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Abstract

As the opioid epidemic presents an ever-expanding public health threat, there is a growing need 

to identify effective new treatments for opioid use disorder (OUD). OUD is characterized by 

a behavioral misallocation in choice behavior between opioids and other rewards, as opioid 

use leads to negative consequences, such as job loss, family neglect, and potential overdose. 

Preclinical models of addiction that incorporate choice behavior, as opposed to self-administration 

of a single drug reward, are needed to understand the neural circuits governing opioid choice. 

These choice models recapitulate scenarios that humans suffering from OUD encounter in their 

daily lives. Indeed, patients with substance use disorders (SUDs) exhibit a propensity to choose 

drug under certain conditions. While most preclinical addiction models have focused on relapse as 

the outcome measure, our data suggest that choice is an independent metric of addiction severity, 

perhaps relating to loss of cognitive control over choice, as opposed to excessive motivational 

drive to seek drugs during relapse. In this review, we examine both preclinical and clinical 

literature on choice behavior for drugs, with a focus on opioids, and the neural circuits that 

mediate drug choice versus relapse. We argue that preclinical models of opioid choice are needed 

to identify promising new avenues for OUD therapy that are translationally relevant. Both forward 

and reverse translation will be necessary to identify novel treatment interventions.

I. Introduction

The United States has seen a growing epidemic of opioid use disorder (OUD) and associated 

overdose deaths. According to the 2020 National Survey on Drug Use and Health, an 

estimated 2.7 million people aged 12 or older had OUD (1) and in 2021, the Center 

for Disease Controls’ National Center for Health Statistics reported 75,673 opioid-related 

overdose deaths (2). With the pervasiveness of opioid misuse and the increasing rate of 
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overdose deaths, it is imperative to better understand the neural underpinnings of OUD and 

re-evaluate existing and potential new therapeutics. It has been suggested that substance 

use disorders (SUD) such as OUD, are a result of a behavioral misallocation between 

drugs and alternative, more advantageous rewards (3). Therefore, preclinical models of 

addiction are needed that capture this component of the human condition associated with 

SUDs. Choice models of addiction, in which animals are allowed to choose between a drug 

and a non-drug reward, are becoming more prevalent in the literature. These models are 

translationally relevant because they resemble scenarios that humans face when presented 

with commonly misused drugs in an environment where alternative rewards are constantly 

available. In this review, we examine the existing preclinical and clinical literature on choice 

behavior associated with SUDs, focusing on OUD, and the neural circuits that may underlie 

maladaptive choice for drug reward over natural reward. Treatments aimed at shifting choice 

behavior away from drug reward and towards natural rewards may provide promising new 

avenues for the development of OUD therapeutics.

II. Neural Systems Mediating Opioid Use Disorder

The Opioid System

Drug taking begins with the goal of eliciting a pleasant, rewarding effect, the same 

reason that we seek out non-drug rewards. However, as drug taking and seeking becomes 

compulsive, it reduces time spent engaged in other life goals and actions that are 

advantageous (4). Like other SUDs, OUD is characterized by a behavioral misallocation 

between opioids and non-drug rewards (3). Instead of directing behaviors towards actions 

that are biologically advantageous, energy is primarily expended on drug seeking and 

taking. The biasing of choice towards opioids and away from natural rewards might be 

driven, at least in part, by opioid withdrawal – an aversive physical and motivational 

state characterized to alleviate these symptoms by taking more drug. Together, the 

opposing processes of opioid-induced euphoria coupled with dysphoria from withdrawal 

and dependence lead to a profound negative emotional state, termed hyperkatifeia (5,6). 

Under these circumstances, negative reinforcement is occurring because the drug-seeking 

behavior is increased in order to avoid withdrawal symptoms. This however is separate from 

seeking out drug because of it rewarding effects and continuing to take drugs to obtain 

those rewarding effects. Together however, repeated opioid use produces a disruption in 

homeostasis, which increases the baseline for reward effects, such that more drug use is 

necessary to achieve the same level of euphoria (5). To understand the physiological effects 

of repeated drug use that lead to OUD, it is important to understand the opioid system, brain 

regions that mediate opioid reward, as well as the cellular mechanism of opioids.

The opioid system generally includes the endogenous receptors: mu-, delta- and kappa-

opioid receptors (MOR, DOR, KOR) and nociceptin opioid peptide (NOP) receptors 

(7,8). These receptors play a key role in processing responses to pain and stress, and 

importantly reward. Though each of these receptors has been the focus of opioid receptor-

based therapeutics for OUD, MORs (and sometimes KORs) are the primary target for 

the therapeutic and adverse effects of most commonly misused opiates (7,8). MORs 

are the primary contributor to the rewarding effects of opioids in part by promoting 
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dopamine release in the mesolimbic pathway (7). The mesolimbic pathway is comprised 

of dopaminergic projections originating in the ventral tegmental area (VTA), which project 

to the nucleus accumbens (NAc), amygdala, and prefrontal cortex (PFC) (9-11). Drug 

administration paired with presentation of stimuli, such as cues or environmental contexts, 

results in dopamine release in the VTA-→NAc pathway, altering synaptic strength and 

resulting in positive reinforcement. With repeated drug use and drug-cue learning, the drug 

cues become a trigger for relapse and can engender drug seeking. Dopamine projections 

from the substantia nigra (SN) to the dorsal striatum may be similarly engaged, particularly 

after repeated opioid use (12-14).

Importantly, dopamine neurons are under tonic inhibition from GABAergic neurons that 

express MORs, and MOR activation results in the disinhibition of dopamine neurons 

through reduction of GABAergic neuronal activity. This disinhibition was originally thought 

to derive from local VTA interneurons, but current evidence points to the rostral medial 

tegmental nucleus (RMTg) as a MOR-rich region that tonically inhibits VTA dopamine 

neurons (12-14). In the presence of opioids, GABAergic inhibition of VTA dopamine 

neurons is reduced, resulting in increased dopamine release in the NAc and increased 

opioid reward (11). This promotes the formation and strengthening of associative memories 

between drug-seeking behavioral patterns, environmental cues, and drug reward, thus 

perpetuating drug seeking and promoting cue-induced drug craving (15,16). After chronic 

heroin self-administration, MOR-activated G-proteins are desensitized in areas mediating 

analgesia (thalamus) and emotional regulation (amygdala) in the thalamus and amygdala, 

areas responsible for the effects of analgesia and emotional regulation, respectively, whereas 

the NAc displayed less desensitization (17). Based on commonly described symptoms of 

withdrawal, this pattern aligns well as there is a tolerance developed towards effects such 

as analgesia, but the reinforcing effects of opioids, mediated by the NAc, are not as broadly 

affected. Overall, MORs are an important site of consideration, especially since many of the 

current FDA-approved pharmacotherapies target these receptors.

