017 (Pan et al., 2020). According to the United Na-
tions Office on Drugs and Crime (UNODC), an estimated 192 mil-
lion people aged 15-64 recreationally used marijuana in 2018. In
the USA, 21.6 million people over the age of 12 meet the criteria
for SUD (Baysinger and Gianessi, 2015). In China, mental, neuro-
logical, and substance use disorders together contribute to nearly
80% disease burden of years lived with disability (Charlson et al.,
2016). For alcohol and tobacco, most people in America, Europe,
Japan, and New Zealand reported lifetime use of them, with 74%
in US, 67% in Lebanon, and 60% in Mexico (Degenhardt et al., 2008).
In China, male, female and total drinking rates were 84.1,29.3, and
59.5%, respectively, and 6-month incidence rates of acute intoxi-
cation were 5.162, 0.017, and 2.637% (Wei et al., 1999). In Beijing
and Shanghai, alcohol abuse (DSM-IV) rate was 4.7% in 2001 (Lee
etal., 2007). As for heroin, methamphetamine, ketamine, and other
illicit drugs, over 14 million addicts in China as indicated in the
2021 China Drug Situation Report.

The addiction progress is a cycle that involves transfor-
mation from positive reinforcement (driven by impulsivity) to
negative reinforcement (driven by compulsivity). The concep-
tual spiraling distress—addiction cycle was first published in
Science in 1997 by George F. Koob who provided a theoret-
ical framework for understanding the neurobiological mech-
anisms of addiction (Koob and Le Moal, 1997). Since then,
the conceptual framework of SUD has been proposed in a
series of reviews by Koob (Koob and Volkow, 2010, 2016;
Koob, 2021). This composite addiction cycle contains three ma-
jor components—binge/intoxication, withdrawal/negative affect,
and preoccupation/anticipation—that correspond to three do-
mains of dysfunction (incentive salience/pathologic habits, nega-
tive emotional states, and executive function, respectively) (Koob,
2021). Interactions and neuroplasticity changes of these three

stages make the dysfunction more intense and ultimately become
addiction.

Overview of neuroimaging techniques for SUD

Over the past two decades, our knowledge of the neurobiolog-
ical mechanisms of SUD is largely thanks to two predominant
developments. One is the neurocircuit findings on multiple ani-
mal laboratory models of addiction. Anotheris the unprecedented
advances in neuroimaging technologies, and studies of the hu-
man brain using these noninvasive techniques at both molec-
ular and neurobiological levels (Koob and Volkow, 2010). These
imaging tools can be vital for diagnosis, treatment monitoring,
and finding prediction biomarkers in neurologic and psychogenic
diseases (Risacher and Saykin, 2021). The current neuroimaging
used clinically encompasses mainly three types: positron emis-
sion tomography, electroencephalography (EEG), and magnetic
resonance imaging (MRI). Owing toits advantages (safety and flex-
ibility in the information obtainment), MRI is most frequently
used and has become the mainstay in SUD imaging studies
(Suckling and Nestor, 2017).

Positron emission tomography, using radioactive compounds,
can be used in vivo to radiolabel and detect the neurotransmit-
ters (e.g. DA and DA receptors) binding to the drugs or ligands
of substances in the brain (Wagner et al., 1984; Brody et al., 2004;
Scott et al., 2007). The pharmacokinetics and distribution of drugs
or metabolites can also be detected (Volkow et al.,, 1991; Volkow
et al., 1997a; Volkow et al., 1997b). EEG is another physical record-
ing of voltage between two different cerebral plots reflecting the
summation of postsynaptic potentials from cortical neurons. Us-
ing EEG, we can observe both local and global cortico-cortical cir-
cuitry underlying SUD (Thatcher et al., 1986; Alper et al.,, 1990)
or even predict relapse in patients with SUD (Winterer et al.,
1998).

MRI emerged in the 1970s (Blamire, 2008). Using a magnet
and radiofrequency energy, MRI visualizes the internal structure
and soft tissue morphology of human body, especially for imag-
ing the brain (Zhu et al., 2015). Generally, MRI draws brain struc-
tural changes via voxel-based morphometry for measuring grey
matter volumes, diffusion tensor imaging for white matter tracts,
and draws brain functional changes via blood oxygenation level-
dependent endogenous contrast for detecting local function of
specific regions and circuits (Ashburner and Friston, 2000, 2001;
Biswal, 2012; Suckling and Nestor, 2017; Yousaf et al.,, 2018). In
addition, relaxation times characterized two different time con-
stants, T1 and T2, according to the texture of tissues (solid tissues
such as gray and white matter have shorter relaxation times than
fluids such as water and cerebrospinal fluids) (von Schulthess
etal, 2013).

