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Abstract

The capacity to anticipate and detect rewarding outcomes is fundamental for the

development of adaptive decision-making and goal-oriented behavior. Delineating

the neural correlates of different stages of reward processing is imperative for under-

standing the neurobiological mechanism underlying alcohol use disorder (AUD). To

examine the neural correlates of monetary anticipation and outcome in AUD

patients, we performed two separate voxel-wise meta-analyses of functional neuro-

imaging studies, including 12 studies investigating reward anticipation and 7 studies

investigating reward outcome using the monetary incentive delay task. During the

anticipation stage, AUD patients displayed decreased activation in response to mone-

tary cues in mesocortical-limbic circuits and sensory areas, including the ventral stria-

tum (VS), insula, hippocampus, inferior occipital gyrus, supramarginal gyrus, lingual

gyrus and fusiform gyrus. During the outcome stage, AUD patients exhibited reduced

activation in the dorsal striatum, VS and insula, and increased activation in the orbital

frontal cortex and medial temporal area. Our findings suggest that different activa-

tion patterns are associated with nondrug rewards during different reward processing

stages, potentially reflecting a changed sensitivity to monetary reward in AUD.

K E YWORD S
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1 | INTRODUCTION

Alcohol use disorder (AUD) is a common and potentially lethal disor-

der (Becker et al., 2017). According to a recent systematic analysis of

a global burden of disease study from 1990 to 2016, AUD has

become the most common drug use disorder worldwide, with an esti-

mated 100.4 million cases and 2.8 million deaths attributed to alcohol

use (Degenhardt et al., 2018). The Diagnostic and Statistical Manual

of Mental Disorders-5 (DSM-5) has created significant changes in the

definition of AUD, including merging the abuse and dependenceJianguang Zeng, Lantao You, and Fan Yang contributed equally to this work.
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criteria into a single diagnosis of AUD, removing the legal criterion,

and adding an item to assess craving (Beseler et al., 2012; Kerridge

et al., 2013). As a core feature of craving, the strong desire to con-

sume is a conditioned response to cues that have been learned to be

associated with alcohol use. Alcohol-related cues can reliably predict

rewards and hijack dopamine reward pathways through classical con-

ditioning learning to ultimately evoke alcohol craving in individuals

with AUD (Cofresi et al., 2019; Wrase et al., 2007; Xie et al., 2022). A

recent meta-analysis of the neuroimaging literature concerning alco-

hol cue activity task performance by our group indicated that AUD

patients showed an increased brain response in the reward system

during alcohol-related cue exposure but reduced activation after alco-

hol treatment compared to controls (Zeng et al., 2021), suggesting

that alcohol dependence may induce excessive sensitivity to alcohol-

associated incentive salience. However, a large body of literature has

also reported that addiction risk is characterized by dysfunctional

incentive motivational neurocircuitry, even by nondrug-related incen-

tive cues or deliveries (Balodis & Potenza, 2015; Hommer et al., 2011;

Luijten et al., 2017). Thus, it is interesting to study the neural bases of

motivated approach behaviors driven by nondrug-related reinforcers.

Monetary reinforcement is nearly universally valued and can be

learned by association, which provides experimental flexibility

(Knutson & Wimmer, 2007). The monetary incentive delay (MID) task

is a widely used and validated reward processing task for investigating

motivational salience processes in response to monetary stimuli in

healthy individuals and those with mental disorders (Beck et al., 2009;

Becker et al., 2017; Bjork, Smith, & Hommer, 2008; Knutson

et al., 2000; Wrase et al., 2007). Importantly, the MID task allows

reward processing to be parsed into at least two distinct components,

namely, “anticipation” and “outcome” (Knutson et al., 2001; Knutson

et al., 2007; Wilson et al., 2018). During the MID task, the anticipation

stage is defined as the period when the subject prepares to make a

motor response to stimuli to obtain potential monetary rewards or

avoid losses (Yau et al., 2012), whereas the outcome stage occurs

when rewards are delivered (Bjork, Smith, & Hommer, 2008). In the

MID task published by Knutson and colleagues (Knutson et al., 2000;

Knutson et al., 2001), the subjects were presented with incentive cues

(cue, 250 ms) of seven possible values (gain of $0.2, $1.0, or $5.0; loss

of $0.2, $1.0, or $5.0; or no change $0). Then, the individuals fixated

on a cross-hair as they waited a variable interval (delay, 2000–

2500 ms). Next, a target appeared for a variable length of time (target,

160–260 ms) during which the subjects made a button-press

response in an attempt to gain or avoid losing money. During the sub-

sequent outcome phase, the participants received performance feed-

back (outcome, 1650 ms). A schematic of the MID paradigm is

presented in Figure 1. This task requires a relatively low cognitive

demand and simple learning content, which minimizes cognitive con-

founds (Balodis et al., 2015). Moreover, this task has the advantage of

assessing and explaining the interaction between valence and the

temporal phase by modeling in the MID task (Oldham et al., 2018).

Importantly, this design disentangles the motivational from hedonic

aspects of reward in addicted populations; on a neurobiological level,

this task demonstrates different striatal and limbic region recruitments

during reward anticipation and consumption (Balodis et al., 2015;

Beck et al., 2009). Given that alcohol dependence is often associated

with impulsivity and an altered sensitivity to rewarding outcomes and

situations, mapping the neural correlates of different stages of reward

processing in alcohol dependence is important.

However, whether patients with AUD have different or overlap-

ping monetary-related brain activity dysfunction during the anticipa-

tion and consumption domains remains unclear. Considerable

evidence suggests that the ventral striatum (VS), as a central node in

the reward system, is less activated by nondrug reward cues (Beck

et al., 2009; Hagele et al., 2015; Wrase et al., 2007). Furthermore,

these studies show that a reduced VS response to monetary cues is

significantly correlated with the severity of alcohol craving (Wrase

et al., 2007) and impulsivity (Beck et al., 2009). These findings support

the notion that there is diminished motivation to pursue nondrug

rewards and a weakened strength of inhibitory cognitive control in

alcohol-dependent patients. However, some studies have also

reported that alcohol-dependent participants displayed hyperactiva-

tion in the VS (Becker et al., 2017; Grodin et al., 2016) or dorsal

F IGURE 1 Schematic representation of the MID task. Task structure of a representative trial in the MID task. In each trial, an incentive cue
(cue, 250 ms) indicated the amount of money that could be gained or lost (gain of $0.2, $1.0, or $5.0; loss of $0.2, $1.0, or $5.0; or no change,
$0.0). The different incentive cues are shown at the top of the figure. After the cue, the individuals fixated on a cross-hair as they waited a
variable interval (delay, 2000–2500 ms). Next, the subjects responded to a white square that was presented for a variable length of time (target,
160–260 ms) as soon as possible. During the subsequent outcome phase, winning or losing money and the cumulative total at that point were
presented to the subjects (outcome, 1650 ms). MID, monetary incentive delay task.
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striatum (DS) (Romanczuk-Seiferth et al., 2015) compared with con-

trols during reward anticipation. In contrast, regarding reward out-

come, the findings were more inconclusive. Brain activation in

response to monetary reward receipt varied across brain regions,

including the anterior cingulate cortex (ACC), insula, hippocampus and

amygdala, in people with AUD compared to healthy controls

(HC) (Bjork, Smith, & Hommer, 2008; Nestor et al., 2017; Romanczuk-

Seiferth et al., 2015). The heterogeneity of subjects and variability in

experimental paradigms and imaging protocols have led to discrepan-

cies in describing the etiology of the disorder.