The Dopamine Hypothesis of Addiction

Previous preclinical research suggests that the pervasive nature of drug seeking results 

from supranormal levels of dopamine in the NAc after drug rewards compared to non-drug 

rewards (18,19). Neural adaptations, such as neuroplasticity in the mesolimbic dopamine 

system following chronic drug exposure, may also promote the transition to compulsive drug 

use (15,20). One prevailing theory in the field is the prediction error hypothesis of dopamine 

signaling. This theory posits that dopamine release is greater when the value of the predicted 

reward is greater than expected and lower when the rewarding effect is lower than expected, 

thus acting as a prediction error signal. Opioids are thereby able to “hijack” dopaminergic 

signaling in reward circuits by increasing this error signal so that when the drug associated 

cue is presented the neural representation, or estimated value of the predicted reward, is 

greater than its actual value (19). Thus, the next time the cue is experienced, the inflated 

perceived value of opioid reward will drive opioid craving and behavioral patterns of drug 

seeking (19). Recent data suggest that the NAc dopamine signal only acts as a reward 

prediction error under specific learning conditions. It appears that dopamine may instead 

encode the perceived saliency of a stimulus, a theory that fits observations across a broad 
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range of learning scenarios (21). The NAc dopamine signal associated with drug taking 

would thus increase the perceived salience of drug cues, which would be expected to 

enhance subsequent relapse and potentially other addiction-related outcomes.

There is some evidence, however, to suggest that the rewarding effects of opioids may 

occur independently of dopamine. For instance, morphine induced locomotion is reduced 

in dopamine-deficient mice, but these mice can still develop a morphine conditioned 

place preference (22). Chemical lesioning of dopamine terminals with 6-OHDA does not 

alter heroin self-administration (12,23). Self-administration of opioids is less subject to 

disruption by dopamine antagonists, and this is perhaps one of the most apparent distinctions 

between the neural mechanisms underlying opioid versus psychostimulant reward (24). 

And yet, chemogenetic inhibition and response-contingent optogenetic inhibition of VTA 

dopamine neurons was capable of reducing heroin self-administration (12,14). This suggests 

the dopamine system is at least capable of mediating opioid reward, but there may be 

opioid-independent systems for opioid reward and reinforcement as well (25-27).

Thus, the dopamine hypothesis of addiction as it pertains to opioids is rapidly evolving 

and may not apply as a blanket theory for all misused substances. For instance, self-

administration of intravenous cocaine in rats was found to produce a supranormal dopamine 

signal, but despite this, cocaine was less preferred from sweet water during a choice assay, 

due to its delayed pharmacokinetics (18). It’s been shown that intravenous cocaine has 

a delayed effect of dopamine in the NAc on the order of tens of seconds, longer than 

the effects from non-drug reward (18). Thus, the speed of reward onset after drug use is 

an important variable when interpreting dopamine signals (See Section V - Factors that 

Influence Choice). In the context of the dopamine hypothesis of OUD, several brain regions 

have been implicated in the rewarding properties of opioid use. In addition to the dopamine 

signal in the NAc, glutamatergic inputs to the NAc from other limbic brain regions can 

impact NAc output and subsequent addiction-related behaviors. For example, clinically it 

has been shown that drug use severity and opioid withdrawal symptoms are positively 

associated with neural responses to drug cues measured by fMRI in the NAc, orbitofrontal 

cortex (OFC), and amygdala of patients with OUD (28). Below we expand upon the neural 

circuitry that has been implicated in OUD.

Neural Circuitry of Relapse and Choice

Preventing relapse and reducing rates of opioid choice over alternative rewards are two 

distinct points of behavioral intervention for OUD therapeutics. Most preclinical research 

on the neural circuitry of addiction has focused on relapse, which can be triggered by 

multiple stimuli, including drug-associated cues, priming doses of the drug itself, or stress 

(29,30) The PFC has been identified as a key component of the neural circuitry controlling 

relapse (29) and can be subdivided into a dorsal and ventral regions. The dorsomedial PFC 

(dmPFC) encompasses the prelimbic cortex and neighboring areas, and the ventromedial 

PFC (vmPFC) is comprised primarily of the infralimbic cortex; both areas have been 

implicated in relapse circuitry. Glutamatergic projections from the dmPFC to the nucleus 

accumbens core have been dubbed a “final common pathway” to relapse, driving relapse 

triggered by multiple types of stimuli across multiple classes of misused drugs, including 
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opioids (31). The role of the vmPFC, however, is more nuanced, as activity in the vmPFC 

inhibits cocaine relapse (31-33) but can either promote or inhibit heroin seeking, possibly 

due to the existence of different functional neuronal ensembles within the vmPFC, and 

underscoring the fact that relapse circuitry may differ depending on the type of misused drug 

(31,34-36). Indeed, if specific subpopulations of vmPFC neurons are targeted, specifically 

those projecting to the nucleus accumbens shell (NAshell), this pathway appears to inhibit 

drug seeking for heroin, as well as numerous other drugs, including cocaine and alcohol 

(37-43).

In contrast to relapse circuitry, the neural circuits of choice between drug and non-drug 

rewards are not well understood. Whereas the OFC in rats has been shown to play a role 

in relapse after choice leading to voluntary abstinence (44), the involvement of OFC during 

the choice to abstain has not been examined. Therefore, while the OFC is implicated in 

relapse, it is unclear whether it plays any part in drug versus non-drug choice. In contrast, 

the vmPFC is highly interconnected with the OFC (45), and the vmPFC→NAshell pathway 

has indeed been shown to act as a limiter of both heroin relapse and heroin choice (46). In 

a recent study, Heinsbroek et al. used a preclinical model of heroin choice in which rats 

do not voluntarily abstain, rather, a subpopulation of rats that prefer heroin versus food 

emerges such that there is a population average of 50% choice for each reward (Figure 1) 

(46,47). This parsing of subpopulations is unusual in the choice literature especially since no 

manipulations (See Factors That Influence Choice) were used in this model. This study also 

demonstrated that choice and relapse are distinct behavioral constructs, as, inactivation of 

the vmPFC produced opposing outcomes on these behaviors, increasing choice but reducing 

relapse (46). However, pathway-specific chemogenetic inhibition of the vmPFC→NAshell 

shifted choice toward heroin and increased heroin relapse, indicating that endogenous 

activity in the vmPFC→NAshell pathway limits opioid choice and relapse (46). Other, 

competing vmPFC outputs may thus be responsible for the effect of vmPFC inactivation on 

relapse. The latter may underlie observations that relapse and choice are distinct behavioral 

constructs that do not correlate. That is, animals that are more likely to be heroin choosers 

are not necessarily more likely to have higher relapse rates.

Current evidence strongly suggests a role for frontal cortex regions (vmPFC and OFC) 

in choice behavior between natural rewards and multiple types of drugs. These frontal 

cortex regions have been implicated in maladaptive choice and risky decision making, 

characteristics of SUDs that make them behavioral learning disorders. OFC damage or 

dysfunction in humans has been correlated with a higher likelihood of risky decision making 

(48). Similarly, inactivation of the vmPFC in rats promotes choice of a less optimal option 

and increases risky choice behavior (49,50). The vmPFC and OFC may similarly mediate 

maladaptive choice behavior in SUDs. For instance, repeated exposure to cocaine causes 

OFC neurons to fail to signal adverse outcomes (receival of a bolus of quinine) in a rat 

odor discrimination task at the time of choice and fail to exhibit plastic changes in cue 

responsivity after rule reversal (51). Additionally, in a study where abstinent persons with a 

SUD took part in a decision-making task, it was found that risky choices were negatively 

correlated with activation of the left medial OFC (52). These findings indicate that the 

OFC may undergo neuroadaptations with long-term drug use that promote pathological 

outcomes, suggesting that other circuitry implicated in maladaptive choice may similarly 
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affect behavioral outcomes in SUDs. Overall, the neural circuitry of choice and its functional 

importance in the transition from recreational drug use to full-blown SUD is an active 

area of research, and current evidence points to a significant role of frontal cortex regions 

(vmPFC and OFC) in choice between natural rewards and multiple drugs, including opioids.