Taken together, neuroimaging tools give us a chance to get
closer to the brain molecular and circuit mechanisms of SUD. The
studies of animal models and subsequently brain imaging studies
on addicted individuals at different stages of addiction have en-
hanced our understanding of SUD, and provide insights into pre-
venting and treating this disorder.

Neurobiological mechanisms and brain circuits
of SUD

Binge/intoxication stage

Intoxication is the first stage of the addiction cycle when indi-
viduals are exposed to an overdose of drugs, which produces sig-
nificant behavioral and cognitive impairments. These compulsive
behaviors are considered critical for the transition from casual
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Table 1: Brain regions and neurotransmitter systems involved in the three stages of addiction.

Functional domain Main system involved Brain region Neurotransmitter system
binge/intoxication stage reward circuit of the NAc dapamine (McGregor and Roberts, 1993; Salamone et al., 2007)
midbrain limbic system
VTA dapamine, opioid (Mameli-Engvall et al., 2006; Matsumoto and
Hikosaka, 2009)
PFC glutamate (Wu et al., 2018)
CN dapamine, seroton (Kuczenski et al., 1995)
CeA dapamine, serotonin (Koob, 1999)
withdrawal/negative affect anti-reward/ PFC dapamine (Cassens et al., 1981; Barr et al., 1999)
pressure circuit
OFC serotonin (Wright et al., 2021)
ACC dapamine (McDevitt et al., 2021)
BNST norepinephrine, catecholamine (Park et al., 2012), k-opioid (L€ et al.,
2018)
preoccupation/anticipation executive control or PEC glutamate, dapamine (Parsegian and See, 2014)
inhibitory control
BNST norepinephrine (Shaham et al., 2003)
Insula corticotropin-releasing factor (Nagvi and Bechara, 2009)
LDT acetylcholine, glutamate, y-aminobutyric acid (Mantsch et al.,

2016; Kaneda, 2019)

LDT = the laterodorsal tegmental nucleus.

uptake to addictive substance use and are influenced by positive
reinforcing stimuli (such as a euphoric effect) (Volkow et al., 1997b;
Adinoff, 2004). This process is now well understood and is mainly
involved in reward systems and DA motive system (Wise, 2004;
Volkow et al., 2017). Evidence from single drug administration has
shown that the mesolimbic DA system is activated by acute ex-
posure to opioids, ethanol, nicotine, amphetamine, and cocaine
(Di Chiara and Imperato, 1988). Traditional neuroimaging stud-
ies have revealed that increased extracellular DA in the mesolim-
bic system, especially the nucleus accumbens (NAc), is associ-
ated with drug exposure or the motivational characteristic stimuli
such as drugs (Table 1) (McGregor and Roberts, 1993; Robledo and
Koob, 1993; Volkow et al., 1997b; Salamone et al., 2007). DA neuro-
transmission in NAc was detected increased in response to cues
related to cocaine (Kawahara et al., 2021). However, the latter find-
ings pointed out that activation of NAc was not enough for acute
reinforcing effects (brain reward systems seem to have a multi-
dimensional neuropharmacological basis, see a review in Koob,
1992) as 6-hydroxydopamine failed to block heroin or ethanol
self-administration (Hnasko et al., 2005; Nestler, 2005). In addition,
Nora Volkow et al. found that cocaine worked by blocking the DA
transporter and thereby increased the free concentration of DA in
the brain (Volkow et al., 1997b).

Reward systems and goal-directed behaviours also involve
other brain regions such as the VTA. Animal studies have shown
opioids and alcohol can be directly self-administered into the
VTA and intravenous nicotine self-administration is blocked by
neurotoxin-specific lesions of the DA system (Watkins et al., 2000).
Putative VTA DA neurons are activated in response to both un-
expected and expected rewards (Matsumoto and Hikosaka, 2009;
Eshel et al., 2016), and recent optogenetic studies indicate that ac-
tivation of the VTA DA neurons is rewarding (Witten et al., 2011).
Further detailed study reveals two types of DA neuron in the VTA
delivering positive and negative motivational signals (Matsumoto
and Hikosaka, 2009). Moreover, nicotine is reported to elicit DA re-
lease by activating beta2 subunit of acetylcholine receptors in the
VTA (Mameli-Engvall et al., 2006) and also accelerates endogenous
opioid release, which contributes to rewarding effects and synap-
tic function (Table 1) (Mansvelder and McGehee, 2000). These re-

sults have illustrated that the VTA DA neurons play an important
role in the reward system in the intoxication stage.