Given these relatively inconsistent findings, two recent meta-

analyses have attempted to address the question of the neural bases of

reward processing in addiction, including gambling disorder and sub-

stance use disorder (SUD), from the perspective of the distinct stages

of reward processing. Nevertheless, despite the findings of the previ-

ous two meta-analyses, whether disorder-specific abnormalities exist

in AUD remains unknown. First, compared to SUD, gambling disorder

showed different motivation and behavior toward gambling cues and

monetary rewards, which could serve as stronger conditioned rein-

forcers (Flack & Morris, 2015; Lostutter et al., 2019). Individuals with

gambling disorders have been shown to display greater attentional bias

to monetary cues and gambling environments (such as flashing lights

and sounds) (Noseworthy & Finlay, 2009). Gambling disorder sensitizes

the incentive value attributed to gambling and particularly cues that

have been associated with gambling. The same applies to alcohol such

that alcohol-related cues also trigger cue approach and alcohol-seeking

behavior (Zeng et al., 2021). Therefore, monetary-related cue reactivity

in gambling disorder appears to be more similar to the alcohol cue reac-

tivity response than the monetary neural response in alcohol addiction.

As proposed in a recent review, the widespread use of money as a rein-

forcer creates some neglected conceptual problems in gambling and

substance addiction research (Clark et al., 2019). Considering the effect

of the reinforcer type on behavior, it is necessary to clarify the unique

neural correlates of monetary reinforcement processing in alcoholism.

Second, abundant neuroimaging evidence suggests that the neural pro-

cesses underpinning reward processing differ between pathological

gambling and SUD (Romanczuk-Seiferth et al., 2015; Tanabe

et al., 2007; Worhunsky et al., 2014). As shown in one study involving

gambling disorder patients, significantly higher activation during loss

anticipation in the posterior proportion of the striatum was reported

compared with the AUD patients (Romanczuk-Seiferth et al., 2015).

Additionally, Genauck and colleagues observed altered loss-related

activity in lateral prefrontal regions in AUD subjects and altered

amygdala-prefrontal functional connectivity in gambling patients

(Genauck et al., 2017). Furthermore, within the SUD group, several

studies have demonstrated that there are differences in the activation

of reward circuits induced by monetary rewards among patients with

alcohol dependence, cocaine dependence, and nicotine dependence

(Addicott et al., 2019; Balodis & Potenza, 2020; Bustamante

et al., 2014; Grodin et al., 2016). Third, several methodological aspects

of the included studies, such as the group specification (e.g., different

patient samples) and processes (e.g., different task paradigms), should

be considered in the interpretation and generalizability of the meta-

analysis results (Muller et al., 2018). Regarding the included samples,

the authors applied broad inclusion criteria and included a series of

addiction studies (including alcohol, cannabis, cocaine, nicotine, and

gambling addictions) (Luijten et al., 2017; Qiu & Wang, 2021). The

inclusion of mixed samples may have introduced confounding factors

and biased the results of the two studies. Regarding the included task

paradigms, two recent meta-analysis studies were performed across

relatively large, different types of experimental paradigms (monetary

incentive delay task, Iowa gambling task, reward prediction task, and

card guessing game) (Luijten et al., 2017; Qiu et al., 2021). The pres-

ence of notable heterogeneity in the task paradigms combined with

the bias introduced by including region of interest (ROI) analyses may

explain the inconsistencies among studies. To map the potentially dis-

tinctive neural profiles associated with AUD, it is necessary to investi-

gate the disorder-specific biological mechanisms underpinning AUD

during different stages of reward responding.

To address this issue, we conducted a voxel-based meta-analysis

of the available whole-brain functional magnetic resonance imaging

(fMRI) studies to determine the most prominent and replicable areas

to elucidate disorder-specific brain responses to monetary reward

during the anticipation phase and outcome phase in AUD patients and

controls. The analyses were restricted to studies that recruited AUD

patients and used the MID paradigm to reduce sample and task het-

erogeneity. We also explored the impact of demographic or clinical

factors on MID-related brain responses. Based on the literature

reviewed above, we hypothesized that different stages of reward pro-

cessing could be characterized by different brain activity patterns in

response to nondrug rewards in AUD patients.

2 | METHODS

2.1 | Search strategy and data sources

The purpose of this meta-analysis was to compare MID-related brain

activation differences between AUD patients and HC. A systematic

and comprehensive two-step literature search was completed by two

investigators to identify relevant articles. First, we searched PubMed

(https://www.pubmed.org), ScienceDirect (https://www.sciencedirect.

com), Google Scholar (https://www.scholar.google.com), and Web of

Science (https://www.webofknowledge.com) for all articles published

in English from January 2000 to June 2022. The following search terms

were used as keywords: (1) “alcohol dependence” OR “alcoholism” OR

“alcohol abuse” OR “alcohol use disorder” OR “AUD” OR “AD”;
(2) “monetary incentive delay” OR “MID” OR “modified monetary

incentive delay”; and (3) “functional magnetic resonance imaging” OR

“neuroimaging” OR “fMRI”. Second, we manually checked the refer-

ence lists of the retrieved articles to identify additional relevant articles.

The corresponding authors were invited by e-mail to provide additional

details not included in the original manuscript. The above procedures

followed the recommended guidelines defined in the Preferred Report-

ing Items for Systematic Reviews and Meta-Analyses (PRISMA) state-

ment (Moher et al., 2009).
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2.2 | Selection criteria and data extraction

Studies were eligible for inclusion if they met the following criteria:

(1) AUD patients were diagnosed based on the diagnostic criteria in

the DSM or International Statistical Classification of Diseases and

Related Health Problems (ICD) diagnostic criteria; (2) whole-brain

functional activity was compared between AUD patients and HC;

(3) the MID or modified MID task was used; and (4) the Montreal

Neurological Institute (MNI) or Talairach coordinates were used.

Studies were excluded from the final meta-analysis for the follow-

ing reasons: (1) subjects were younger than 18 years; (2) only ROI or

volume of interest findings were reported; (3) the study was a litera-

ture review or meta-analysis; (4) the article was based on non-fMRI

techniques; and (5) the study used other reward tasks. One study was

excluded because the addiction populations consisted of alcohol-

dependent individuals and patients dependent on multiple substances

(e.g., cocaine and opioids) (Nestor et al., 2020). Three other studies

were excluded because the problem drinkers in the patient group did

not meet any diagnostic criteria (Grodin et al., 2018; Tong et al., 2020;

Yau et al., 2012). Two studies without a control group were not

included in our analysis (Perini et al., 2020; Quelch et al., 2017).