III. Cortical Circuits Mediating Choice

There is a large literature focusing on the role of cortical projections to subcortical regions 

such as the NAc and VTA and their functionality within addiction neural circuitry. Here we 

will focus on microcircuits within the cortex itself and the functional neuronal ensembles 

that may be related to different types of rewarded behavior and choice behavior. The 

human cortex is made up of six layers; however, in the rodent cortex there are only five 

(53). The cortex has two distinct types of cells that possess different roles in cortical 

circuitry: principle pyramidal neurons and GABAergic interneurons. Principle pyramidal 

neurons are glutamatergic cells that serve as the principal cortical output cell, whereas 

the GABAergic interneurons primarily inhibit pyramidal neuronal activity and importantly, 

express MORs (54). There are two main subclasses of interneurons, parvalbumin (PV) 

expressing interneurons (PV+) and PV deficient (PV−) interneurons (54). PV+ interneurons 

play a vital role in regulating pyramidal firing behavior and richly express MORs (54). Each 

layer contains these cell types but differs in their projections and roles. Layer I primarily 

consists of afferent terminals projecting from other brain regions and several populations of 

interneurons (53,54). Layers II and III contain the cell bodies of pyramidal neurons as well as 

a minority of GABAergic neurons that project to other cortical regions (53,54). Layer IV is a 

major cortical input location but is missing from the rodent PFC, with cortical inputs instead 

existing across the other layers (53). Layer V also contains principle pyramidal neurons and 

a small number of GABAergic neurons that target subcortical regions such as the NAc, and 

finally, layer VI is another output layer projecting primarily to thalamic regions (53,54). Of 

course, there are several other differences between cortices across species, but these have 

been reviewed elsewhere and are not within the scope of this review.

Though originally used to illustrate the mechanisms through which loss of inhibitory control 

in binge eating occurs, the Baldo hypothesis can be applied to other dysregulated motivated 

behaviors such as OUD. According to the Baldo hypothesis the vmPFC has been shown 

to possess two functionally opposed circuits. These circuits consist of two efferents that 

differentially guide rewarded behaviors with one being the “motivational driver” (projections 

to the hypothalamus) and the other being the “motivational limiter” (projections to the 

NAshell) (Figure 2) (55). However, these outputs can be disrupted by excessive MOR 

signaling on local interneurons within the vmPFC, resulting in a disinhibition of glutamate 

projections to subcortical regions (55). This enhanced glutamate release has been found 

to result in unregulated appetitive motivational behaviors. Infusions of the MOR agonist 

DAMGO into the vmPFC was found to degrade inhibitory control leading to excess binge 

eating (56). Additionally, in a choice procedure between a palatable fat-enriched versus 

carbohydrate-enriched diet, intra-vmPFC DAMGO selectively increased carbohydrate intake 

even in fat-diet preferring rats. Together these results indicate the importance of MOR 

signaling in the vmPFC in the loss of control over food-seeking responses (57).
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Though this theory was used to illustrate how disruption of these pathways may lead to 

dysregulated appetitive behaviors seen in binge-eating disorders, it can also be applied to 

other dysregulated motivational behaviors such as OUD, especially since the disruption 

of these outputs is driven by excessive MOR signaling during opioid use (Figure 2). 

Continuous exposure to exogenous opioids may degrade inhibitory control of the NAshell 

“limiter” pathway via neuroadaptations in GABAergic neurons that disinhibit GABAergic 

signaling in the vmPFC, thereby leading to heightened activity in the driver pathway (55). 

With both vmPFC outputs controlled by MOR-expressing interneurons, one output may be 

preferentially engaged in choice for opioids and the other output in relapse triggered by 

opioid-related cues. Additionally, continuous exposure to drug cues during drug taking may 

produce plastic changes in the driver pathway that render it the more dominant pathway 

controlling behavioral output (55). The opposite could occur in the limiter pathway, resulting 

in reduced inhibitory control over drug seeking (55). It can be extrapolated from this theory 

that repeated exposure to opioids and the opioid-related cues may lead to neuroadaptations 

in local inhibitory control over vmPFC pyramidal neuron output. The resulting disinhibition 

and dysregulation of vmPFC outputs may result in an enhancement or attenuation of the 

vmPFC driver and limiter pathways, respectively. Either of these adaptations, or both, 

would be expected to result in excessive drug seeking and taking that characterize OUD. 

Importantly, this theory restricts its view to vmPFC inputs to the NAshell, but other 

glutamatergic inputs to the NAc can also regulate drug seeking (16).

In line with the previous section, prolonged opioid exposure may induce plastic changes 

in other regions of the PFC resulting in similar hypo- and hyperactive states (58). More 

specifically, there may be subregional effects on the neurons in the dmPFC and vmPFC 

regions. Prolonged self-administration of remifentanil in mice produced a long-lasting 

hypoactive basal state via a decrease in ex vivo excitability accompanied by an increase in 

pyramidal neuron firing in the dmPFC but not the vmPFC (59). Thus, there are subregional 

plastic changes that result from repeated opioid exposure that correlate with deficits in 

cognitive flexibility (59). Repeated exposure to opioids may also induce plasticity within 

other cortical regions that lead to long-term changes within brain reward circuitry. For 

example, in a study assessing the effects of opioid exposure on distinct subregions of the 

OFC, in vitro patch-clamp electrophysiological recordings of mice brain slice containing 

the OFC showed that washes with the MOR agonist, DAMGO, induced a long-lasting 

suppression of inhibitory synaptic transmission onto layer II/III pyramidal neurons of the 

OFC via presynaptic MOR activation of local PV+ interneurons (60). This effect was specific 

to the medial OFC and this specificity is due to a reduction in the functional MOR coupling 

to downstream cAMP/PKA intracellular cascades in inhibitory synapses and an induction of 

long-term depression following a DAMGO wash (60). Altogether these results indicate that 

chronic exposure to MOR agonists can result in subregional specific long-term depression 

of inhibitory synapses, suggesting continuous taking of opioids causes synaptic changes 

that could promote a loss of inhibitory control over motivated behaviors. This may perhaps 

provide the neural foundation for the development of OUD.

Within the PFC and the OFC, subsets of functional neuronal ensembles have been identified 

that differentially encode drug and non-drug rewards (61, 62). In one of these preclinical 

studies, neuronal activity within the OFC was recorded while rats were choosing between 
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heroin and water sweetened with saccharin, or when each reward was available separately 

(62). It was found that choice for either reward was encoded by two non-overlapping 

OFC neuronal ensembles and that the relative size of the heroin-encoding population was 

correlated with the number of individual choices for heroin (62). Furthermore, the OFC 

neurons encoding the action of preferred choice fired more than neurons encoding the 

non-preferred action in the seconds before the choice for the preferred reward was made, 

suggesting that OFC neuronal activity in these ensembles may direct choice by creating 

pre-choice neuronal competition for action selection (62). These same researchers had also 

previously recorded OFC neuronal activity while rats instead chose between cocaine and 

sweetened water and found that these rewarded actions were also encoded by distinct 

OFC neuronal ensembles with similar pre-choice activity as those in the heroin study (61). 

