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Persons that develop Alcohol Use Disorder (AUD) experience behavioral changes that include compulsion to seek 

and take alcohol despite its negative consequences on the person’s psychosocial, health and economic spheres, 

inability to limit alcohol intake and a negative emotional/ motivational state that emerges during withdrawal. 

During all the stages of AUD executive functions, i.e. the person’s ability to direct their behavior towards a 

goal, working memory and cognitive flexibility are eroded. Animal models of AUD recapitulate aspects of action 

selection impairment and offer the opportunity to benchmark the underlying circuit mechanisms. Here we propose 

a circuit-based approach to AUD research focusing on recent advances in behavioral analysis, neuroanatomy, 

genetics, and physiology to guide future research in the field. 
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i An update to this article is included at the end
. Introduction 

Acute alcohol intoxication and AUD are characterized by neurocog-

itive disorders affecting the perceptual-motor and executive function

omains [5] . Neurocognitive impairments emerge during the develop-

ent of AUD, contributing to key clinical manifestations including loss

f control over alcohol intake, compulsions centered on alcohol and neg-

tive emotional states [40] . Furthermore, neurocognitive impairments

ight persist following sustained abstinence [61] . Understanding the

eural substrates underlying the emergence of inflexible behavior that

ontribute to compulsive alcohol seeking, uncontrolled drinking, relapse

nd altered executive function during sustained abstinence is warranted

o inform the refinement of targeted therapeutic approaches for AUD. 

Adaptive behavior requires moment-to-moment action selection to

aster one’s environment. Actions performed to obtain a specific out-

ome are defined as ‘goal-directed’, driven by Action-Outcome (AO) as-

ociations. Actions performed in response to a triggering environment

ased on past reinforcement history are defined as ‘habitual’, driven by

timulus-response (SR) associations [8,31] . Cooperation between these

wo modalities enables the optimization of action performance and the

earning of novel actions. An increased reliance on habitual action con-

rol has been proposed to contribute to behavioral inflexibility in AUD

15] . 
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Fundamental brain circuits for action control have been identified

n the Basal Ganglia (BG). In this review, we discuss translational re-

earch into the mechanisms underlying BG circuit dysfunctions induced

y acute or chronic alcohol in adults. All the BG circuits have important

oles in effects of alcohol and AUD [41] . However, we will focus on the

he associative and sensorimotor CB loops, as these circuits have been

mplicated in AO and SR instrumental conditioning as well as effects

f alcohol on these behaviors. In parallel, we discuss fundamental re-

earch studies on the organization and function of basal ganglia circuits

o identify novel avenues for future research. 

. The role of associative and sensorimotor basal ganglia loops in 

ction control 

.1. The organization of associative and sensorimotor basal ganglia loops 

Distinct BG loops share basic organizational motifs and are struc-

ured in parallel channels [4,28,32,54] . Cortical and thalamic gluta-

atergic inputs and midbrain neuromodulatory inputs are integrated

n the striatal microcircuitry by downstream projecting spiny projection

eurons (SPNs) and locally projecting GABAergic and cholinergic in-

erneurons [7,63] . The dopaminergic inputs from the substantia nigra
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ompacta and ventral tegmental area densely innervate the dorsal and

entral striatum, respectively. 

In the dorsal striatum, SPNs expressing the dopamine D1 receptor

orm the direct pathway (dSPNs) and project to the substantia nigra

eticulata (SNr), entopeduncular nucleus (EPN, the rodent homolog of

he primate globus pallidus internal segment, GPi) and through bridge

ollaterals to the globus pallidus external segment (GPe) [36] . SPNs

xpressing the dopamine D2 receptor originate the indirect pathway

iSPNs) by targeting the GPe, which in turn innervates the SNr and sub-

halamic nucleus (STN), the latter ultimately projecting to the SNr. Di-

ect and indirect pathway projections converge in the basal ganglia out-

ut nuclei, the GPi and SNr, that mainly project to brainstem, midbrain,

nd thalamic regions [27,42,54] . 