2.3 | Voxel-wise meta-analysis

We conducted meta-analysis comparisons between AUD patients and

HC during different reward phases using seed-based d mapping

(SDM) software (version 5.15, https://www.sdmproject.com, formerly

“signed differential mapping”). Briefly, SDM uses standard effect size

and variance-based meta-analysis calculations and allows the combi-

nation of statistical parametric maps and peak coordinates from the

original studies (Radua et al., 2014; Radua & Mataix-Cols, 2009). SDM

adopts and combines various positive features of activation likelihood

estimate (ALE) and multilevel kernel density analysis, two main tools

for meta-analysis of neuroimaging data. Compared to ALE, SDM has

the following advantages or differences. First, SDM allows the combi-

nation of studies with available statistical parametric maps and studies

that report only peak coordinates, constituting an improvement over

ALE. Second, regarding effect sizes, SDM aims to estimate the effect

size, whereas ALE aims to estimate the peak likelihood (Radua

et al., 2014). Third, SDM can be used to recreate maps of the signed

(i.e., positive and negative) functional activation or differences

between patients and HC by using the reported peak coordinates,

which makes SDM an optimal method for comparing AUD patients

and HC without biasing the results (Radua et al., 2009). This feature

of SDM prevents spurious overlap between the two categories of

localization information in ALE, that is, a particular voxel erroneously

reported as simultaneously exhibiting both increased and decreased

activation (Eickhoff et al., 2012). Fourth, unlike ALE, studies reporting

no significant group differences can also be included in SDM. Fifth,

regarding study weighting, SDM implements random-effects models

in which each study is weighted by the inverse of the sum of its vari-

ance plus the calculated between-study variance (Radua et al., 2012a).

The meta-analysis strictly followed the following steps (Radua

et al., 2012b). First, we extracted the peak coordinates and corre-

sponding effect sizes of the task-evoked brain activation differences

between AUD patients and HC from the original research articles and

prepared text files for SDM software. Notably, we converted the Z-

value into a t-value by an online converter (https://www.sdmproject.

com/utilities/?show=Statistics). Second, we recreated a standard

MNI map of activity aberrances by using an anisotropic unnormalized

Gaussian kernel for each study. Third, the maps were combined with a

random-effects generalized linear model and weighted by the sample

size, intra-study variability and inter-study heterogeneity such that

studies with larger sample sizes or lower variance contributed more

(Radua et al., 2012b). Finally, the statistical significance of each voxel

was determined using standard randomization tests (Radua

et al., 2010). The default kernel size and thresholds in SDM (p < .005

with a peak height Z > 1 and a cluster extent >10 voxels) were used in

this meta-analysis, which was considered to optimally balance the

sensitivity and specificity (Radua et al., 2012b). To further limit the risk

of false-positive errors in meta-analyses arising from multiple compar-

isons, we also corrected our default threshold of p < .005 with the

Bonferroni method, giving p < .0025 (.005/2 = .0025).

2.4 | Conjunction analysis and contrast analysis

Moreover, conjunction analysis and contrast analysis were performed

to reveal the shared or distinct reward responses between the antici-

pation phase and outcome phase, as described in corresponding

meta-analyses (Brandl et al., 2022; Fouragnan et al., 2018; Yaple

et al., 2021). Specifically, we ran a conjunction analysis between the

two components to formally quantify the degree of overlap between

anticipatory and outcome brain activity and ran a contrast analyses

between anticipation and outcome groups to identify the areas

unique and specific to the anticipation and outcome stages.

2.5 | Analyses of subgroups

To control for any possible differences observed across the studies,

the analyses were repeated several times to include only those studies

that were methodologically homogenous. Therefore, the analyses

were repeated for studies including AUD individuals without other

Axis I psychiatric comorbidities, studies including AUD patients with-

out SUD comorbidities, except for nicotine, studies including off-

medication patients, and studies using SPM software.

2.6 | Sensitivity analysis

Additionally, we performed whole-brain voxel-based jackknife sensi-

tivity analysis to assess the robustness of the results. The reliability

analysis of the pooled analysis results consisted of repeating the main

statistical analysis several times during the reward anticipation stage
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and reward outcome stage while removing individual studies and cal-

culating the stability of the findings using the remaining studies. The

jackknife sensitivity analysis revealed the percentage of study combi-

nations that produced a significant result out of all study combinations

in one specific cluster. It is concluded that the results are highly repli-

cable if previously significant brain regions remain significant in all or

most study combinations (Radua et al., 2009).

3 | RESULTS

Full data supporting the findings of this study are available online at

https://osf.io/5r7y6/?view_only=9698617c0b4d4dacb63dc5c7fbbe

83be.

3.1 | Brain response differences between AUD
patients and HC during the reward anticipation phase

3.1.1 | Included studies and sample characteristics

Figure 2 shows the flow of the identification and attrition of the stud-

ies. Eleven studies enrolled in this meta-analysis comprised a total of

seventeen datasets comparing patients with AUD and HC during the

reward anticipation phase (Beck et al., 2009; Becker et al., 2017;

Bjork, Knutson, & Hommer, 2008; Bjork et al., 2012; Grodin

et al., 2016; Groefsema et al., 2020; Hagele et al., 2015; Murphy

et al., 2017; Musial et al., 2023; Nestor et al., 2017; Romanczuk-

Seiferth et al., 2015; Wrase et al., 2007). These studies included

263 patients with AUD (mean age = 38.88; percentage of

men = 79.82%) and 317 HC (mean age = 37.73; percentage of

men = 76.93%). There were no significant differences in age

(t = �.291, p = .774) or sex (χ2 = .447, p = .504) between the AUD

patients and HC. Table 1 summarizes the clinical and demographic

data from all included studies.

3.1.2 | Main meta-analysis

Relative to the HC, the AUD patients exhibited reduced activity in the

right VS, right orbital frontal cortex (OFC), ACC, right insula, right hip-

pocampus, left inferior occipital gyrus (extending into the cerebellum),

right supramarginal gyrus, left lingual gyrus and left fusiform gyrus

during the reward anticipation phase (Figure 3 and Table 2). Bonfer-

roni correction did not change the significance of any brain regions in

the anticipation meta-analysis.

3.1.3 | Analyses of subgroups

The above results remained largely unchanged when the analyses

were repeated and limited to methodologically homogenous groups

of studies. The results of the subgroup analysis of the studies includ-

ing patients without other Axis I psychiatric comorbidities shared all

clusters with the results of the pooled meta-analysis, except for the

right supramarginal gyrus. The results of the subgroup analysis of the

studies including patients without SUD comorbidities, except for nico-

tine, shared all clusters with the results of the pooled meta-analysis.

F IGURE 2 Flowchart of the article
selection process. Of 398 articles initially
identified, 12 studies were finally included
in this meta-analysis of the reward
anticipation phase, and 7 studies were
finally enrolled in this meta-analysis of the
reward outcome phase.
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The results of the subgroup analysis of the studies including off-

medication patients shared all clusters with the results of the pooled

meta-analysis, except for the left inferior occipital gyrus and right

supramarginal gyrus. The results of the subgroup analysis of the stud-

ies analyzed by SPM software shared all clusters with the results of

the pooled meta-analysis, except for the right supramarginal gyrus

(Table 3).

3.1.4 | Sensitivity analysis

As shown in Table 3, the whole-brain jack-knife sensitivity analysis

showed that the decreased blood oxygen level-dependent (BOLD)

activations in the right VS, right insula, right hippocampus, left inferior

occipital gyrus, left lingual gyrus and left fusiform gyrus were highly

replicable and preserved in all 12 combinations of studies. The find-

ings in the left supramarginal gyrus were significantly replicable in all

combinations of studies, except for one.

3.2 | Brain response differences between AUD
patients and HC during the reward outcome phase

3.2.1 | Included studies and sample characteristics

During the reward outcome phase, in total, 12 datasets were

extracted from seven studies (Beck et al., 2009; Bjork, Knutson, &

Hommer, 2008; Bjork et al., 2012; Grodin et al., 2016; Groefsema

et al., 2020; Nestor et al., 2017; Romanczuk-Seiferth et al., 2015)

comprising 171 AUD patients (mean age = 33.05; percentage of

men = 79.53%) and 179 HC (mean age = 32.55; percentage of

men = 78.61%). There were no significant differences in age

(t = .022, p = .983) or sex (χ2 = .044, p = .834) between the AUD

patients and HC.