Additionally, manipulation of the pre-choice firing to activate the cocaine population shifted 

non-drug preferring rats towards cocaine seeking (61). Interestingly, the number of neurons 

that non-selectively encoded both the drug and the non-drug reward was higher when the 

drug was heroin than when the drug choice was cocaine (62). Neuronal ensembles in the 

vmPFC also differentially encode alcohol versus saccharin reward, albeit with some overlap 

in the ensembles (41). Altogether, the implication of both vmPFC and OFC as well as 

similar findings between drug types suggest that these highly interconnected brain regions 

interact to encode reward choice, and that a neuronal ensemble is capable of simultaneously 

distinguishing between multiple rewards. Thus, these regions and specific ensembles may be 

important targets for shifting opioid choice, though more research is required to parse out 

drug differences.

As illustrated here, microcircuits within the cortex play an important role in the control of 

choice and dysregulated motivational behaviors. More specifically, these subcircuits can be 

distinguished, at least in part, by distinct anatomical outputs that subserve distinct functions. 

Additionally, prolonged exposure to opioids leads to long-lasting changes within the PFC, 

some of which may result in a loss of inhibitory control over motivational behaviors. Choice 

models in the preclinical addiction field are beneficial for several reasons. They can be 

used not only to parse out the circuitry of reward processes, but they simultaneously also 

allow researchers to determine a subject's reward preference during choice itself and the 

subsequent motivation to seek drug in the presence of drug-related cues (e.g. relapse). 

Additionally, they provide a means to identify translational therapies (e.g., contingency 

management therapy) that promote behaviors maintained by nondrug rewards, as opposed to 

drug reward (3). Here, we will examine the literature related to choice as it applies to OUD 

and discuss the translational importance of these studies in the context of other SUDs.

IV. Choice Model Considerations

Animal Models of Choice

Animal models of addiction are crucial for testing the efficacy of putative novel addiction 

therapies. Self-administration models in rodents and non-human primates are the gold 

standard in the field. In these models, animals are trained to press a lever or nose poke 

for an intravenous infusion (or oral reward, e.g., for alcohol) in daily behavioral sessions 

for several days, weeks, or months (or years for non-human primates). In the standard drug 
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self-administration model, the animal only has access to a single reward at a time. Though 

this standard, single-drug model captures the chronic nature of drug exposure characteristic 

of addiction, it is not comparable to the human experience wherein multiple rewards might 

be available at the same time, and choices must be made, often in a fixed economy. In 

preclinical studies, this can be complemented by enriching the model with other reward 

options (63).

Choice models of addiction have excellent translational potential as they permit 

simultaneous access to a drug and a non-drug reward, and the animal must make a 

mutually exclusive choice between two options. Often the non-drug reward is food, but other 

alternative rewards, such as sucrose, saccharin, or social interaction, can be used (64,65). 

Commonly misused drugs are generally accepted to have supranormal reinforcing effects 

compared to natural rewards (See Section III - Dopamine Hypothesis of Addiction) (18,19). 

This is supported by observations that animals will work harder to obtain a single reward of 

the drug under progressive ratio schedules of reinforcement, wherein the price (in number 

of lever presses) required to obtain a single reward increases at an exponential rate over 

time (66,67). Conflicting with this view, numerous studies indicate that rats will undergo 

“voluntary abstinence” when offered a non-drug reward (30,44). For example, several studies 

have concluded that rodents in an unmanipulated choice paradigm, will consistently choose 

a food reward over drugs (68,69). These experiments present a face validity problem, as 

in order to test potential treatments and parse out the cellular and molecular basis of 

SUDs, there must be a sufficient subpopulation of experimental animals with a phenotype 

characteristic of addiction, e.g. excessive pursuit of drug reward over non-drug rewards (70).

Most preclinical models yield drug preferring animals only through external influences 

that would shift natural preference towards choice (e.g., devaluation). If a model does not 

recapitulate the human condition, it becomes difficult to gauge whether existing or novel 

therapies can ameliorate behavioral outcomes. Heinsbroek et al. (46) recently established 

a choice model that yields subpopulations of both food and heroin preferring rats, with a 

population average of 50% choice between rewards (46,47). This model recapitulates the 

human condition more closely, and thus may have predictive validity when it comes to 

identifying novel therapeutics for OUD. There are, however, ways of shifting choice toward 

drug reward in models where animals would otherwise voluntarily abstain. These studies 

have provided insight into the factors that influence choice behavior. Thus, to understand 

the advantages of the choice model, we must critically evaluate the current preclinical 

choice literature and the suitability of these models for both forward and reverse translation. 

Because choice models can be emulated with other similarly rewarding drugs, we include 

and address studies involving SUDs other than OUD in order to use them to better inform 

our understanding of OUD.

Factors That Influence Choice

Not all humans who take drugs become addicted to them. Hogarth proposed that SUDs are 

primarily driven by excessive goal-directed choice as a consequence of negative affective 

and/or somatic states rather than by habit or compulsion (71). Goal-directed choice is the 

act of making decisions based on the desire for an ideal outcome, and thus the choice 
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to execute an action depends on the value allocated to the outcome and the cost of 

the action required to achieve it. Thus, when one is experiencing a negative affective or 

somatic state as a consequence of drug withdrawal, they may be more inclined to choose 

drugs over another option. Drug choice, because of excessive goal-directed choice under 

negative emotional state, could also be compounded by the assigned value or type of 

alternative reward. Additionally, there are a variety of non-drug options available broadly 

and/or concurrently with drugs. For example, increasing preclinical evidence points to social 

interaction as a potential non-pharmacological intervention to suppress the drive to seek 

drugs (64,72). Moreover, in humans, social support reduces the likelihood of developing 

psychiatric disorders, and the lack of social support may be a risk factor for development of 

a SUD (72).

Rodent studies typically do not deprive food/liquid before choice, and so there is no 

biological need pushing them towards a natural satiation. For this reason, the type of 

alternative reward offered matters based on the value it holds. Value of a reward can be 

experimentally manipulated, although it is difficult to produce a shift towards an increase 

in drug taking behavior. Frequently, researchers will attempt to devalue either the drug or 

non-drug reward to determine the extent a reward needs to be devalued before it is no longer 

the preferred choice. One method of devaluing a reward is through counterconditioning. 

Counterconditioning is the process of training a subject to respond to an already conditioned 

stimulus with a different response that is opposed to the original. This can be done 

through aversion therapies, where drug-paired cues are re-associated (counterconditioned) 

with aversive stimuli (73). For example, aversive counterconditioning conducted shortly after 

memory retrieval (during reconsolidation) successfully prevented relapse to cocaine seeking 

long-term (73).