Extra-striatal cortical and amygdalar inputs are integrated in the

Pe [2,29] . The STN integrates extra-pallidal inputs, including the corti-

al ‘hyperdirect pathway’ and thalamic inputs [3,26,38,67] . Hence, the

Pe and STN are not only integral nuclei in the BG circuitry, but also

nput structures. Further, the GPe and STN possess specific extra-BG

argets and feedback projections to the striatum and GPe, respectively

10,43] . Two main GPe neuronal subtypes have been identified based on

heir projection targets and cellular identity: downstream (SNr) project-

ng ‘prototypic’ neurons and striatum projecting ‘arkypallidal’ neurons

 [1,47] ; reviewed in [18] ). Genetic markers of prototypic GPe neurons

nclude the transcription factor NK2 homeobox 1(NKX2.1) and Parval-

umin (PV), whereas genetic markers of arkypallidal GPe neurons in-

lude the neuronal PAS domain protein 1 (Npas1) and Forkhead-box-

rotein 2 (FoxP2) [18] . Prototypic neurons have been shown to be pref-

rentially targeted by striatal iSPNs, whereas arkypallidal neurons have

een shown to be the main recipient of the bridge collateral dSPN pro-

ections [19,37] . 

Circuit topography is preserved throughout parallel BG loops

27,42,54] . The associative loop originates from associative cortices (no-

ably medial prefrontal, mPFC and orbitofrontal, OFC) and targets the

orsomedial striatum (DMS) alongside amygdalar projections. A medial

ias is maintained in the striatal downstream projections to the GPe and

Nr. The sensorimotor loop originates from sensorimotor cortices (mo-

or, sensory cortices) targeting the dorsolateral striatum (DLS), and a

ateral bias is maintained in the downstream projections to the GPe and

Nr. Other loops which will not be extensively discussed in this review

nclude the ventrolateral loop involving the ventrolateral striatum (VLS)

nd the limbic loop involving the nucleus accumbens (NAc). The organi-

ation and function of the cortico-striatal branch of the associative and

ensorimotor loops has received relatively more attention than its down-

tream branches until recently. In the SNr, DMS-connected and DLS-

onnected neurons are spatially segregated and target common outputs

thalamus, pedunculopontine nucleus, midbrain reticular formation, su-

erior colliculus) while maintaining spatial segregation [27,42,50] . In

ddition to their common targets, functionally and spatially distinct sub-

opulations of SNr neurons have been shown to collateralize throughout

he midbrain and brainstem to innervate specialized targets [50] . 

A funnel-like organization that allows for dimensionality reduc-

ion of output information has been proposed for basal ganglia cir-

uits [25,54] . In the context of this model, context-dependent, state-

ependent and high-order inputs are integrated through the striatal mi-

rocircuitry and transferred to downstream structures that innervate

pecialized targets to influence motor and cognitive processes [6] . Ev-

dence from in-vivo imaging studies led to the hypothesis that differ-

nt ‘ensembles’, functionally and spatially related subgroups of striatal

PNs, are organized to control specific aspects of action performance

nd are selectively recruited during behavior [9,12,39,52] . The recruit-

ent of specific ensembles for action performance requires the inter-

lay of excitatory cortical and thalamic inputs, neuromodulation by

opamine and acetylcholine as well as lateral inhibition between SPNs.

ere we propose that the role of striatal ensembles for action is a key

art of models of BG circuit dysfunction in AUD and should be examined

n depth in future research (see section 2 ). 
2 
.2. Functional roles of associative and sensorimotor basal ganglia loops 

Associative and sensorimotor circuits are key mediators of goal-

irected and habitual behavioral control, respectively, as reviewed else-

here [54,69] and have been investigated in human and animal studies

xamining alcohol effects on action control. 