Along with mesolimbic areas in DA reward system, other re-
gions such as the PFC, caudate nucleus (CN) area, and central
nucleus of the amygdala (CeA) are also considered to have a key
function in the acute reinforcement (Table 1). MRI studies found
that the PFC not only regulated limbic reward regions but was
also activated with exposure to cocaine-related cues (Goldstein
and Volkow, 2011; Kawahara et al., 2021). Our magnetic resonance
spectroscopy results found metabolites (glutamine) of medial PFC
significantly increased in methamphetamine addicts compared
with healthy control participants (Wu et al., 2018). A study also
confirmed the PFC in modulation of the VTA DA neurons is as-
sociated with nicotine reward and the PFC-VTA functional cou-
pling is one mechanism for nicotine addiction (Wu et al.,, 2013).
Electrophysiological recording of neurons in the CN showed both
acute and chronic methylphenidate exposure result in motiva-
tional changes (Venkataraman et al., 2020). Functional MRI (fMRI)
analyses also revealed the CN activation in smokers (Qian et al.,
2017). The CeA is another key area in reward. Neurochemical ele-
ments such as DA and serotonin increase in the CeA lead to com-
pulsive drug-seeking (Table 1) (Koob, 1999). Optogenetic activation
of the CeA generates addiction-like behavior related to reward and
adverse consequences (Tom et al., 2019).

Withdrawal/negative affect

Chronic drug exposure results in adaptive changes of brain re-
ceptors and neurotransmitters and relative circuits. The anti-
reward/pressure circuit activated when drug administration is
suddenly interrupted, and neurotransmitters such as DA and 5-
HT in this circuits also decrease (Koob and Volkow, 2016). In
the withdrawal/negative affect stage, individuals with SUD show
varieties of negative emotional symptoms including irritability,
malaise, dysphoria, anhedonia, and state of stress, which are
involved in negative reinforcement associated with brain stress
system consisting of the PFC, ventral striatum, and EA (Cassens
et al, 1981; Gawin and Kleber, 1986; Koob et al., 2014). The emer-
gence of this negative emotional state might be due to the adap-
tive response and decreased sensitivity to the repeated DA stimuli
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(Table 1) (Cassens et al.,, 1981; Barr et al., 1999). The EA is a fore-
brain area that consists of the bed nucleus of the stria terminalis
(BNST), CeA, and possibly a transition zone in the medial portion
(or shell) of the NAc (Heimer and Alheid, 1991).

The EA is the most relatively region in antireward circuit with
tolerance and withdrawal behaviors in the negative effect stage
(Koob, 1999; Baidoo and Leri, 2022). Chronic exposure to alcohol
changes the synaptic function and neuronal excitability both in
the prefrontal cortical and EA regions (Pleil et al., 2015). Neuronal
activity-regulated pentraxin expressed in the EA is found to play
a central role in opioid withdrawal (Reti and Baraban, 2003). More
recently, a study demonstrates the VTA DA projection to the amyg-
dala (VTAPA—amygdala) is necessary and sufficient for reinstate-
ment of cocaine place preference (Tian et al., 2022).

The PFC, including the orbitofrontal cortex (OFC) and anterior
cingulate cortex (ACC), is activated in the intoxication/bingeing
stage and deactivated in withdrawal stage (Goldstein and Volkow,
2002). One recent study in rats illustrated Fos expression (marker
for neuronal activity) in the OFC increased under incubation of
craving and the OFC inactivation decreased drug seeking on with-
drawal day 15, which indicated that the OFC plays a critical role in
craving and withdrawal (Altshuler et al., 2021). On the other hand,
the OFC serotonin (5-HT) function of pyramidal neurons and 5-
HT1A and 5-HT2A receptor were reported to mediate cocaine
withdrawal behaviours (Table 1) (Wright et al., 2021). Most recently,
the activity and D1-receptor of layer V pyramidal neurons in the
ACC (ACC L5 PyNs) was shown to play a central role in opioid-
induced withdrawal and withdrawal-induced mechanical hyper-
sensitivity (McDevitt et al., 2021). However, glutamate concentra-
tion in the ACC and cingulate-cortical functional connectivity is
found to be participated in nicotine deprivation (Abulseoud et al.,
2020).

