

Available online at www.sciencedirect.com

Metabolism

www.metabolismjournal.com

Review

Metabolic consequences of stress during childhood and adolescence

Panagiota Pervanidou*, George P. Chrousos

First Department of Pediatrics, Athens University Medical School, Aghia Sophia Children's Hospital, 11527 Athens, Greece

ARTICLEINFO

Article history: Received 4 August 2011 Accepted 10 October 2011

ABSTRACT

Stress, that is, the state of threatened or perceived as threatened homeostasis, is associated with activation of the stress system, mainly comprised by the hypothalamic-pituitaryadrenal axis and the arousal/sympathetic nervous systems. The stress system normally functions in a circadian manner and interacts with other systems to regulate a variety of behavioral, endocrine, metabolic, immune, and cardiovascular functions. However, the experience of acute intense physical or emotional stress, as well as of chronic stress, may lead to the development of or may exacerbate several psychologic and somatic conditions, including anxiety disorders, depression, obesity, and the metabolic syndrome. In chronically stressed individuals, both behavioral and neuroendocrine mechanisms promote obesity and metabolic abnormalities: unhealthy lifestyles in conjunction with dysregulation of the stress system and increased secretion of cortisol, catecholamines, and interleukin-6, with concurrently elevated insulin concentrations, lead to development of central obesity, insulin resistance, and the metabolic syndrome. Fetal life, childhood, and adolescence are particularly vulnerable periods of life to the effects of intense acute or chronic stress. Similarly, these life stages are crucial for the later development of behavioral, metabolic, and immune abnormalities. Developing brain structures and functions related to stress regulation, such as the amygdala, the hippocampus, and the mesocorticolimbic system, are more vulnerable to the effects of stress compared with mature structures in adults. Moreover, chronic alterations in cortisol secretion in children may affect the timing of puberty, final stature, and body composition, as well as cause early-onset obesity, metabolic syndrome, and type 2 diabetes mellitus. The understanding of stress mechanisms leading to metabolic abnormalities in early life may lead to more effective prevention and intervention strategies of obesity-related health problems.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Childhood and adolescence are periods of continuous physical growth and emotional development, and great brain plasticity.

Strong evidence has suggested that the experience of intense acute or chronic stress during these critical periods of life may have long-term and frequently irreversible effects on emotion; behavior; growth; metabolism; and reproductive, immune, and

Panagiota Pervanidou wrote the first draft of the manuscript. George Chrousos reviewed critically and supervised the writing of the manuscript.

^{*} Corresponding author. Tel.: +30 210 746 7457; fax: +30 210 7759167. E-mail addresses: ppervanid@med.uoa.gr, nenyperva@gmail.com (P. Pervanidou).

cardiovascular function [1,2]. Both lifestyle and neuroendocrine mechanisms contribute to the development of metabolic and other alterations in stressed individuals [3]. Typically, but not necessarily, an obese phenotype mediates the effects of chronic stress on metabolism. This article summarizes the mechanisms and the effects of stress during fetal life, childhood, and adolescence, with emphasis on metabolic consequences. It provides also a review of the existing pediatric literature on the effects of physical and emotional stress in these crucial periods of human development.

1.1. Mechanisms of stress

Stress, the state of threatened or perceived as threatened homeostasis, is associated with activation of the stress system, which is located in the central nervous system and the periphery of the organism. The stress system consists mainly of 2 axes, the hypothalamic corticotropin-releasing hormone (CRH) system, regulating the hypothalamic-pituitary-adrenal (HPA) axis and the brainstem locus caeruleus/norepinephrine (LC/NE) system, regulating arousal and autonomic (sympathetic) nervous system function [4-6]. Centrally, the main mediators of the stress system are the hypothalamic paraventricular nucleus hormones CRH and arginine vasopressin, the arcuate nucleus proopiomelanocortin-derived peptides α -melanocyte-stimulating hormone and β -endorphin, and the brainstem NE produced in the A1/A2 centers of the LC and the central nuclei of the sympathetic nervous system (SNS). In the periphery, the end-effectors of the HPA axis are the glucocorticoids; and those of the sympathetic system are the catecholamines epinephrine and NE [4-6]. In addition to the main components and mediators of the stress system, other systems and their mediators, which can be neurotransmitters, hormones, cytokines, and growth factors, interact with them to further regulate and fine-tune homeostasis. The targets of all these stress and related mediators are brain structures with functions related to emotion and behavior, as well as central nervous system and peripheral tissues related to growth, metabolism, reproduction, immunity, and cardiovascular function.