While BG loops have been implicated in Pavlovian conditioning, the

ssociative and sensorimotor circuits have especially prominent roles in

nstrumental learning and control thereof by outcomes, reinforcement

istory and the environment [34,64] . Furthermore, the literature on the

ffects of misused substances on associative and sensorimotor circuit

unction in the context of instrumental learning is more detailed than

hat examining Pavlovian conditioning, although the role of Pavlovian

o instrumental transfer (PIT) is an emerging theme [15] . Thus, we have

hosen to focus on instrumental learning in this review. Instrumental

onditioning paradigms have allowed investigators to operationally de-

ne goal-directed and habitual action control [69] . In instrumental con-

itioning paradigms, AO/goal-directed and SR/habitual associations are

stablished by pairing an action (e.g., lever press) with a salient outcome

e.g., sucrose pellet). Briefly, instrumental training is performed to con-

olidate the associations and afterwards action performance is tested in

rief sessions under extinction conditions (no outcome delivered) using

utcome devaluation procedures. The outcome devaluation procedures

re designed to assess if the outcome drives the behavior. The training

chedule can be varied to bias the animal toward goal-directed strategies

r habitual strategies using random ratio (sensitive to outcome devalua-

ion) or random interval schedules (insensitive to outcome devaluation),

espectively [24] . Animals that respond to the outcome devaluation by

ecreasing action performance are thought to maintain an AO strategy

f action performance, as opposed to animals that continue perform-

ng the same action using an SR strategy. Other methods to assess AO

ersus SR action strategies include contingency degradation and omis-

ion procedures [59] . In a contingency degradation paradigm, rewards

re delivered randomly with no relation to action performance (e.g.,

ever pressing). Animals that decrease pressing during these sessions are

hought to be using an AO strategy, while those that maintain pressing

re likely using an SR strategy [59] . In the omission test, animals are

ewarded for not producing an action. In this paradigm, animals us-

ng an AO strategy will decrease their pressing faster than those using

n SR strategy [59] . Instrumental conditioning paradigms have been

sed to assess goal-directed and habitual alcohol seeking and to assess

ction control following chronic alcohol exposure. Further, they have

een used to test for reversal learning using dual lever-press paradigms.

n dual lever pressing paradigms, the contingency can be reversed af-

er training and the performance assessed as a measure of behavioral

exibility. 

. Neuroadaptations in the associative striatum following acute 

nd chronic alcohol exposure 

We will first review the Associative Circuit. In model 1, we con-

ider changes in the integrative properties of dSPNs and iSPNs in the

MS that contribute to increased alcohol seeking and taking ( Fig. 1 ).

n model 2, we consider the role of altered top-down cortical control

f the DMS in behavioral flexibility deficits following chronic alcohol

xposure ( Fig. 2 ). 

.1. The role of GABAergic and Glutamatergic transmission in the DMS in 

lcohol seeking and taking 

Acute alcohol has been shown to enhance GABAergic miniature in-

ibitory postsynaptic current (mIPSC) frequency in DMS SPNs in mice

68] . Conversely, chronic binge-like alcohol drinking was shown to de-

rease the frequency of mIPSCs in DMS SPNs whereas no changes were

bserved in miniature excitatory postsynaptic currents in DMS SPNs in

ice [68] . The postsynaptic characteristics of mIPSCs were found to
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Fig. 1. Model 1, neurotransmitter imbalance in the DMS. dSPN: direct pathway 

spiny projection neuron. iSPN: indirect pathway spiny projection neuron. 

Fig. 2. Model 2, cortico-striatal and thalamo-striatal deficits contributing to 

altered behavioral flexibility and alcohol seeking following chronic alcohol ex- 

posure. OFC: orbitofrontal cortex. mPFC: medial prefrontal cortex. DMS: dor- 

somedial striatum. Thal: thalamus. ChIN: Cholinergic Interneuron. dSPN: direct 

pathway spiny projection neuron. iSPN: indirect pathway spiny projection neu- 

ron. 
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e altered independently from the age of drinking onset in the caudate

f macaques, whereas mixed effects were observed in the frequency of

IPSCs which increased only in monkeys that begun drinking as young

dults [20] . The frequency of miniature excitatory postsynaptic currents

mEPSCs) was found to be increased by alcohol drinking in the caudate

f rhesus monkeys [20] . 

Changes reported in DMS dSPNs following chronic alcohol drinking

n mice include altered morphology and altered glutamatergic input in-

egration. The spine density and dendritic branching was found to be

ncreased [66] and he function of AMPA receptors and the frequency

nd amplitude of mEPSCs was shown to be increased [66] . The func-

ion of NMDA receptors and in particular GluN2B-containing NMDARs

as reported to be increased [13] . Further, alcohol self-administration

as found to produce increased NMDAR function in dSPNs [58] . In
MS iSPNs, NMDAR function was shown to be decreased [13] , whereas

ABAergic transmission was increased [13,66] . 

Hence, bidirectional changes occur in DMS dSPNs and DMS iSPNs fol-

owing chronic alcohol drinking or self-administration. An increased ex-

itatory drive DMS dSPNs might contribute to increased alcohol drink-

ng and seeking behaviors, and accordingly the chemogenetic inhibitory

odulation of DMS dSPNs was found to decrease alcohol intake and pref-

rence in mice previously exposed to chronic drinking [13] . Conversely,

n increased inhibitory drive was reported DMS iSPNs and accordingly

hemogenetic excitatory modulation of DMS iSPNs was found to decrease

lcohol intake and preference in mice previously exposed to chronic

rinking [13] . 