The increases in stress and anxiety-like behaviors in the with-
drawal stage correlate with BNST functions connecting stress
and reward neural circuitry. Norepinephrine or catecholamine
(Table 1) (Park et al., 2012) in the BNST and noradrenergic recep-
tors modulating excitatory and inhibitory transmission in BNST
is influenced by withdrawal related stress (Flavin and Winder,
2013). Moreover, k-opioid receptors in BNST is involved in stress-
related alcohol seeking as site-specific injections of the «-opioid
antagonist induced Fos expression with reinstatement indicted
(Table 1) (Lé et al., 2018). On the other hand, ex vivo slice physiology
shows that increased neuronal excitability in the BNST is associ-
ated with ethanol-induced conditional place preference (Patiet al.,
2019).

Preoccupation/anticipation (craving)

Craving refers to the subjective experience of the impulse or de-
sire to use addictive substances, with no significant difference be-
tween the female and male individuals (Nicolas et al., 2022). As a
key clinical feature in SUD, craving has been re-incorporated into
the diagnostic criteria of DSM-5 and hypothesized to be a key el-
ement in addiction and relapse.

Craving may involve changes in multiple neural circuits and
brain regions related to the core symptoms of addiction such as
negative emotion, impulse, or compulsive motivation. Executive
control or inhibitory control is vital for maintaining goal-directed
behaviour and is thought to be a key factor in craving and re-
lapse (Li and Sinha, 2008). Substantial evidence summarizes that
the prefrontal-limbic dysfunction contributes to attenuation of
inhibitory control in SUD (Menon and D’Esposito, 2022) and in-
volves in the anticipation stage. One animal study suggests that
brain nuclei such as the dorsal PFC, core of the NAc (NAcore),

ventral pallidum, and dorsal PFC-NAcore—ventral pallidum circuit
mediates cocaine-induced reinstatement. Moreover, DA admin-
istration into the PFC can elicit a reinstatement in cocaine self-
administration model (McFarland and Kalivas, 2001).

In addition, cue-induced reinstatement involves a glutamater-
gic regulation and projection in the PFC (Table 1) (Parsegian and
See, 2014), insular cortex (Zhang et al., 2019), and prelimbic cortex
(McGlinchey et al., 2016; Stefanik et al, 2016) in multiple SUDs,
while stress-induced reinstatement is associated with D1/D2
DA receptor in the limbic and motor circuitry (McFarland
et al, 2004) or cholinergic, glutamatergic, and gamma-
aminobutyric acid (GABA)-ergic projection in the laterodorsal
tegmental nucleus (Kaneda, 2019). Futhermore, neuropharmaco-
logical studies show the involvement of corticotropin-releasing
factor and noradrenaline in stress-induced reinstatement
(Mantsch et al., 2016).

Structural and functional MRI studies have found that a va-
riety of brain regions are impaired under addiction while absti-
nence can rescue these brain damages. Using diffusion tensor
imaging, our laboratory and others provide evidence for white
matter abnormalities following chronic ketamine exposure both
in monkeys (Li et al., 2017) and ketamine users (Liao et al., 2010).
We found that white matter in the bilateral frontal and left tem-
poroparietal regions changes in chronic ketamine abusers in a
dose-dependent manner indicating a microstructural basis for the
behavior changes with prolonged ketamine use. Meanwhile, we
also observed reduced gray matter volume in the dorsal prefrontal
regions (the left superior frontal gyrus and right middle frontal
gyrus) in chronic ketamine users. Indeed, abstinence and effective
relief of craving is expected to ameliorate brain damage caused by
addictive substances. For example, He et al. found that white mat-
ter damage in the DLPFC could be improved in short- or long-term
cocaine abstinence patients over 5 years (He et al., 2020). Our study
found that the gray matter density of the PFC, ACC, and temporal
cortex decreased after 3 days of abstinence, and the damage of
the superior frontal gyrus reversed after 1 month of withdrawal,
but there were no changes in the right middle frontal gyrus, left
cingulate gyrus, and inferior occipital gyrus (Wang et al., 2012).
Chen et al. found that heroin abstinent patients had lower levels
of evoked craving, stronger functional connectivities between the
dorsal ACC, left DLPFC, and right posterior parietal cortex, which
are positively correlated with duration of abstinence (Chen et al.,
2021). In addition, fMRI revealed the increase of regional homo-
geneity (ReHo, first reported by Zang et al., 2004) of the left precen-
tral frontal gyrus and the decrease in the right ACC were related
to the decreased craving (Liao et al., 2012).