Devaluation can also be done by satiating needs/wants prior a choice trial in that the 

magnitude of the reward is then diminished and there is a smaller drive to select. For 

example, in a study on squirrel monkeys, assessing choice between remifentanil and a 

milk food reward, devaluation by free access to milk prior to testing significantly increased 

choice for remifentanil relative to food whereas devaluation of remifentanil by pretreating 

with the opioid antagonist naltrexone, significantly reduced choice for drug (74). This 

was again seen in a study where giving rhesus monkeys food pellets before a cocaine-

food choice session resulted in devaluation of food and an increase in cocaine choice 

(75). Conversely, in this same study, delivery of non-contingent cocaine failed to devalue 

cocaine but did result in a dampened response rate and decreased the overall number 

of cocaine infusions received during that session (75). Alternatively, in a baboon study, 

administration of chronic non-contingent morphine (8 days) leading up to a choice between 

heroin and food resulted in almost a complete abolishment of choice for heroin (76). This 

effect was reversed by decreasing the dose of non-contingent morphine and resulted in 

an increased choice for heroin (76). A factor for consideration, however, is this study 

design included a chronic administration of non-contingent heroin leading up to the choice 

test. This should be considered when assessing the viability of devaluation for shifting 

choice. Devaluation using satiation, however, has proven to be tricky. In a discrete trial 

choice between cocaine and water, previously water-restricted rats preferred water even 

after water satiation (77). However, following several sessions of water satiation, preference 
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gradually shifted towards cocaine (77). Similarly, in another study by Vandaele et al., a 

saccharin reward was devalued using satiation and rats were still found to respond more 

for saccharin than for cocaine during extinction (78). It was postulated that the reason for 

this was because their behaviors were biased toward habitual (as opposed to goal-directed) 

control and therefore inflexible (78). These results may also explain why animals will 

undergo voluntary abstinence and suggest human populations may have more flexible and 

goal-directed behaviors. Alternatively, the relative reinforcer magnitudes used in studies that 

see voluntary abstinence could be larger for the alternate reward compared to the dosages 

of drug reward that is being offered, thus inducing voluntary abstinence. Therefore, it is 

important that studies assessing choice also measure relative reinforcer magnitudes for both 

rewards and preemptively adjust dosages to be approximately the same value before testing.

Researchers have also manipulated the drug and non-drug reward to determine how the 

reward magnitude and availability conditions (e.g., price and timing) may shift choice. 

Availability of a reward can be manipulated by altering the time-out period between 

individual choice trials or by prolonging the time of drug availability during the session. 

For instance, in rodents and rhesus monkeys given extended access to heroin or cocaine 

self-administration, subsequent choice was shifted towards the drug versus non-drug reward 

(79, 80). Additionally, with extended access, the proportion of heroin-preferring rats was 

higher than those who preferred cocaine over a non-drug reward (51% vs 15%) (79). It has 

been established that immediate rewards are generally more highly valued than a delayed 

reward. However, the temporal availability of drugs and the impact of drug pharmacokinetics 

also impact choice behavior. The delay before the effects of the drug is first felt and peaks 

dictates whether the relative immediacy of a non-drug reward can compete with the delayed 

drug reward. Though the delay may be nominal to a human, in rodent models the delayed 

effects may lead to discounting the drug reward (63). For instance, intravenous cocaine was 

found to be less preferred by rats than the non-drug alternative (e.g., sweet water) because of 

its delayed pharmacokinetics and sensation of reward, outweighing the effects of the drugs 

pharmacodynamics (18). Alternatively, having the drug already on board, with the subject 

feeling its effects while making a choice, could also alter decision-making. Townsend et 

al. recently established a rodent choice model where during choice training there are two 

separate phases: a sample component and a response component (81). During the sample 

component there was a non-contingent delivery of the drug followed by a time-out and 

then a delivery of food followed by a time-out (81). This was followed by 5 response 

component phases wherein both levers were available, and rewards were delivered based on 

a fixed ratio 5 response requirement and different drug doses were administered during each 

response components by changing the duration of the infusion (81). During the response 

component, researchers were able to produce stable drug choice, defined as ≥80% choice 

for drug, where the drug was cocaine or a fentanyl/methamphetamine mixture, even with the 

lowest drug dose, without any interventions (81). However, in order to get ≥80% drug choice 

for fentanyl, methamphetamine, heroin, amphetamine, interventions such as increasing the 

response requirement for food or changing the alternative reward to water were required (81). 

This indicates that non-contingent administration of certain drugs can influence the decision 

to choose drug but may be insufficient to drive drug choice for all misused substances.
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Environment and ambiance in which the drug is offered and/or taken can also influence 

choice (78,82). While it is not possible to completely reproduce such environmental factors 

that influence human choice in a rodent model, enriched environments that provide non-

drug rewards and/or opportunities for social interaction, promote voluntary abstinence 

from drugs, suggesting that environment influences choice behavior (64,83). Furthermore, 

the impact of environment may be drug dependent. In a study comparing the effect of 

environment on heroin versus cocaine taking, rats that were perpetually housed in the 

drug-taking context preferred heroin whereas those that were housed in a distinct context 

preferred cocaine (82). Though this study did not directly compare choice for heroin versus 

cocaine, it does imply that the effect of environment on drug-taking can be drug-dependent. 

Environment can also be narrowed down to the type of choice setting that a researcher 

chooses to provide. Researchers can provide a setting where rats can make choices without 

being under the pharmacological influence of the drug or can provide a setting where there 

is not a restriction on the ability to make consecutive choices and thus rats may still be under 

the influence of the drug by the next trial (63). These results suggest that prior drug use could 

impact future choice. In sum, numerous factors are capable of impacting choice behavior, 

but the degree to which these factors can readily model the human condition is arguable. 

Indeed, as SUD is a human condition, it is necessary to understand choice from a clinical 

perspective.

V. Lessons From the Clinic

Studying SUDs in human populations is difficult but necessary especially with the ever-

increasing rates of OUD. There are several barriers including but not limited to finding 

voluntary participants with OUD but also maintaining that number throughout the study 

due to high dropout rates. Furthermore, it is difficult to account for stressors, comorbidities, 

polydrug use, and other independent variables. Much of the clinical research that has been 

conducted has focused on the prevention of relapse but studies assessing the viability of 

potential medication for reducing opioid choice over other rewards is lacking (84). Like 

the benefits of preclinical choice models, clinical studies that utilize a choice paradigm are 

more translationally valid to real-world scenarios since human drug use often occurs in 

environments that also have availability of alternative rewards (85). By focusing therapeutic 

efforts towards reducing drug choice, treatments may promote a reallocation of behavior 

towards alternative rewards and actions as opposed to drug seeking.

When it comes to clinical choice studies, money is often offered as the alternative reward 

(86-88). Indeed money, of sufficient value, is effective in reducing heroin taking in humans 

(86,89) (Figure 1). However, one study found that money was ineffective in reducing cocaine 

seeking once cocaine had already been taken (90). In this study, the amount of money 

offered was between $1 to 16, whereas the aforementioned studies offered between $10 to 

$40, suggesting that the amount of money offered must be of sufficient value in order to 

shift choice (86,89,90). Furthermore, in a study that offered $1000 as a delayed monetary 

reward versus the equivalent amount of heroin that could be obtained for that amount, it 

was found that opioid-dependent participants discounted delayed heroin more than they 

discounted delayed money, indicating that larger amounts of money were valued more than 

larger amounts of heroin (88).
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In both clinical and preclinical experiments, the type of alternative reward, cost to obtain 

the reward, and assigned value of the reward are all factors that may shift choice. Some 

factors, however, can only be studied in humans. For example, subjective feelings that result 

from drug use and societal factors such as socioeconomic status may influence drug choice. 

It is therefore necessary to assess the contribution of demographics as well as individual 

comorbidities to drug seeking/use and the influence they might have in affecting treatment 

or choice toward a non-drug alternative. One study assessing drug craving and choice found 

that in heroin-dependent individuals, a negative mood (induced by researchers) increases 

choice of heroin over food pictures and therefore may act as a trigger for heroin seeking (91). 