Overall, a first model of DMS circuit dysfunctions following chronic

lcohol drinking indicates a predisposition of DMS circuits towards in-

reased direct pathway output and decreased indirect pathway output

riving alcohol seeking and taking behaviors ( Fig. 1 ). However, the re-
3 
ruitment of striatal SPNs for action control depends on cortical inputs

nd on the neuromodulation particularly from dopaminergic inputs and

holinergic interneurons. The role of altered neuromodulation and top-

own cortical control following chronic alcohol exposure will be sum-

arized in model 2. 

.2. DMS circuit dysfunctions underlying altered behavioral flexibility 

ollowing chronic alcohol exposure 

Mice previously exposed to chronic intermittent alcohol (CIE) vapor

ere shown to have habit-like responding to sucrose reward in an out-

ome devaluation test following random ratio training, while preserving

abit formation following random interval training [55,56] . Further,

ice exposed to CIE were reported to use different action strategies

han untreated mice to perform lever press sequences during random

atio training [56] . In another study, rats chronically exposed to alco-

ol drinking and trained to lever press for two different outcomes on

wo different levers were found to show a reversal learning deficit [46] .

The strength of OFC cortico-striatal inputs was found to be reduced

ollowing chronic alcohol exposure [55] , and later it was shown that an

ncreased CB1 receptor function mediated increased inhibition of OFC

nputs [56] . The activity of OFC terminals in the striatum measured in

ivo as Ca 2 + measurements was reported to be increased during action

erformance (lever press) in an operant task but decreased at reward de-

ivery in CIE mice compared to control mice [56] . Decreased activity of

FC terminals at reward delivery might impair the encoding of reward

alue, contributing to the loss of value-based goal directed behavior

ollowing chronic alcohol exposure in mice [55,56] . Normalizing CB1

ignaling restored OFC terminal activity at reward delivery and goal-

irected behavior in chronic alcohol exposed mice [56] . Overall, loss

f top-down control over DMS function by the orbitofrontal cortex im-

airs goal-directed behavior. A weakened OFC-DMS projection has also

een proposed to contribute to alcohol seeking behaviors, as in vivo op-

ogenetic long-term potentiation (LTP) of OFC to DMS projections was

hown to decrease alcohol self-administration in rats [14] . 

The mPFC-DMS projection is critical for the cognitive control of ac-

ion performance [22,71] . Bidirectional in vivo control of mPFC-DMS

ynaptic plasticity has been shown to exert opposite effects on alcohol

eeking behavior. The induction of endocannabinoid-dependent long-

erm depression (LTD) of mPFC-dSPN synapses was shown to decrease

lcohol seeking [45] . Dopamine D1 and D2- receptor dependent LTD at

PFC-SPN synapses transiently increased alcohol seeking and LTD in-

uction in the presence of D1 and D2 receptor antagonists was reported

o induce a lasting suppression of alcohol seeking [58] . Conversely, LTP

f mPFC-dSPN projections was found to increase alcohol seeking [45] .

aken together these findings indicate that altered plasticity at mPFC-

MS projections contributes to perseveration in alcohol seeking behav-

ors. 

Thalamic inputs target dSPNs and iSPNs and preferentially innervate

triatal cholinergic interneurons (ChINs) over other striatal interneurons

35] . Thalamic inputs to DMS ChINs play a central role in behavioral flex-

bility. Decreased thalamic input strength to DMS ChINs was observed

ollowing chronic alcohol drinking and was associated with impaired

holinergic control over cortical inputs to the DMS and ChIN firing [46] .

TP of thalamic inputs to the DMS was found to ameliorate reversal

earning deficits following chronic alcohol drinking [46] . 

Overall, in model 2 we summarize altered cortico-striatal and

halamo-striatal circuits that contribute to reduced behavioral flexibil-

ty and altered value-based decision making following chronic alcohol

xposure in animal models ( Fig. 2 ). 

Altered DAergic control over associative striatal circuitry might fur-

her contribute to circuit dysfunctions induced by chronic alcohol. A

tudy in rhesus macaques reported that chronic alcohol consumption al-

ers dopamine release in a sex-specific manner [60] . Dopamine release

as found to be increased in the caudate of female macaques, whereas

n males dopamine release was not changed in the caudate nucleus.
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Fig. 3. Model 3, acute and chronic alcohol effects on the sensorimotor striatal 

circuitry. CTX: motor and somatosensory cortex. AIC: anterior insular cortex. 