Other nuclei were also sporadically reported to be associated
with drug anticipation. One study shows increased craving af-
ter abstinence is associated with decreased amygdala volume in
alcohol abusers (Wrase et al., 2008). Our previous study found
that the degree of caving in ketamine addicts is proportional to
the amount of ketamine use and the functional connectivity be-
tween the posterior parietal lobe and the right dorsal nucleus
was also related to craving (Liao et al, 2016). Imaging studies
found that cannabis, cocaine, and heroin users all showed ab-
normal activation in the anterior insula, DLPFC, and inferior pari-
etal lobe compared with healthy control participants using a cue-
induced craving task (Zilverstand et al., 2018). One study found
ketamine addicts exhibited increased activation in the anterior
cingulate gyrus and precuneus than healthy control when ex-
posed to ketamine-related clips, while the anterior central frontal
gyrus was mainly activated under smoking-related cues (Liao
et al., 2018a).
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Current clinical treatments of SUD

The past 300 years have seen the great advances in neurobiolog-
ical mechanisms in SUD. Ongoing studies not only broaden our
knowledge of the molecular pathways and brain circuits involved
in SUD, but also provide new ideas and targets for addiction treat-
ment. Overall, the current therapeutic options in clinical prac-
tice for SUD are still far from satisfactory (Angres and Bettinardi-
Angres, 2008; Liu and Li, 2018). The FDA approved medications in-
cluding buprenorphine, naloxone, methadone, acamprosate, and
some kinds of physical therapy for SUD have a limited effective-
ness and insufferable side-effects (Volkow and Boyle, 2018). As
SUD is a chronic brain disease with genetic, molecular, environ-
mental, and psychosocial factors involved, it is necessary to fig-
ure out the key pathogenic factors beneficial to the treatment.
Here, we briefly review main clinical treatments for SUD, including
pharmacological, physical (brain stimulation), and psychological
therapies (Leshner, 1997).

Pharmacological therapies

The present pharmacological treatments for SUD mainly target to
neurotransmitters and neural networks in process of SUD (e.g. the
reward system, the antireward system) (Liu and Li, 2018). For ex-
ample, buprenorphine/naloxone or a combination medication of
buprenorphine and naloxone is an opioid agonist used to treat opi-
oid use disorder and chronic pain. It works typically by relieving
withdrawal and craving symptoms (Khroyan et al., 2015). Acam-
prosate, the medication treatment used in alcohol use disorder,
is believed to act as an NMDA receptor antagonist and modula-
tor of GABA, receptors (Liang and Olsen, 2014). Medications for
nicotine use disorders approved by FDA are nicotine receptor an-
tagonist bupropion (Rigotti et al., 2022), partial agonist varenicline
(Ebbert et al., 2015), and nicotine replacement therapy (Molyneux,
2004). However, the current medications for SUD failed to prevent
a high relapse rate, and some of them even show serious side-
effects (George and O'Malley, 2004).

Physical therapies

Brain stimulations targeting specific regions involved in the cy-
cle of addiction have been proved effective in reducing drug use
and relapse. The most frequently used and studied among nonin-
vasive brain modulations are transcranial magnetic stimulation
(TMS) and transcranial direct current stimulation (tDCS) (Lupi
etal., 2017; Hanlon et al., 2018). Other neuromodulatory treatment
for addiction also includes deep brain stimulation (DBS), which
directly stimulates and modulates the brain (Luigjes et al., 2019).
TMS, particularly repetitive TMS (rTMS), has been approved by
FDA to treat depression. Recently, it has been found that TMS may
also be effective in drug addiction treatment, and has certain ef-
fects in various SUDs (such as cannabis, cocaine, and opioid use
disorders) (Stein et al.,, 2019; Steele and Maxwell, 2021; Nardone
et al., 2022). Studies have shown that both rTMS and tDCS target-
ing the DLPFC is curative to reduce craving and prevent relapse
(Fregni et al.,, 2008; Coles et al., 2018). For example, Yuan and col-
leagues found that in relative to sham groups, 10 consecutive days
of 1 Hz rTMS over the left DLPFC can be effective in reducing
craving scores and impulsive behavior in heroine abusers (Yuan
et al.,, 2020). Li et al. demonstrated that, compared to the wait list
control group, either 20 daily consecutive sessions of high fre-
quency (10 Hz) or low frequency (1 Hz) rTMS can decrease crav-
ing scores in heroin addicts with treatment effects up to 60 days
(Liu et al., 2020). High-frequency rTMS in the left DLPFC can also
improve cognitive abilities in individuals with SUD and even nor-