Overall, taking these factors into consideration will be beneficial in determining the proper 

course of treatment.

Clinical Pharmacotherapies

Several pharmacotherapies have been clinically screened and deemed successful at reducing 

opioid taking, for instance the opioid antagonist, naltrexone (92,93). Additionally, the 

selective dopamine D2/D3 receptor antagonist, amisulpride, successfully reduced drug-cue 

responsivity and reward impulsivity (defined by the inability to delay gratification and 

wait for a larger reward, in the face of a smaller immediate reward) (94). These features 

were measured using a Pavlovian-instrumental transfer task and a delay discounting task 

respectively (94). However, most clinical research in this area has focused on opioid 

agonist/antagonist therapies, such as methadone and buprenorphine, which are current 

FDA-approved treatments for OUD. In one study assessing the effectiveness of different 

methadone doses on choice between an injection of heroin and varying amounts of money, 

larger amounts of money were required to reduce heroin taking in participants on a 50 

mg methadone maintenance dose compared to groups on a 100 or 150 mg methadone 

maintenance dose (95). In another study assessing three doses of methadone maintenance, 

the higher doses of methadone completely suppressed withdrawal and all effects of heroin 

(subjective ratings of drug effect such as asking, “how high are you? / “do you feel any 

drug effect?”, observer-rated measures such as nodding and sedation, and physiological 

measure such as oxygen saturation). In contrast, the lower doses (30 and 60 mg) suppressed 

withdrawal but did not entirely block subjective and observer-rated measures of the 

effects of heroin (96). These results indicate that high doses of methadone paired with 

substantial offers of money may be most effective at reducing heroin taking. Similarly, 

maintenance on 16 mg buprenorphine reduced heroin taking relative to 8 mg dose of 

buprenorphine (97). Furthermore, individuals with OUDs maintained on 4 mg/day sublingual 

buprenorphine, when given the choice, money was preferred over all drug doses (87) (Figure 

1). Buprenorphine combined with naloxone (Suboxone) is another first-line treatment for 

OUD, and similarly to buprenorphine, higher dose ratios such as 8/2 and 32/8 mg ratio of 

buprenorphine/naloxone were found to be more effective treatments compared to lower dose 

ratios (98). In addition, a study comparing the effectiveness of money versus food as an 

alternative reinforcer found that cocaine was chosen to a greater extent than placebo across 

alternative reinforcer types and values, but the monetary alternative reinforcer suppressed 

drug choice to a greater degree than the food reinforcer. Overall, these results point to 

the importance of dose, dose ratio with compound pharmacotherapies, and dose ratio with 

monetary compensation, as variables influencing treatment efficacy.
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The therapeutic potential of serotonin (5-HT) receptor targets (specifically the 2A and 

2C receptors) for the treatment of OUD is also receiving growing attention. Serotonin 

(5-HT2) receptors are expressed in brain regions responsible for feeding, motivation, 

and reward (99). The 5-HT2 receptor agonist lorcaserin, a drug previously marketed for 

weight-loss, has been shown to reduce cued relapse and self-administration for alcohol, 

cocaine, nicotine, opioids, and methamphetamines in several preclinical studies with both 

rodents and non-human primates (99-105). Furthermore, studies using Ro60-0175, another 

5-HT2C receptor agonist, have demonstrated efficacy in reducing cocaine and nicotine self-

administration in rats (106,107). Despite the success in these single-reward (non-choice) 

preclinical models, lorcaserin has demonstrated moderate success in clinical trials for 

some substance use disorders (108,109), but in one study actually increased choice for 

cocaine while simultaneously reducing cocaine craving (110), and in another study had 

no effect on oxycodone self-administration, but trended towards increasing oxycodone 

wanting (111). Collectively, these results indicate that lorcaserin may have limited efficacy 

as a treatment option for SUDs in humans, or its efficacy may depend on the primary 

substance being misused. Notably, some of these studies relied only on self-reported 

craving as their behavioral metric (108) as opposed to actual reductions in drug intake 

(109,110). This difference in metrics is worth considering when assessing viable candidates 

for treatment as reductions in craving do not always coincide with decreases in drug intake. 

Furthermore, lorcaserin was removed from the market in 2020 over concerns of increased 

risk for developing cancer. Analysis of clinical studies using lorcaserin did not confirm 

this increased risk but did suggest a trend in that direction (112). Thus, despite the call for 

additional research to reconcile the existent clinical and preclinical data with lorcaserin’s 

treatment efficacy for SUDs, it is important to proceed with caution until lorcaserin’s safety 

can be confirmed.

Though the literature regarding choice in the development of potential pharmacotherapies 

humans is limited and most clinical interventions aimed at reducing opioid choice have 

shown modest success at best, research in this area should be expanded to consider 

additional factors that may influence choice in humans. Furthermore, many of the clinical 

trials in which a pharmacotherapy successfully decreased drug self-administration should 

be tested using a choice protocol to evaluate it as a potential medication and to increase 

predictive validity (84). Other future directions should include offering other potent rewards 

(besides money) during clinical choice assays. Contingency management studies have 

found that employment offers or vouchers (exchangeable for goods and services; may 

act as a controlled form of money) can reinforce naltrexone maintenance therapy, leading 

to reductions in opioid use over time (113,114). Implementing contingency management 

protocols in combination with pharmacotherapy could assist in the reallocation of choice 

behavior towards healthy rewards (staying employed, maintaining treatment, etc.) and 

facilitate recovery.
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VI. How to Treat Disorders of Choice

Potential Pharmacotherapies

Based on the current literature, treatments that are effective at reducing opioid choice 

include pharmacotherapies that can be administered before, during, and/or after opioid self-

administration. Combination pharmacotherapies that mimic opioid reward (eg. MOR/KOR 

therapies), but with properties that have “punishing”/negative effects, may also be 

efficacious (98,115). Of course, if the "punishing"/negative effects are too strong, these 

pharmacotherapies could have the opposite of the intended effect and produce medication 

non-compliance. Such treatments have demonstrated some success in preclinical and clinical 

trials. Here, we will primarily discuss novel potential pharmacotherapies based on ongoing 

preclinical research.

FDA-approved pharmacotherapies for OUD include opioid agonists and antagonists (Table 

1). Several studies have compared the effects of opioid drugs in their ability to shift 

choice (116,117). in one, researchers compared the effects of naloxone, buprenorphine, and 

methadone on choice in heroin dependent and non-dependent rhesus monkeys. Of the two 

agonists, methadone was found to prevent withdrawal related shifts towards heroin choice 

more effectively than buprenorphine (naloxone was not tested in dependent animals due 

to concerns about precipitated withdrawal) (116). These results are interesting in that in 

non-dependent monkeys, buprenorphine decreased choice for heroin whereas methadone 

had no effect, inconsistent with data from clinical treatment studies (95). Overall, these 

results suggest that there are many other factors that play into shifting choice such as prior 

dependency on heroin as well as translational differences in the way these drugs have been 

seen to treat patients with OUDs. Though naloxone was not tested in this specific study 

and because naloxone is an antagonist, had it produced no effect, it would better support 

the idea that full agonism is needed to attenuate these withdrawal-dependent increases. 