DLS: dorsolateral striatum FSI: fast spiking interneuron. dSPN: direct pathway 

spiny projection neuron. iSPN: indirect pathway spiny projection neuron. 
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ollowing abstinence, dopamine release in males was significantly de-

reased in the caudate. Dopamine uptake was increased in the caudate

nd putamen of female but not male macaques. Control of dopamine re-

ease by D2/D3 receptors was decreased in the caudate of male but not

emale macaques, but no difference was observed in cholinergic regula-

ion of DA release [60] . In another study where DA release was exam-

ned in chronic drinking macaques, decreased release and uptake was

bserved in the dorsal lateral caudate nucleus (a portion of the macaque

MS) compared to controls [62] . Taken together, dopamine dynamics in

he associative striatum are altered in a sex-specific manner and might

ontribute to drive divergent neuroadaptations during alcohol consump-

ion and following abstinence. 

The availability of dopamine D2 receptors was shown to be de-

reased in individuals with AUD [65] . Interestingly, mice lacking D2

eceptors in iSPNs were shown to have enhanced sensitivity to ethanol

timulation, higher preference and escalation of drinking [11] . Low D2

eceptors in iSPNs was reported to produce hypersensitivity of striatal

opamine D1 receptors selectively in the DMS, and accordingly knock-

own of D1Rs in the DMS but not ventral striatum reduced ethanol stim-

lation and preference [11] . Hence, altered striatal DA receptor signal-

ng further contributes to AUD-related phenotypes and striatal circuit

ysfunctions. 

Future studies shall identify how in vivo striatal ensemble function is

ltered by acute and chronic alcohol: how does perseveration emerge,

nd which circuit- based strategies are best suited to reduce it? It is

lso critical to understand how an altered striatal output will impact on

ownstream circuitry. 

. Neuroadaptations in the sensorimotor striatum following acute

nd chronic alcohol exposure 

We will now turn our attention to the sensorimotor circuit. In model

, we describe that a disinhibition of the cortical projections to the DLS

as been implicated in habitual alcohol seeking and taking and in the

aintenance of binge alcohol drinking ( Fig. 3 ). 

Operant responding for alcohol but not for sucrose in rats was

emonstrated to become habitual after 4 weeks of training [16] . Inac-

ivation studies where a GABA A agonist was infused in the DMS or DLS

hown that whilst the inactivation of the DMS accelerated the emer-

ence of habitual alcohol seeking, inactivating the DLS prevented it

16] . Similar results were obtained through the local infusion of AMPA

nd D2 receptor antagonists in the DLS [17] . In a more recent study us-

ng a seeking-taking chained design in alcohol-preferring rats, seeking

esponses in a subpopulation of rats which developed compulsive alco-

ol seeking were reduced through the inhibition of DA receptors in the

LS [30] . Overall, these studies demonstrated that abnormal DLS func-

ion participates to habitual and compulsive alcohol-seeking behaviors

nd put the accent on the role of neurotransmitter and neuromodulator

ystems in this region. 

Acute alcohol exposure was shown to reduce GABAergic mIPSC

requency in the mouse DLS [68] . Acute bath application of alcohol
4 
as reported to inhibit optogenetically- evoked GABAergic transmis-

ion at synapses made by fast-spiking interneurons onto DLS SPNs [53] .

urthermore, acute alcohol was shown to inhibit SPN-SPN synapses

53] . Interestingly, ablation of FSIs results in reduced ethanol con-

umption and disrupts drinking microstructure [72] . Neuroadaptations

n the putamen of chronic drinking macaques measured during ab-

tinence include increased glutamatergic mEPSCs and increased ex-

itability of striatal SPNs, together with decreased GABAergic mIPSCs

20,21] . These changes were accompanied by increased dendritic ar-

orization and spine density of SPNs in the putamen [21] . The den-

ritic arborization of DLS SPNs was also found increased in a mouse

odel of passive (vapor) alcohol exposure [23] . Following prolonged

inge-like drinking in mice, mIPSCs frequency in DLS SPNs was found to

e decreased whereas no change was observed in mEPSCs [68] . These

hanges were accompanied by a reduction in the sensitivity of synapses

n SPNs to acute alcohol application [68] . Hence, an overall disinhibi-

ion of DLS SPNs following chronic alcohol drinking was observed across

pecies. 