mal people, including working memory, attention, and learning
ability (Gorelick et al., 2014; Wang et al., 2014) Although accumu-
lated evidences from randomized controlled trials (RCT) have re-
vealed the short-term efficacy of TMS in patients with SUD, the
long-term outcome efficacy, such as 6 or 12 months, and the un-
derlying mechanisms remain unknown.

The tDCS treatment for SUD also shows promising results. An
RCT demonstrated that tDCS with the cathode over the left DLPFC
and the anode over the right DLPFC (2 mA, 20 min, 5 days) can
decrease craving and anxiety scores compared to the sham-tDCS
group (Batista et al., 2015). Using bilateral tDCS (left cathodal and
right anodal) targeted over the DLPFC (2 mA, 13 min, 5 days), a
study found significant decrease in relapse rate at 6 months. How-
ever, most studies were based on small samples, well-designed
large-sample size RCTs are needed to verify its efficacy for pre-
venting relapse of SUD.

Since DBS has shown effective in numerous animal studies for
addiction to various drugs of abuse (Creed et al., 2015; Guercio
etal,, 2015; Hamilton et al., 2015; Batra et al., 2017), recently, several
case series or case reports in humans have presented promising
results. NAc, a key structure in the mesolimbic reward pathway, is
the most common used target in DBS. In the case report by Muller
et al. (Muller et al., 2016), five patients who received DBS of the
NAc to treat their treatment-resistant alcohol addiction all had
encouraging results. In another study (Kuhn et al,, 2011), the pa-
tients showed a reduction of alcohol craving and intake 1 year
after treatment. Other studies examined the effect of bilateral
high-frequency NAc stimulation in patients with a chronic treat-
ment resistant course of heroin or cocaine dependence, and also
reported promising effects (Kuhn et al., 2014; Gongalves-Ferreira
et al., 2016). It should be noted that more RCTs are needed to ver-
ify efficacy and for long-term abstinence and potential synergy
with other addiction interventions in the future.

Psychological therapies

In the recurring cycle-binge/intoxication stage, the core of treat-
ment is to increase patients’ motivation to quit, in which case
motivational interviewing (MI) might be more useful. MI is a
client-centered therapeutic intervention that aims to solve am-
bivalence toward change (Hettema et al., 2005). A review showed
that MI reduced the use of substances compared to control group
(Smedslund et al., 2011). A meta-analysis showed the brief MI also
performed well in reducing alcohol consumption, but a single MI
is less effective than a combination of MI with CBT (Riper et al.,
2014).

During the second stage, the most important thing is to re-
lieve withdrawal symptoms, such as dealing with various nega-
tive emotions and reducing negative urgency . Thus, improving
emotion regulation seems useful in this period. CBT can enhance
adaptive emotion regulation skills, and help individuals perceive
emotions and improve personal ability to adjust to these emotions
(Berkinget al., 2008). A study reported that CBT could alleviate neg-
ative urgency in people with gambling disorder (Garcia-Caballero
etal., 2018). Mindfulness meditation is often described as nonjudg-
mental attention or regulation according to present experiences.
An RCTindicated that MBIs can reduce drug use (Tang et al., 2016).
Eric L. Garland found that MBIs could synergize a range of posi-
tive affective mechanisms to reduce addictive behavior (Garland,
2021).