Different opioid drugs with distinct mechanisms of action at specific opioid receptors may 

produce similar results. For example, dosing of rhesus monkeys with the lesser-known MOR 

antagonist methocinnamox (MCAM) decreases heroin self-administration and remifentanil 

choice, while shifting choice toward natural reward (i.e. food) (118). Additionally, KOR 

agonists, specifically MOR/KOR mixed therapeutics, reduce the reinforcing effects, and 

subsequently the self-administration, of opioids (3). One study reported that when combined 

with self-administered oxycodone, the KOR agonists salvinorin A and nalfurafine, reduced 

taking of oxycodone in male rhesus monkeys (119). The researchers surmised that 

reductions in opioid self-administration were caused by the punishing effects of the KOR 

agonists (dysphoria, psychotomimesis, and thermal antinociception), further suggesting 

that combinations of KOR agonists with prescription opioids may reduce potential for 

misuse (119). Additionally, when the KOR agonists U50,488 and nalfurafine were added 

to intravenously self-administered fentanyl, fentanyl choice relative to food decreased, 

demonstrating that KOR agonists also punish fentanyl choice (120). Despite these successes, 

we must consider the translational capabilities of these treatments. In non-human animals, 

the treatments are experimenter administered and thus a drawback for application in a 

human population is that treatment with “punishers” is likely to result in medication 

non-compliance. This must be considered as any of these combination therapies must be 
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“punishing” enough to reduce risk for misuse, but not so punishing that it results in the 

refusal to be treated.

In addition to opioid-based therapies, use of cannabinoids in conjunction with the 

administration of therapeutic opioids may be a potential treatment option as the 

cannabinoids are able to enhance the antinociceptive effects of opioids while reducing the 

dosage of opioids needed to produce analgesic effects, thereby diminishing the positive 

reinforcing effects (i.e., potential for misuse) of opioids (121,122). Clinically, administration 

of oxycodone and smoked delta-9-tetrahydrocannabinol (Δ9-THC) did not elicit analgesia 

but was able to increase pain threshold and tolerance during a Cold-Pressor test. However, 

the combination of the two drugs produced an increase in oxycodone abuse liability based 

on subjective reports from participants (123). In contrast to this, one study examining 

the reinforcing effects of an opioid/cannabinoid mixture in rhesus monkeys reported that 

the mixture of remifentanil with Δ9-THC failed to alter choice over sucrose pellets, but 

nonetheless indicated that cannabinoids do not enhance the reinforcing effects of MOR 

agonists (124). These differing reports on the effect of cannabinoids to increase abuse 

potential for opioid warrants consideration and should continue to be investigated. Further 

research should be conducted into potential alternative pharmacotherapies, including other 

cannabinoids, in conjunction to those covered here. Table 1 summarizes these current and 

emerging pharmacotherapies for OUD.

As previously established, preclinical evidence from single-drug models has supported the 

therapeutic efficacy of lorcaserin for reducing opioid relapse and self-administration in 

non-human primates (125). However, as with lorcaserin’s mixed effects in clinical studies, 

preclinical evidence from choice models using lorcaserin have also produced mixed results. 

In one study, treatment with 3.0 mg/kg of lorcaserin non-selectively decreased remifentanil 

and food self-administration in rats when both rewards were offered independent of each 

other (126). However, when forced to make a choice between immediate drug and delayed 

food (food delay was adjusted to manipulate responding for drug to be at 90%), only a 

dose of 1.7 and 3.0 mg/kg significantly reduced responding for the drug hole compared 

to vehicle (126). Additionally, a study in non-human primates found that maintenance on 

1.0 mg/kg of lorcaserin selectively reduced heroin self-administration (dose-dependently), 

without impacting responding for food (125). Both studies, however, are contradicted by a 

non-human primate study that showed chronic dosing with up to 0.32 mg/kg of lorcaserin 

instead increased choice for heroin (127). These results underscore the mixed findings with 

lorcaserin and could be explained by the dose variation between studies, as well as variation 

in experimental design. The results also suggest that there could be other, unknown variables 

that may mediate (or diminish) lorcaserin’s efficacy. This possibility that there are other 

variables that mediate lorcaserin’s efficacy can be supported by one study that showed that 

a buprenorphine/lorcaserin mixture reduced variability and decreased heroin preference in 

non-human primates, when compared to treatment with buprenorphine alone. This study 

displays that it may not be feasible for lorcaserin to be a treatment on its own but instead 

may have potential as a treatment in combination with others like buprenorphine (128). 

Altogether, these studies with lorcaserin support our main tenet that the use of preclinical 

choice models (as opposed to single-drug models) will provide predictive validity for 

outcomes in clinical trials.
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Novel and Potential Treatment Strategies

Alternative strategies to pharmacological approaches are currently under investigation due 

to the low success rate in relapse prevention long-term with existing therapies (Figure 3) 

(129). This literature primarily addresses how these strategies reduce self-administration 

and relapse in preclinical models, and in clinical populations, but nonetheless should be 

considered for future applications in modifying choice behavior.

Non-invasive techniques that target cortical structures, such as transcranial magnetic 

stimulation (TMS), and invasive techniques that target subcortical structures, such as 

deep brain stimulation are forms of neuromodulation that may be useful clinical 

treatment strategies (129). TMS, an FDA-approved treatment for clinical depression, uses 

electromagnets to induce hyperpolarization or depolarization of neurons in specific cortical 

areas and may be applicable as a treatment for OUD and other SUDs (130-132). In several 

studies determining the effects of repetitive TMS (rTMS) therapy on the left dorsolateral 

prefrontal cortex (dlPFC), researchers observed a reduction in self-reported cue-induced 

heroin craving in heroin dependent subjects (133,134). Furthermore, in a case study observing 

a patient with OUD and cocaine use disorder, 7 separate sessions of rTMS targeting the left 

dlPFC reduced cue-induced cravings by ~60% to ~82%, compared to the ratings given prior 

to treatment (135). However, in a pilot study that applied rTMS to the dlPFC in patients with 

OUD undergoing methadone maintenance therapy, rTMS did not reduce craving, heroin use, 

or positive urine screens in opioid users compared to patients receiving a sham treatment 

(136).

Vagal nerve stimulation (VNS) is a moderately invasive method that is currently FDA-

approved for treating epileptic seizures and treatment-resistant depression, and it is currently 

being investigated for treatment of SUDs (129). However, there are few reports investigating 

VNS in patients with OUD specifically, and none regarding its effect on choice. This is an 

unexplored area that should be considered for future research. Furthermore, as preclinical 

studies identify the specific neural circuits controlling opioid choice (46), another alternative 

treatment strategy may involve adeno-associated virus (AAV) mediated gene therapy. An 

example of this strategy is its use in chemogenetics where researchers are able to transfect 

designer receptors exclusively activated by designer drugs (DREADDs) into rodent or non-

human primate brains to then directly manipulate choice circuits.

The more invasive deep brain stimulation (DBS) is a candidate treatment but is not widely 

used to treat SUDs. In a case study of a singular patient with long-term heroin dependence, 

DBS of the NAc prevented misuse of drug during active stimulation for the first 2.5 years 

and continued the prevention for 3.5 years even after the stimulation was removed with no 

relapse (137). Similarly, in a pilot trial of two patients with therapy-resistant OUD, bilateral 

application of DBS to the NAc induced complete abstinence from heroin and methadone 

in both patients for at least a year (138). More recently, another case study of a patient 

with long-term OUD reported that DBS of the NAc/ventral anterior internal capsule was 

able to reduce opioid use and craving throughout the 12-weeks of DBS and throughout 

the 12-month follow-up (96). These preliminary case studies suggest that DBS may be a 

promising treatment for OUD, but more research is needed in additional subjects to verify its 

safety and efficacy in patients with OUD.
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Immunotherapies are another novel strategy that could be used to reduce drug choice. 