Equal to the associative striatum, the activity of DLS SPNs is driven

y cortical and neuromodulatory inputs. A reduction in striatal endo-

annabinoid (eCB)-dependent plasticity on cortical inputs to the DLS

as observed following chronic alcohol exposure [23] . Mice chroni-

ally exposed to alcohol displayed heightened performance in a visual

iscrimination and reversal learning task and the activity of DLS neu-

ons during a reversal learning task was increased in the late phases of

eversal training [23] . Hence, circuit adaptations following chronic al-

ohol exposure predispose towards an increased engagement of DLS SPNs

n action control. A recently characterized projection from the anterior

nsular cortex (AIC) to the DLS has been investigated in the context of

 mouse model of binge alcohol drinking. A first study reported that

-opioid receptor dependent long-term depression is lost at insular cor-

ex projections to the DLS following binge alcohol drinking [51] . The

IC projection to the DLS was found to be potentiated following binge

lcohol drinking and implicated in the maintenance of alcohol binge

rinking in male but not female mice [33] . Photostimulation of AIC to

LS projections reduced binge drinking [33] . 

Dopamine release was reported to be unchanged in the putamen of

hronic drinking female macaques, whereas in male dopamine release

as decreased in the putamen [60] . Following abstinence, dopamine re-

ease in males was significantly decreased in the putamen, and dopamine

ptake was increased in the putamen of females but not male macaques

60] . Control of dopamine release by D2/D3 receptors was decreased

n putamen of male but not female macaques, but no difference was

bserved in cholinergic regulation of DA release in the putamen [60] . 

In summary, changes reported in DLS SPNs predispose the sensorimo-

or striatum towards an increased output. Loss of plasticity at cortico-

triatal synapses can impact the learning of novel actions and behav-

oral flexibility. It remains to be established how these changes affect
LS dSPNs and DLS iSPN specifically. Further, it will be important to in-

estigate how DLS ensemble function is altered following chronic alco-

ol exposure and how these changes impact downstream circuitry, as

iscussed in the final part of this review. 

. Novel vistas: consequences of striatal circuit dysfunctions on 

ownstream circuitry following chronic alcohol exposure 

.1. Associative circuits: behavioral flexibility with a sweet spot for sleep 

nd arousal 

In this paragraph we review recent anatomical and functional studies

n the direct, bridge collateral and indirect pathway portions of the as-

ociative circuit. We highlight novel research avenues needed to under-

tand how altered cortico-striatal and striatal function ( Fig. 1 , 2 ) will im-

act action control via abnormal recruitment of downstream circuitry. 
DMS dSPN-SNr projections target medial SNr neurons, whose specific

olecular identity remains undefined [42,50] . Most SNr neurons are
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rojection neurons that express GABAergic markers including the vesic-