In the stage of preoccupation/anticipation (craving), the key to
relapse is the craving for drugs, as most withdrawal symptoms
will subside in a short period of time except for craving. Hence,
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the core of treatment in this stage includes cope with craving and
preventing relapse. A systematic review showed CBT has efficacy
in reducing the use of methamphetamine and deceasing craving
(AshaRaniet al., 2020). Our large-sample size RCT revealed the 24-
week cessation rate in the CBT-based smoking cessation interven-
tion group was 3-fold higher than that in the control group (Liao
etal., 2018Db). A line of study examined the efficacy of MBIs for SUD,
and one RCT indicates a better long-term efficacy of MBIs than
CBT (Bowen et al., 2014). Mindfulness strategies could bring about
immediate reductions in craving, which suggests these strategies
may confer unique benefits of both reducing craving and decreas-
ing the extent to which craving leads to drug use (Tapper, 2018).

Conclusions and future directions

SUD has been characterized as a chronic, relapsing brain disor-
der with complex etiology and pathogenesis. In this review, we
summarize neurobiological mechanisms, neurotransmitters, and
brain circuits involved in the three-stage cycle conceptual frame-
work of SUD, mainly focusing on the neuroimaging findings. Imag-
ing studies provide us a chance to closely explore the global
changes in the brain areas related to previous well-known reward
system, antireward/antistress system, and further explore the un-
derlying neural mechanisms of cravingin the process of addiction.
Accordingly, based on these findings, pharmacological, physical,
and psychological treatments for SUD are included. Clearly, how-
ever, a great deal of evidence and advances are observed in SUD,
the current treatments of SUD are unsatisfactory, leaving us a long
way to go.

We emphasize that strong craving after the drug withdrawal as
an important target in the treatment of SUD. Thus, both physical
therapies and CBT targeted to the DLPFC regulating craving show
certain therapeutic effects. However, traditional CBT is mainly fo-
cused on content and little attentioni s paid to the change and
internal needs of different individuals in the process of the addic-
tion cycle, which may be the reason for the less satisfactory treat-
ment effect. Clinical psychological intervention based on the core
characteristics of the different stages of addiction is expected to
achieve therapeutic breakthroughs, and the analysis of the neuro-
biological mechanisms related to therapeutic effects is conducive
to finding better treatment methods (Volkow et al., 2016). The key
to improve treatment effects is to target the core symptoms, and
meet the internal needs of individuals at any of these three stages,
which may more effectively relieve drug craving and reduce
relapse.

The physical therapies, such as rTMS and tDCS, were com-
monly used for their noninvasive features. Besides the stimula-
tion parameters and duration of treatment, an optimal therapeu-
tic target is a puzzle and a key to the efficacy of TMS. Early TMS
trials positioned the TMS coil over the PFC using scalp measure-
ments. Using the “5-6 cm” method and the later “10-20 electroen-
cephalography system”, many larger clinical investigations have
been approved by the FDA (see a review by Cash et al., 2021). To
target the superficial cortex is easy, but, in most cases, the re-
gions involved in addictive characteristics may be located deep
in the brain. The cross-synaptic connection localization method
has emerged. Using functional or structural connectivity meth-
ods to locate the superficial cortical brain region corresponding
to the hub region in the neural circuit, this method achieves the
similar effect of direct regulation of the deep brain in the core
of the neural circuit (Drysdale et al., 2017; Siddiqi et al., 2022). A
neuronavigational approach was used according to differences in
brain structure, function, and metabolism of individuals with de-

pression (Herwig et al., 2003; Fitzgerald et al., 2009). Personalizing
the stimulation site based on individual connectivity has been re-
ported to yield very high response and remission rates. One study
has increased working memory in healthy individuals by target-
ing the cortical-hippocampal network using personal functional
connectivity rTMS under MRI guidance (Wang et al., 2014). To im-
prove the current unsatisfactory efficacy of TMS or tDCS, the fol-
lowing main factors as well as challenges involved in rTMS ther-
apy should be addressed: (i) targeting to a specific brain region or
neural circuits corresponding to addiction behaviors; (ii) targeting
the regions in the deep brain; and (iii) finding individualized brain
regions based on functional connectivity and network with MRL

In summary, neuroimaging techniques advanced our under-
standing of neurological mechanisms of SUD. Multiple brain re-
glons and circuits are involved in the addition cycles and are likely
to contribute differentially to the complex behaviors in different
individuals with SUD. The current therapies of SUD are limited,
and relapse remains a major clinical challenge. Therapies target-
ing the characteristics of the SUD at these different stages, and
meeting the dynamically changed needs of individuals with SUD
throughout the three stages of addiction cycle, may be the direc-
tion of future treatment for SUD.
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