3.2.2 | Main meta-analysis

The AUD patients showed higher activations in the left OFC and right

medial temporal areas (MTA, including the superior temporal gyrus,

parahippocampal gyrus and temporal lobe) than the HC. In contrast,

significant deactivation was observed in the bilateral DS, left VS and

right insula during the reward outcome phase (Figure 4 and Table 4).

These significant results survived Bonferroni correction, except for

the insula in the outcome phase meta-analysis.

3.2.3 | Analyses of subgroups

These results were broadly consistent with the main findings. The

results of the subgroup analysis of the studies including patients with-

out other Axis I psychiatric comorbidities and studies analyzed by

SPM software shared all clusters with the results of the pooled meta-

analysis, except for the left OFC and right DS. The results of the sub-

group analysis of the studies including patients without SUD comor-

bidities, except for nicotine, shared all clusters with the results of the

pooled meta-analysis, except for the left OFC. The results of the sub-

group analysis of the studies including off-medication patients shared

all clusters with the results of the pooled meta-analysis, except for the

right MTA and left OFC (Table 5).

3.2.4 | Sensitivity analysis

The results in the right MTA with increased BOLD activity showed

high replicability in the combinations of all studies, except for one, by

using a whole-brain jack-knife sensitivity analysis. Moreover, the

whole-brain jack-knife sensitivity analysis showed that hypoactivation

in the left DS and left VS remained significant in all combinations of

studies. The right DS was significant in all combinations of studies,

except for one. The right insula was significant in all combinations of

studies (Table 5).

3.3 | Shared or distinct regions between reward
anticipation and reward outcome

Conjunction analysis of brain activity between reward anticipation

and outcome revealed no significant finding (Table 6). The statistical

map resulting from the overlay of two separate statistical maps for

F IGURE 3 MID-evoked activation differences during the reward anticipation phase between AUD patients and HC in the meta-analysis.
Relative to the HC, the AUD patients showed hypoactivity in the right VS, right hippocampus, left inferior occipital gyrus, right supramarginal
gyrus, right insula, left lingual gyrus and fusiform gyrus during the reward anticipation phase. Regions with decreased activation in the AUD
patients compared to the controls are displayed in blue. AUD, alcohol use disorder; HC, healthy controls; VS, ventral striatum.
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TABLE 2 Main meta-analysis of brain activation differences between AUD patients and HC during the reward anticipation phase

Brain regions

MNI coordinates x,

y, z

SDM-Z

value p value

No. of

voxels Breakdown

P < HC

R VS 12, 18, �8 �2.025 �0 984 R striatum

R olfactory cortex, BA 25

R gyrus rectus, BA 11

R caudate nucleus, BA 25

R superior frontal gyrus, medial orbital,

BA 11

R olfactory cortex, BA 11

R anterior cingulate/paracingulate gyri,

BA 11

R gyrus rectus, BA 25

R superior frontal gyrus, orbital part, BA

11

R olfactory cortex

R olfactory cortex, BA 48

R lenticular nucleus, putamen, BA 48

R superior frontal gyrus, orbital part, BA

25

R caudate nucleus, BA 11

L anterior cingulate/paracingulate gyri

R lenticular nucleus, putamen, BA 25

R inferior frontal gyrus, orbital part, BA

11

R anterior cingulate/paracingulate gyri

R anterior cingulate/paracingulate gyri,

BA 25

R amygdala

R gyrus rectus, BA 48

R hippocampus 34, �24, �10 �1.456 .000020623 256 R hippocampus, BA 20

R parahippocampal gyrus, BA 20

R hippocampus, BA 37

R parahippocampal gyrus, BA 37

R fusiform gyrus, BA 37

L inferior occipital gyrus �46, �70, �14 �1.033 .001104414 301 L inferior occipital gyrus, BA 19

L fusiform gyrus, BA 37

L fusiform gyrus, BA 19

L inferior occipital gyrus, BA 37

L cerebellum, crus I, BA 19

L cerebellum, crus I

L cerebellum, crus I, BA 37

R supramarginal gyrus 66, �32, �34 �1.050 .000918627 149 R supramarginal gyrus, BA 2

R supramarginal gyrus, BA 40

R supramarginal gyrus, BA 48

R supramarginal gyrus

R insula 36, �18, �6 �1.085 .000665724 103 R insula, BA 48

R lenticular nucleus, putamen, BA 48

R superior temporal gyrus, BA 48

R striatum
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anticipation and outcome (as shown in Figures 3 and 4) is shown in

Figure 5 and Table 6. A comparison of the anticipation > outcome

contrast revealed greater concordant activity within the left VS and

left DS. The right VS was found to exhibit the reverse pattern

(anticipation < outcome).

4 | DISCUSSION

In the present voxel-based meta-analysis study, our results revealed

different brain activation patterns in AUD patients during the

anticipation and outcome phases, perhaps suggesting a disrupted

dopaminergic motivational response toward nondrug rewards. During

the anticipation phase, compared with the HC, individuals with AUD

showed attenuated activation in the mesocortical-limbic circuit and

sensory system, including the VS, insula, hippocampus, inferior occipi-

tal gyrus, supramarginal gyrus, lingual gyrus and fusiform gyrus. Dur-

ing the outcome phase, the AUD patients showed increased

activation in response to monetary reward in the OFC and MTA and

reduced activation in the DS, VS and insula. In brief, these results sug-

gest altered recruitment of mesolimbic incentive neurocircuitry by

cues and deliveries of nondrug rewards, and these differences help

TABLE 2 (Continued)

Brain regions

MNI coordinates x,

y, z

SDM-Z

value p value

No. of

voxels Breakdown

L lingual gyrus and L fusiform

gyrus

�18, �82, �8 �1.004 .001352131 77 L lingual gyrus, BA 18

L fusiform gyrus, BA 18

Note: Clusters were identified at voxel-wise p < .005, SDM-Z > 1, and cluster size >10 voxels.

Abbreviations: BA, Brodmann area; No., number; VS, ventral striatum; SDM, seed-based d mapping; MNI, Montreal Neurological Institute.

TABLE 3 Subgroup analysis and jackknife sensitivity analysis of brain activation differences between AUD patients and HC during the reward
anticipation phase

Study

P < HC

R VS R HPC L IOG R SG R insula L LG and L FG

Subgroup analysis

Studies including patients without other Axis I psychiatric

comorbidities (n = 8)

Y Y Y N Y Y

Studies including patients without SUD comorbidities,

except for nicotine (n = 10)

Y Y Y Y Y Y

Studies including off-medication patients (n = 10) Y Y N N Y Y

Studies analyzed by SPM software (n = 8) Y Y Y N Y Y

Sensitivity analysis

Beck et al. (2009) Y Y Y Y Y Y

Becker et al. (2017) Y Y Y Y Y Y

Bjork et al. (2008) Y Y Y Y Y Y

Bjork et al. (2012) Y Y Y Y Y Y

Grodin et al. (2016) Y Y Y Y Y Y

Groefsema et al. (2020) Y Y Y Y Y Y

Hägele et al. (2015) Y Y Y Y Y Y

Murphy et al. (2017) Y Y Y Y Y Y

Musial et al. (2023) Y Y Y Y Y Y

Nestor et al. (2017) Y Y Y Y Y Y

Romanczuk-Seiferth et al. (2015) Y Y Y N Y Y

Wrase et al. (2007) Y Y Y Y Y Y

Note: Y, Yes; N, No; “Yes” indicates that the brain regions were significant in the subgroup analysis or sensitivity analysis; “No” indicates that the brain

regions were not significant in the subgroup analysis or sensitivity analysis.