lar GABA transporter (VGAT) and glutamate decarboxylase 2 (GAD2),

xcept for a subpopulation of dopaminergic neurons whose connec-

ivity remains undefined ( ∼5 % of neurons) [44,50,57] . A large num-

er ( ∼85%) of SNr neurons are parvalbumin (PV) expressing neurons

hat are enriched in the lateral tier of this nucleus [44,50] . It is cur-

ently unclear whether PV 

+ or PV 

− neurons in the SNr are differen-

ially innervated by different striatal subregions. SNr projection neu-

ons collateralize so that each SNr neuron targets ‘canonical’ SNr tar-

ets (motor and intralaminar thalamus, midbrain reticular formation,

edunculopontine nucleus and zona incerta) while simultaneously tar-

eting specialized midbrain and brainstem targets [42,50] . In the case

f medial SNr neurons, specialized targets include neuromodulatory re-

ions such as the dorsal raphe, locus coeruleus, and ventral tegmental

rea, and the pain-related periaqueductal gray region [44,50] . Func-

ional manipulation and Ca 2+ imaging of SNr PV neurons or medial

AD2-expressing neurons suggests that, while both are involved mo-

or control, medial GAD2-expressing neurons are involved in promoting

leep [44] . Hence, altered DMS dSPN-SNr output following chronic alco-

ol exposure might not only impair action control but also play a role

n changing control of brain states including arousal and sleep, and pain

odulation. 
DMS iSPN-GPe projections were shown to preferentially target proto-

ypic neurons in the GPe [19,37] . Further, GPe PV neurons innervated

y the DMS preferentially target the Pf thalamus and their activation

mpairs reversal learning [43] . In model 1, we reviewed the idea that

ABAergic inhibition of DMS iSPNs is increased following chronic alcohol

xposure. As a result, a disinhibition of GPe PV-Pf thalamus projections

ollowing chronic alcohol exposure might occur, contributing to reversal

earning deficits reported in rodent models of chronic alcohol exposure

46] . 
DMS dSPN-GPe projections were shown to preferentially target Npas1-

xpressing ‘arkypallidal’ neurons in the GPe, whose main output is the

triatum [19,37] . Functional manipulations indicate that DMS dSPN-GPe

rojections might be implicated in promoting movement via the inhi-

ition of GPe Npas1 neurons [19] . Arkypallidal projections to the stria-

um provide a “stop signal ” for action suppression [48] . A study from

ur laboratory has reported that moderate, acute alcohol doses can de-

rease the firing of arkypallidal GPe neurons via a mechanism involv-

ng large conductance voltage- and Ca 2 + -gated (BK) potassium chan-

els [70] . The stop signal provided by Npas1-neurons to striatal SPNs

ight therefore be relieved during alcohol intoxication. In model 1,

e summarized studies indicating a disinhibition of DMS dSPNs follow-

ng chronic alcohol exposure and in model 2 studies indicating an im-

aired top-down cortical control of the DMS microcircuitry. Hence, en-

anced DMS dSPN-Npas1 connectivity might alter stop signals conveyed

o the striatum, contributing to heightened alcohol seeking and taking

ehaviors. 

.2. Sensorimotor circuit: habits and movement 

Here, we review recent anatomical and functional studies on the di-

ect, bridge collateral and indirect pathway portions of the sensorimotor

ircuit. DLS dSPN-SNr projections target the lateral SNr [42] , and lateral

Nr neurons target primarily motor-related regions [42,44,50] . A disin-

ibition of DLS dSPN-SNr projections following chronic alcohol exposure

 Fig. 3 ) might direct context-dependent action control towards habitual

lcohol seeking and taking. 
DLS dSPN-GPe projections preferentially target Npas1-expressing

arkypallidal’ neurons in the GPe [19] . One consequence of the DLS

lasticity summarized in Fig. 3 might be that an increased striatal out-

ut induces abnormally strong inhibition of GPe Npas1 neurons, further

ontributing to disinhibition of DLS output. 
DLS iSPN-GPe projections preferentially target parvalbumin express-

ng neurons in the GPe [19,37] . GPe PV neurons are enriched in the dor-

olateral portion of the nucleus [49] and GPe PV neurons targeted by
5 
he DLS preferentially target the SNr promoting locomotion [43] . One

ossibility is that an increased iSPN-GPe output ( Fig. 3 ) might induce

bnormally excessive inhibition of GPe PV neurons. 

Overall, key questions remain as to how DLS plasticity reverberates

n downstream targets to disinhibit habitual action control. It will be im-

ortant to establish whether distinct plasticity occurs at synapses made

y DLS dSPNs and DLS iSPNs. Further, in vivo studies should clarify how

eurons in the GPe and SNr encode action control following chronic

lcohol exposure. 

. Conclusions 

A corpus of animal studies has identified several cellular and cir-

uit mechanisms underlying alcohol effects on associative and sen-

orimotor basal ganglia circuits. Fundamental research is helping to

dentify and diversify the broad neuronal networks embedded in asso-

iative and sensorimotor basal ganglia circuits, unraveling novel tar-

ets and neural processes influenced by these circuits. Future studies

hould determine how altered striatal function influences downstream

argets whose circuit organization and functional roles are now begin-

ing to be mapped to a greater extent. The impact of acute and chronic

lcohol on striatal ensembles and on the modulation of striatal cir-

uits by dopamine and other neuromodulators can now be studied in

reater detail thanks to the advances and scalability of optical imaging

echniques. 

Here, we reviewed translational and fundamental studies and iden-

ified pressing questions to be addressed in future research into alcohol

ffects on the associative and sensorimotor circuits. We provide several

xamples of studies that detailed the acute and chronic effects of alco-

ol on cells, molecules and circuits of the basal ganglia identifying novel

argets for translational studies on AUD related phenotypes including al-

ohol seeking and taking. 
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