Immunotherapies use antibodies to sequester these drugs in the blood and prevent them 

from activating reward circuits in the brain (140). Several preclinical studies have shown that 

conjugate vaccines effectively reduce the reinforcing effects of opioids, thereby reducing 

opioid self-administration (141-143). Conjugate vaccines have also been shown to affect 

choice. For example, a fentanyl-tetanus toxoid conjugate vaccine reduced fentanyl self-

administration in rats (144). These results were then translated from rats to monkeys, and 

vaccination reduced fentanyl choice and increased food choice in four-of-the-five monkeys 

(145). These results suggest that conjugate vaccines are promising strategies for clinical 

application. Despite these successes with conjugate vaccines, there are some caveats to this 

strategy. In several studies, animals could overcome the effect of the vaccine by taking 

more drug and, in essence, exceeding the binding capacity of the anti-drug antibodies that 

the vaccine produced (146-148). This effect of course can be seen with therapies that utilize 

competitive agonists and thus it is not a point against vaccine therapies but instead a factor 

for consideration.

In addition to the novel treatments discussed here, psychedelics are a drug class that is 

receiving growing attention as potential treatments for psychiatric disorders (149-151). For 

example, the psychedelic alkaloid ibogaine and some of its analogs have demonstrated 

efficacy in preclinical models of drug taking and seeking for opioids as well as multiple 

other substances, including cocaine, nicotine, and alcohol (152-156). Most psychedelics act 

as serotonin receptor agonists, with their hallucinogenic effects appearing to be mediated 

by the 5HT2A and 5HT2C receptors. Other than the 5HT2C receptor agonist lorcaserin, 

which produced mixed results, the 5HT2A agonist tabernanthalog (TBG) appears to be more 

promising. TBG reduced heroin self-administration and relapse, and evidence indicates 

reduced hallucinogenic and cardiotoxic side-effects compared to its parent compound, 

noribogaine (157). TBG was also found to reduce alcohol binge-drinking behavior, 

suggesting potential for treating polydrug use disorders and other individual SUDs (157).

In conclusion, there are many future directions to identify novel treatment strategies for 

OUD (Figure 3), and these strategies should be evaluated for their efficacy using preclinical 

models of opioid choice behavior, in addition to the standard self-administration and relapse 

models. By testing these novel therapies on opioid choice, we may better develop a clinically 

translational treatment that is more effective than current therapeutics at mitigating opioid 

use in favor of healthy reward alternatives.

VII. Conclusions

OUD is a pervasive public health threat, impacting millions worldwide (1). Much of the 

preclinical research into both the neural circuits and potential therapeutics is centered on 

targeting relapse and reducing self-administration. We have argued here that preclinical 

models of drug choice have greater face validity than single drug studies because they 

recapitulate a poly-reward economy resembling the human environment, and choice models 

are becoming more widely used to study OUD. Here we have reviewed the current 

preclinical and clinical literature on the role of choice in SUD, with a focus on OUD, and 

the neural circuits that may underlie maladaptive choice for drug reward over natural reward. 

Chang and Peters Page 18

Neuropharmacology. Author manuscript; available in PMC 2024 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Of course, there are many additional factors that may influence choice, many of which have 

not been fully parsed out but are beyond the scope of this review. The recent identification 

of the vmPFC→NAshell pathway as a limiter pathway for both heroin choice and relapse 

(46) indicates at least some overlap in the circuitry for these behaviors, despite the fact 

they do not correlate with one another. More research is needed to further understand and 

characterize the neural mechanisms of choice, as well as the myriad of external factors that 

can influence choice. With relatively little data on a successful pharmacological method of 

shifting opioid choice, it is important to look at the success of novel potential therapeutics in 

shifting choice away from drugs and towards natural alternative rewards. We must continue 

to study choice behavior in the search for new addiction therapeutics and apply both forward 

and reverse translation to identify these novel treatment interventions.
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Highlights

• Here we review the neural circuits controlling opioid choice and relapse

• We posit that preclinical choice models offer predictive validity

• Both forward and reverse translation is needed to identify novel OUD 

therapeutics
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Figure 1. Choice between drug and non-drug rewards in humans and in rats.
A. Humans face multiple scenarios. B. Opioid choice between oxycodone and money in 

humans. PBO = placebo and O45 = 45 mg/70 kg oxycodone. * indicates a significant 

difference in percent choice for reward between the PBO group and the 45 mg/70 kg 

oxycodone dose group. When given the option between 45 mg/70 kg oxycodone and 

a money reward, % choice for oxycodone was ~40%. Data published in Comer et al., 

Behavioural Pharmacology, 2013. C. Individual subpopulations of rats prefer to choose 

heroin versus food. The heroin choice ratio is calculated by dividing the total number of 

heroin rewards earned by the total number of rewards earned, with a population average of 

50% choice between rewards. Data published in Heinsbroek et al., Nat Commun, 2021.
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Figure 2. Cortical subcircuits act as a driver versus limiter of drug seeking.
It has been previously suggested that functionally opposing pathways within the vmPFC 

differentially guide rewarded behaviors with one being the “motivational driver” (projections 

to the hypothalamus) and the other being the “motivational limiter” (projections to the 

NAshell). These pathways can be disrupted by excessive MOR signaling on GABAergic 

inhibitory interneurons within the vmPFC resulting in a disinhibition of glutamate 

projections to the respective subcortical regions. Repeated exposure to opioids may lead to 

neuroadaptations that result in increased activity of the driver pathway relative to the limiter 

pathway. This theory posits that continuous opioid exposure thus promotes the excessive 

opioid seeking and taking that characterize OUD.
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Figure 3. Novel interventions that are currently being investigated as potential treatments for 
shifting opioid choice.
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Table 1.

Examples of currently used and potential pharmacotherapies, their major receptor targets, and their effect on 

choice in both preclinical and clinical studies.

TREATMENT PRECLINICAL/
CLINICAL

EFFECT OF Tx ON
CHOICE

MAJOR RECEPTOR
TARGET

REFS

Methadone Preclinical ↓ choice MOR agonist 116 

Buprenorphine Preclinical
Clinical

↓ choice
↓ choice

MOR and KOR partial agonist 116,128

87,97,98

Lorcaserin Preclinical

Clinical

↓ choice
↑ choice
No effect on choice

5HT2c agonist
126,128

127 

108,109,111,158

Methocinnamox 
(MCAM)

Preclinical ↓ choice MOR antagonist 118 

Naloxone/Naltrexone Preclinical
Clinical

↓ choice
↓ choice

MOR and KOR antagonist 74 

98 

Salvinorin A Preclinical ↓ choice (when combined with 
administered drug) KOR agonist

119 

Nalfurafine Preclinical ↓ choice (when
combined with administered drug) KOR agonist

119,120

Cannabinoids Preclinical No effect on choice CB1/CB2 cannabinoid
receptor agonists

124 
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