Abbreviations: SUD, substance use disorder; SPM, statistical parametric mapping; R, right; L, left; VS, ventral striatum; HPC, hippocampus; IOG, inferior

occipital gyrus; SG, supramarginal gyrus; LG, lingual gyrus; FG, fusiform gyrus.
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F IGURE 4 MID-evoked activation differences
during the reward outcome phase between AUD
patients and HC in the meta-analysis. Relative to
the HC, the AUD patients showed hyperactivity in
the left OFC and right MTA (including the superior
temporal gyrus, parahippocampal gyrus and
temporal lobe) and hypoactivity in the bilateral
DS, left VS and right insula. Regions with
increased activation in the AUD patients

compared to the controls are displayed in red,
while regions with decreased activation in the
AUD patients compared to the controls are
displayed in blue. AUD, alcohol use disorder; HC,
healthy controls; DS, dorsal striatum; VS, ventral
striatum; OFC, orbital frontal cortex; MTA, medial
temporal area.

TABLE 4 Main meta-analysis of brain activation differences between AUD patients and HC during the reward outcome phase

Brain regions MNI coordinates x, y, z SDM-Z value p value No. of voxels Breakdown

P > HC

R MTA 32, 12, �30 1.018 .000712216 267 R temporal pole, superior temporal gyrus, BA 38

R temporal pole, middle temporal gyrus, BA 20

R temporal pole, superior temporal gyrus, BA 20

R temporal pole, middle temporal gyrus, BA 38

R temporal pole, middle temporal gyrus, BA 36

R parahippocampal gyrus, BA 38

R temporal pole, superior temporal gyrus

R temporal pole, superior temporal gyrus, BA 36

R parahippocampal gyrus, BA 36

R parahippocampal gyrus

R parahippocampal gyrus, BA 28

R inferior frontal gyrus, orbital part, BA 38

R parahippocampal gyrus, BA 20

L OFC �32, 32, �8 1.016 .000732839 64 L inferior frontal gyrus, orbital part, BA 47

L middle frontal gyrus, orbital part, BA 47

P < HC

L VS and L DS �12, 10, �2 �2.148 �0 856 L striatum

L caudate nucleus

L caudate nucleus, BA 25

L lenticular nucleus, putamen, BA 25

L pons

L caudate nucleus, BA 11

L lenticular nucleus, putamen, BA 48

R DS 16, 12, 8 �1.18 .001481175 170 R caudate nucleus

R caudate nucleus, BA 25

R insula 38, �22, �2 �1.144 .001909494 27 R insula, BA 48

Note: Clusters were identified at voxel-wise p < .005, SDM-Z > 1, and cluster size >10 voxels.

Abbreviations: BA, Brodmann area; No., number; MTA, medial temporal area; OFC, orbitofrontal cortex; DS, dorsal striatum; VS, ventral striatum; SDM,

seed-based d mapping; MNI, Montreal Neurological Institute.

2850 ZENG ET AL.



explain the impairment in incentive motivational processing toward

conventional rewards in AUD patients.

4.1 | Monetary cue-elicited anticipatory response

Our meta-analysis revealed that during reward anticipation, the

patients with AUD showed more robust hypoactivation in the

mesocortical-limbic circuit, including the VS, OFC, ACC, hippocampus

and insula, than the controls. This circuit, which has been extensively

implicated due to its involvement in the rewarding properties of both

neutral stimuli and drug-related stimuli in addiction (Feltenstein &

See, 2008), consists of dopamine projections from cell bodies in the

ventral tegmental area (VTA) to limbic structures (that is, the mesolim-

bic pathway, which includes the VS, amygdala, insula, and hippocam-

pus) and cortical areas (that is, the mesocortical pathway, which

includes the prefrontal cortex [PFC], OFC and ACC). The mesolimbic

dopaminergic pathway between the VTA and the nucleus accumbens

plays a central role in motivational behaviors and reinforcement learn-

ing (Yang et al., 2018), whereas in the mesocortical pathway, the OFC

and ACC primarily project to the ventral and medial parts of rostral

striatum cortical regions, which are associated with long-term strate-

gic planning and habit formation (Haber, 2014). The VS encodes stim-

ulant value, regulates reward-related behavior, and plays a key role in

regulating incentive salience and reward learning (Knutson

et al., 2001; Liu et al., 2011; Minogianis et al., 2019; Zink et al., 2004).

Consistent with previous data, decreased volume in the VS (Makris

et al., 2008; Yang et al., 2016), reduced VS activation (Beck

et al., 2009; Wrase et al., 2007), and weaker functional connectivity

between the striatum and prefrontal regions (Becker et al., 2017;

Courtney et al., 2013) have been observed in alcohol-dependent indi-

viduals. According to reward deficiency syndrome theory (Blum

et al., 2000; Blum et al., 2012), addicted individuals have deficits in

the recruitment of the dopaminergic motivational circuitry by nondrug

rewards such that drugs are uniquely able to normalize the dopamine

levels in the VS to readily motivate drug-taking behavior. In fact, in

AUD individuals, these systems are often “hijacked” by drug cues and

show increased sensitivity in motivational neurocircuitry but

decreased sensitivity toward nondrug rewards. As previously sug-

gested by incentive sensitization theory (Robinson & Berridge, 2008),

addiction is maladaptive stimulus–response learning that involves

enhanced drug-related incentive salience at the expense of natural

reward-related incentive salience. The blunted activation in the

mesocortical-limbic circuit in AUD may indicate that alcohol-related

cues hijack and reorganize the priorities of the reward circuitry such

that these cues induce more appetitive behavior than cues for con-

ventional rewards. Taken together, our meta-analysis confirms that

alcohol-dependent patients show blunted brain responses to mone-

tary anticipation in the mesolimbic and mesocortical pathways, which

may underlie the impairment in incentive motivation to conventional

rewards.

The recruitment of limbic regions, including the insula and hippo-

campus, during anticipation reward processing was also observed in

our meta-analysis. The insula has been implicated in incentive

TABLE 5 Subgroup analysis and jackknife sensitivity analysis of brain activation differences between AUD patients and HC during the reward
outcome phase.

Study

P > HC P < HC

R MTA L OFC L DS and L VS R DS R insula

Subgroup analysis

Studies including patients without other Axis I psychiatric

comorbidities (n = 3)

Y N Y N Y

Studies including patients without SUD comorbidities,

except for nicotine (n = 5)

Y N Y Y Y

Studies including off-medication patients (n = 5) N N Y Y Y

Studies analyzed by SPM software (n = 3) Y N Y N Y

Sensitivity analysis

Beck et al. (2009) Y Y Y Y Y

Bjork et al. (2008) Y Y Y Y Y

Bjork et al. (2012) Y Y Y Y Y

Grodin et al. (2016) Y Y Y N Y

Groefsema et al. (2020) Y Y Y Y Y

Nestor et al. (2017) Y Y Y Y Y

Romanczuk-Seiferth et al. (2015) N Y Y Y Y

Note: Y, Yes; N, No; “Yes” indicates that the brain regions were significant in the subgroup analysis or sensitivity analysis; “No” indicates that the brain

regions were not significant in the subgroup analysis or sensitivity analysis.

Abbreviations: SUD, substance use disorder; SPM, statistical parametric mapping; R, right; L, left; MTA, medial temporal area; OFC, orbitofrontal cortex;

DS, dorsal striatum; VS, ventral striatum.
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motivational processes and risk prediction possibly because of its role

in awareness of the interoceptive state (Naqvi & Bechara, 2009).

Additionally, compatible with incentive sensitization theory, the AUD

patients showed higher insular activity and oversensitized conditioned

responses to drug-related cues but blunted responses to nondrug

cues (Nestor et al., 2017; Zeng et al., 2021). The observed diminished

insular activation may have resulted from decreased attention arousal

toward nondrug cues, suggesting reduced reward sensitivity and

altered stimulus salience.

The hippocampus is especially critical for many domains of learn-

ing and memory and, thus, has been implicated in the acquisition, con-

solidation, and expression of context-dependent drug memories

(Volkow & Fowler, 2000). Numerous studies have shown that exces-

sive alcohol intake impacts the structure and function of hippocampal

circuitry (Mechtcheriakov et al., 2007; O'Daly et al., 2012; Stavro

et al., 2013; Stephens & Duka, 2008; Vetreno et al., 2011). The neural

substrates of memory and conditioned learning are among the major

circuits underlying the aberrant neuroadaptations in response to

chronic drug exposure. Even low-dose ethanol intake may result in

hippocampal dysfunction, including disrupted short-term and long-

term memories of drug-context associations, which may contribute to

future alcohol intake (Kutlu & Gould, 2016). Therefore, disruption of

memory reconsolidation in hippocampal function may help erode the

strong associations between context and drugs. Regarding nondrug

TABLE 6 Contrasts and conjunction analysis results for brain activation between groups

Brain regions MNI coordinates x, y, z SDM-Z value p value No. of voxels Breakdown

Anticipation > Outcome

L DS & L VS �12,10,-2 1.927 �0 922 L striatum

L caudate nucleus

L caudate nucleus, BA 25

L lenticular nucleus, putamen, BA 25

L olfactory cortex, BA 25

L caudate nucleus, BA 11

L gyrus rectus, BA 11

L gyrus rectus, BA 25

Anticipation < Outcome

R VS 16,22,-12 �1.182 .000134170 289 R striatum

R gyrus rectus, BA 11

R superior frontal gyrus, orbital part, BA 11

R caudate nucleus, BA 25

R olfactory cortex, BA 11

R gyrus rectus, BA 25

R inferior frontal gyrus, orbital part, BA 11

R caudate nucleus, BA 11

R olfactory cortex, BA 25

R lenticular nucleus, putamen, BA 25

R olfactory cortex, BA 48

R lenticular nucleus, putamen, BA 48

R gyrus rectus, BA 48

Anticipation ^ Outcome

No suprathreshold clusters

Note: Clusters were identified at voxel-wise p < .005, SDM-Z > 1, and cluster size >10 voxels; “^” indicates that the combination of two stages.

Abbreviations: BA, Brodmann area; No., number; DS, dorsal striatum; VS, ventral striatum; SDM, seed-based d mapping; MNI, Montreal Neurological

Institute.

F IGURE 5 MID-evoked activation differences between reward
anticipation and reward outcome in the meta-analysis. The contrast
analysis revealed greater activity in the left dorsal striatum and ventral
striatum, and reduced activity in the right ventral striatum for the
anticipation-outcome contrast.
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rewards, the AUD patients showed a reduced response to natural

reinforcers, which may contribute to alcohol addiction by interfering

with the acquisition of adaptive behavior. Such observations have

provided insight into the disruption of memory reconsolidation during

stimulus salience processing.

The present study also found that dysfunction associated with

the monetary anticipated response recruited several sensory areas,

including the inferior occipital gyrus, supramarginal gyrus, lingual

gyrus and fusiform gyrus. Prior studies indicated that monetary

reward processing can be reflected in early visual processing as shown

by the reduced responsiveness in the occipital lobe, parietal regions

and related visual cortex during the pictorial presentation of monetary

cues (Qiu et al., 2021). This result emphasizes the importance of the

attentional processing of visual information and sensory neurocircuits

for nondrug cues with reward properties in alcohol addiction.

4.2 | Monetary cue-elicited outcome responses

Regarding reward outcomes, our results showed attenuated activation

in the mesolimbic dopaminergic pathway, including the DS, VS and

insula, and enhanced activation in the temporal lobe and OFC in the

AUD patients compared with the controls. The AUD patients exhib-

ited decreased BOLD signals in the striatal-limbic circuitry during

monetary reward receipt, which is similar to the pattern observed in

the anticipation stage but stronger in the dorsal part of the striatum

rather than the ventral part. Similar to animal studies, learning about

actions and their reward consequences tends to involve the DS more

than appetitive learning, which has been found to depend on the VS

(Balleine et al., 2007; Lex & Hauber, 2010; Yin et al., 2005). The cau-

date is involved in action-outcome learning that subserves goal-

directed action, whereas the putamen appears to link cognitive func-

tions that are more limited to stimulus–response coding or habit

learning (Grahn et al., 2008; O'Doherty et al., 2004). During the out-

come evaluation, the comparison of the actual outcome with the

expectation generates a reward prediction error signal, which is

thought to regulate flexible decisions by updating the reward values

associated with available actions (Beylergil et al., 2017; Schultz, 2015).

If the goal value changes or becomes less appropriate for satisfying

the needs of the individual, then the goal changes and behavior is

adapted accordingly. The responsiveness of the DS to monetary

incentives may be decreased because monetary stimuli no longer rep-

resent an appetitive goal. This notion is supported by the findings of

altered sensitivity in the dorsal caudate nucleus to the magnitude of

reinforcement during the feedback phase in individuals who engage in

problem drinking (Joseph et al., 2015). The insula has been previously

shown to be recruited by task conditions involving uncertain out-

comes, such as choosing a risky response option in a decision-making

task. Previous evidence has revealed insular hypoactivation during the

feedback phase (Nestor et al., 2017; Romanczuk-Seiferth et al., 2015).

These outcome findings are also consistent with the reward defi-

ciency syndrome hypothesis, which might suggest that individuals

with AUD have deficits in recruiting the dopaminergic motivational

circuitry in response to nondrug rewards, which hinders striatal-limbic

circuitry learning and influences subsequent decisions.

Alcohol-dependent patients also exhibited significantly increased

brain activation in the OFC compared with the controls during the

outcome phase. The OFC has important functional connections with

the striatum and is known to control flexible, goal-directed behavior

and be associated with reward identification and acquisition

(Kringelbach, 2005). The encoding of stimuli is also strongly modu-

lated by and associated with value in the OFC, which, in turn, contrib-

utes to the overall value of outcomes and facilitates subsequent

decisions and actions (Moorman, 2018). A previous study showed that

the OFC was more strongly activated in a series of tasks with some

uncertainty in outcomes (Schnider et al., 2005). The hyperactivity in

the OFC might suggest its role in encoding appetitive value and moni-

toring reward outcomes.

Our meta-analysis also revealed notably increased activity within

the MTA, including the superior temporal gyrus, and adjacent struc-

tures, such as the parahippocampal gyrus and temporal lobe. Since

medial temporal cortical regions are strongly interconnected with

most multimodal areas, this cortical area can be viewed as the supra-

modal cortex, where all sensory cortical channels converge (Strange &

Dolan, 2006). Additionally, medial temporal lobe subsystems become

engaged when decisions involve constructing a mental scene based

on memory (Andrews-Hanna et al., 2010). Our results are consistent

with the fMRI findings of greater activation in the anterior portion of

the superior temporal gyrus and the temporal pole observed in mari-

juana users (Smith et al., 2010). Altogether, these results suggest that

alcohol-dependent patients recruit temporal areas when receiving a

reward involving sensory and memory-related processing and for suc-

cessfully performing the task.

4.3 | Difference between anticipation responses
and outcome responses induced by monetary cue

Supporting the idea that separate neural systems participate in reward

anticipation and outcome, our contrast analysis revealed enhanced

responses in the left VS and DS for the anticipation > outcome con-

trast and reduced activity in the right VS for the anticipation < out-

come contrast. Accumulating evidence suggests that the striatum is a

subcortical structure rich in dopaminergic neurons and important in

reward learning (Chen et al., 2015). It has been proposed that the VS

is associated with assigning salience to reinforcers, incentive motiva-

tion, and tracking reward value (Liu et al., 2011; Tricomi &

Lempert, 2015; Zink et al., 2004), whereas the DS is more involved in

habit formation and encoding stimulus–reward associations (Yin

et al., 2005), especially the (rewarding) consequences of actions

(O'Doherty et al., 2004). We found that patients with AUD exhibited

reduced activity predominantly in the dorsal corticostriatal circuit dur-

ing the outcome stage, which may indicate disrupted encoding of the

response outcome during reward learning. The dysfunction of “dorsal
stream” during response-outcome association learning contributes to

the transition from initially volitional use of alcohol to ultimately
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compulsive and chronic alcohol consumption in AUD patients (Chen

et al., 2011; Klugah-Brown et al., 2020). This result aligns with the

reward deficiency syndrome hypothesis, which proposes that habit

formation exerts a greater influence during reward outcome. Addi-

tionally, the meta-analysis revealed that AUD patients showed attenu-

ated activation in the DS and VS, supporting this hypothesis. The

activation differences in striatal subregions observed in the contrast

analysis as well as the nonsignificant results of the conjunction analy-

sis, may indicate that the VS and DS play different roles in anticipation

and outcome. Therefore, future research should focus on the distinct

contribution of striatal subregions in different stages of reward

processing.

4.4 | Effect of medication

Accumulating evidence has shown that detoxification treatment, even

on an acute time scale, contributes to the normalization of brain func-

tion and structure in patients with AUD (Burnette et al., 2021; George

et al., 2008; Lukas et al., 2013; Son et al., 2015; Vollstadt-Klein

et al., 2019; Wang et al., 2018). To explore the potential effects of

medication on the MID-related brain response, it is better to directly

compare treated patients with treatment-naïve individuals or perform

pretreatment and posttreatment comparisons or treatment-placebo

comparisons. In fact, most treatment studies investigating neuroimag-

ing markers of AUD did not examine reward paradigms but rather

focused on alcohol-related stimulus processing using cue-reactivity

paradigms (Beck et al., 2018; Logge et al., 2021). To address these

issues, we conducted subgroup analyses of AUD patients who under-

went an off-medication period before MRI scanning given that there

were insufficient data to perform comparisons between drug-treated

and drug-naïve groups, between pretreatment and posttreatment

groups, and between treatment and placebo groups. Most of the

results of the off-medication subgroup analyses were consistent with

the pooled analysis, except for the blunted response to reward in the

left inferior occipital gyrus and right supramarginal gyrus during the

anticipation stage. Pharmacological manipulation may slightly change

sensory processing and normalize attention distribution in AUD

patients, followed by the transient off-medication period, probably due

to the delayed onset of drug action and maintenance (Chen &

Skolnick, 2007). Our findings are in line with evidence from imaging

studies indicating that detoxification treatment can influence neural

activation and functional connectivity in patients with AUD (Burnette

et al., 2021; Lukas et al., 2013; Vollstadt-Klein et al., 2019). Previous

functional MRI studies have indicated improved supramarginal gyrus

activity in AUD patients in the emotional faces task after receiving nal-

mefene (Vollstadt-Klein et al., 2019). In addition, evidence suggests

that compared to the placebo group, patients with cocaine dependence

exhibited enhanced cue-elicited activation in occipital areas after

receiving d-cycloserine (Prisciandaro et al., 2013). During the reward

outcome stage, the results of the off-medication subgroup analyses

were consistent with the pooled analysis, except for brain activity in

the right MTA and left OFC. A recent study observed that OFC

activation was significantly decreased after 6 weeks of topiramate

treatment in heavy drinkers (Wetherill et al., 2021). Our results may

suggest that pharmacological intervention could help normalize the

hyperactivation of the OFC in patients with AUD. The MTA is strongly

implicated in novelty and unexpected processing (Murty et al., 2016).

This area has been shown to be involved in emotional memory, impact-

ing craving symptoms (Kakko et al., 2019; Koob & Volkow, 2010).

Many studies using a multimodal imaging approach consistent with our

results have shown that detoxification treatment contributes to the

normalization of temporal lobe function (George et al., 2008; Morris

et al., 2018; Son et al., 2015; Wang et al., 2018). Thus, we cannot fully

rule out the effect of medication given the known different medication

use profiles and complicated side effects profiles.

4.5 | Shared or distinct neural mechanisms
underlying reward processing among patients with
AUD, schizophrenia, and depression

Altered brain activation during reward processing in similar brain

regions is frequently observed in patients with AUD and other mental

disorders, such as schizophrenia and depression. Human studies have

attempted to elucidate the shared or distinct reward processing fea-

tures to understand the biological mechanisms of neuropsychiatric

disorders. Interestingly, BOLD fMRI studies in AUD showed some

reward-related mesocorticolimbic abnormalities similar to those

observed in depression and schizophrenia. Accordingly, several recent

studies and meta-analyses reported reduced VS activation during

reward anticipation in schizophrenia (Chase et al., 2018; Radua

et al., 2015; Schwarz et al., 2020); decreased activation in subcortical

and limbic regions during both monetary anticipation and outcome in

depressed adults (Ng et al., 2019; Pizzagalli et al., 2009; Zhang

et al., 2013); and decreased striatal activation during reward anticipa-

tion in addiction (Luijten et al., 2017). Similarly, a blunted striatal

response during reward anticipation is also associated with greater

negative symptom severity in schizophrenia (Simon et al., 2010; Waltz

et al., 2010) and anhedonic symptoms in schizophrenia and depres-

sion (Dowd & Barch, 2010; Keedwell et al., 2005). The dopaminergic

mesocorticolimbic pathway is important for mediating reinforcement

learning and decision-making processes (Pizzagalli et al., 2008). It is

assumed that blunted reward responsiveness leads to decreased

engagement in pleasurable activities and a decreased motivational

drive to obtain future rewards (Clery-Melin et al., 2019; Pizzagalli

et al., 2008). Thus, VS blunting may suggest a reduced sensitivity of

the reward system and the possibility of a common psychobiological

substrate among AUD, schizophrenia and depression. Furthermore,

clinical and epidemiologic studies have found a high frequency of the

co-occurrence of AUD and psychiatric disorders (Hasin et al., 2005;

Hunt et al., 2018). As previously suggested, the shared reward-related

brain circuit could be due to the association of many chronic psychiat-

ric illnesses with increased substance abuse, particularly alcohol abuse

and increased smoking, which can lead to compromised brain

abnormalities.
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In contrast, during feedback of monetary processing, AUD indi-

viduals showed greater activity in temporal regions and the orbital

frontal lobe. These regions are involved in the computation of

expected values and multisensory perception and have been widely

reported in the monetary reward processing literature. In contrast, it

has been suggested that depressed patients display increased activa-

tion in the middle frontal gyrus and ACC during reward anticipation

(Zhang et al., 2013). However, other studies report hyperactivity or

hypoactivity in the striatum during monetary receipt in schizophrenia

(Abler et al., 2008; Kirschner et al., 2018; Li et al., 2018). These find-

ings reveal distinct neural substrates for reward processes and their

relevance for mental illness.

4.6 | Translational implications

The National Institute of Mental Health (NIMH) has launched the

Research Domain Criteria (RDoC) initiative to identify pathophysio-

logical mechanisms that are common across multiple psychiatric disor-

ders and mechanisms that are unique to specific psychiatric

symptoms (Insel et al., 2010; Insel & Cuthbert, 2015). There is growing

interest in utilizing a translational approach to understand reward pro-

cessing abnormalities in psychiatric illness. Within the Positive

Valence Systems domain in the RDoC, reward processing abnormali-

ties in the dopaminergic coding of uncertainty could account for the

neurobiological dysfunctions in several psychiatric disorders

(Nusslock & Alloy, 2017). Importantly, considering reward a multiface-

ted process, progress has been achieved in not only parsing the psy-

chological components of reward but also identifying the neural

substrates associated with each component (Baskin-Sommers &

Foti, 2015). Thus, rather than conceptualizing abnormal reward pro-

cessing as a relatively global dysfunction (i.e., decreased vs. increased

reactivity to rewards overall), our current findings indicate that AUD

is characterized by the following specific neural patterns of monetary

processing: hypoactivation in the mesocortical-limbic network and

sensory areas during the anticipation stage and reduced activation in

the striatum and insula and enhanced activation in the OFC and MTA

during the outcome stage. Reward anticipation is delineated within

RDoC in terms of incentive salience, which motivates approach

toward rewards (Musser & Raiker, 2019). The midbrain dopamine sys-

tem appears to be primarily responsible for mediating the motivation

to obtain monetary rewards (Schott et al., 2008). As previously men-

tioned, the blunted striatum response during anticipation may suggest

a reduced sensitivity to the conditioned reward cue and the possibility

of a shared psychobiological substrate among AUD, schizophrenia and

depression (Hagele et al., 2015; Wrase et al., 2007). Among individuals

with schizophrenia or schizoaffective disorder, alcohol dependence

comorbidity is common (Hasin et al., 2005; Hunt et al., 2018). Signifi-

cant psychiatric comorbidity has reciprocal impacts on the develop-

ment of each disorder and may partly explain the shared and marked

VS dysfunction in salience detection. In contrast, the outcome stage

represents the hedonic impact of information and taps the “liking”
components of rewards. Within the RDoC framework, the “liking”

profile may be associated with hedonic responses and the culmination

of reward seeking (Nusslock et al., 2017). The AUD patients exhibited

distinctly reduced activation in the DS, VS and insula and increased

activation in the MTA and OFC. Hypoactivity in the striatal-limbic cir-

cuitry may indicate impaired reward value updating and adaptive

learning in expectation of reward outcomes. Meanwhile, the OFC is

critically involved in demanding learning tasks and is important for

encoding appetitive value and monitoring reward outcomes. As cen-

tral to sensory/memory-related processing, MTA regions are overacti-

vated by monetary cues and may underlie hedonic vulnerability in

alcohol addiction. Thus, the present meta-analysis results extend

beyond the limitations of a single-study approach (e.g., low power and

generalizability) and provide converging evidence of partially separa-

ble neural circuits for these distinct reward processes.

As a DSM-5 diagnostic criterion, craving is one of the most selec-

tive and specific symptoms across SUD (APA, 2013). In fact, clinical

studies have shown that craving is associated with the severity of

AUD and relapse to drinking following treatment (Chakravorty

et al., 2010; Murphy et al., 2014). At the neural level, neuroimaging

studies increasingly investigate the drug craving state and its rele-

vance in drug use and relapse risk (Koob & Volkow, 2016;

Sinha, 2013). Cue-induced craving appears to involve the activation of

similar circuits (Seo et al., 2013). The research presented in our recent

meta-analysis suggested that neural cue reactivity may have some

clinical relevance as craving was associated with striatolimbic hyper-

functioning during the cue reactivity task (Zeng et al., 2021). Based on

these data, these results may imply that craving symptoms are associ-

ated with specific neurofunctional alterations in motivational systems

and elucidate the clinical significance of craving for improving illness

diagnosis in the domain of reward processing.

4.7 | Limitations

Several limitations of this study should be highlighted, some of which

are inherent to all meta-analysis methods. First, we could not

completely rule out the possibility of publication bias, although we

adopted a comprehensive literature search strategy and attempted to

include as many unpublished AUD studies as possible, even if their

results were negative (Cheung, 2019). Second, the results may not be

as accurate as those of image-based meta-analyses because voxel-

based meta-analyses are based on summarized data from published

studies (i.e., peak coordinates and effect sizes) rather than raw statisti-

cal brain maps from original studies (Salimi-Khorshidi et al., 2009).

However, it is difficult to obtain and analyze original images from

these studies. Third, stress is a well-known risk factor in the develop-

ment of alcohol dependence and alcohol dependence relapse vulnera-

bility (Heinz et al., 2017). However, we cannot rule out the potential

influence of stress on our results. Fourth, few included studies

reported the doses of medication or the percentage of participants

who had received alcohol treatment, which prevented further meta-

regression analyses. These results should be interpreted with caution

and require very careful clinical observation to examine the effects of

ZENG ET AL. 2855



treatment on reward response. Fifth, as most included studies have

different durations of abstinence from alcohol (varied from 0 days to

approximately 1.2 years) in our meta-analysis, special attention should

be given to the time course of the incubation of craving along with

abstinence. Further longitudinal neuroimaging studies are warranted

to clarify the mutual neural substrates during monetary processing

involved in the incubation of alcohol craving. Sixth, we included only

studies involving adults with AUD in our analysis. Our findings need

to be considered with caution when applied to children/adolescents.

Finally, whether these brain responses to monetary stimuli in AUD

can be distinguished from those in other psychiatric disorders should

be simultaneously investigated in patients with AUD and other related

illnesses using univariate methods or multivariate pattern analyses in

future studies. Similarly, the differences and similarities of dopaminer-

gic monetary-related reward processes in gambling disorder and SUD

need to be further investigated in disorder-specific studies and trans-

diagnostic comparison approaches.

5 | CONCLUSION

Taken together, this meta-analysis revealed that individuals with

AUD show reduced activation in mesocortical-limbic circuits and

sensory areas during monetary anticipation, and this decreased acti-

vation in the striatum was associated with alcohol craving. Further-

more, individuals with AUD displayed stronger reduced activations

in the DS, VS and insula and increased activation in the temporal

and frontal cortices during outcome receipt. The observed activation

patterns during the different reward stages could help elucidate the

mechanisms underlying nondrug incentive processing in individuals

with AUD that contribute to the pathophysiology of alcohol

dependence.
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