In normal conditions, activation of the stress system caused by everyday stressors results in adaptive endocrine, metabolic, and cardiovascular changes that help maintain homeostasis [7]. However, the experience of intense real or perceived stressors, such as accidents, natural disasters, war or terrorism, physical or sexual abuse, bereavement, etc, can lead to excessive and prolonged activation of the stress system or, in a subgroup of individuals, to chronic hypoactivation of this system, with a variety of psychologic and biological consequences [4-7].

Chronic hypersecretion of stress hormones, as evidenced by elevated cortisol and catecholamine concentrations in the circulation, results in insulin hypersecretion and growth and sex steroid hormone hyposecretion. These effects lead to long-term accumulation of fat especially in visceral adipose tissue, loss of muscle (sarcopenia), and osteoporosis with adverse clinical and metabolic consequences, including arterial hypertension, carbohydrate intolerance, dyslipidemia (metabolic syndrome), and type 2 diabetes mellitus [4,5,8,9].

Glucocorticoids, secreted by the adrenal cortices, together with the autonomic nervous system, play a crucial role in the

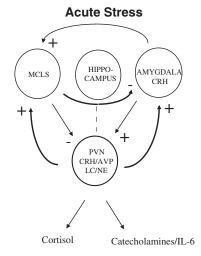
stress response, altering target tissue activities and shifting metabolism toward catabolism [9-13]. Circulating cortisol in humans has a circadian pattern of secretion regulated by the suprachiasmatic nucleus of the hypothalamus [14]. The zenith of cortisol concentrations is reached in the early morning; and the nadir, at midnight. Recent data have shown that the circadian rhythm transcription factor Clock acetylates the glucocorticoid receptor (GR) and represses GR-induced transcriptional activity of several glucocorticoid-responsive genes [15]. Clock and its heterodimer partner brain muscle ARNT-like protein 1 play an essential role in the formation of the circadian rhythm of central and peripheral systems. Furthermore, the peripheral Clock regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man [16]. The effects of this system on the sensitivity of target tissues to cortisol suggest that even mild dysregulation of stress system activity, such as the chronic slight evening elevations of cortisol associated with chronic stress, in conjunction with the elevated evening sensitivity to glucocorticoids, may explain the development of central obesity and consequent metabolic alterations in chronically stressed individuals [14-17].

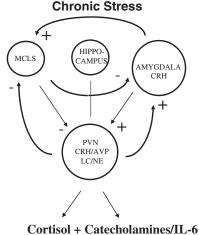
2. Stress, circadian rhythms, and adipokines

During stress, the end-effectors of the HPA-axis, the glucocorticoids, stimulate appetite [18] and increase body weight through the orexigenic effect of the hypothalamic feeding signal neuropeptide Y [19], an effect that is inhibited by leptin and insulin [20]. During the last 2 decades, the adipose tissuederived hormone leptin has emerged as an important regulator of energy homeostasis, as well as a regulator of reward processing, brain development, neuroendocrine and immune function, and metabolism [21,22]. Leptin interacts with the HPA axis [23], whereas an inverse relation has been found between rapid fluctuations in circulating leptin concentrations and corticotropin and cortisol in healthy men [23]. The metabolic effects of this hormone result from coordinate activation of anorexigenic and inhibition of orexigenic pathways, mediated by leptin-responsive neurons in the hypothalamus [24].

In accordance to circulating cortisol, leptin concentrations follow a circadian rhythm, with highest values between midnight and early morning and lowest in the early to midafternoon [21]. This circadian rhythm of leptin may be affected by sleep loss, as evidenced by a study in healthy men in sustained sleeplessness [25]. This study revealed that the diurnal amplitude of leptin is reduced during sleep deprivation and returns toward normal during the period of recovery sleep [25]. Furthermore, it has been shown that sleep and fasting condition result in additional systematic decreases in leptin, glucose, and insulin, whereas wakefulness and food intake result in a systematic increase in leptin concentrations [26]. More recent data examining the effects of misalignment between behavioral cycles of sleep/wake and fasting/feeding and circadian cycles revealed adverse metabolic and cardiovascular consequences and, more specifically, decreased leptin, increased insulin and glucose, and a completely reversed cortisol rhythm [27]. Moreover, the human circadian system seems to modulate a variety of cardiovascular risk markers (autonomic, hemodynamic, and hemostatic) with

consequent profiles that might contribute to the higher distribution of adverse cardiovascular events through the day/night circles [28]. These studies imply that sleep/wake patterns, which are frequently disturbed during stressful situations [29], are important regulators of the daily ranges of circulating leptin, which by influencing food intake and energy balance may contribute to the development of obesity in stressed individuals [30].


Decreased sleep is also associated with increased risk for obesity-related complications, such as diabetes and hypertension [30-34]. The combined effects of stress pathophysiology together with the behavioral/circadian misalignment might provide a mechanism underlying the increased risk for obesity, hypertension, and diabetes in chronically stressed individuals with disturbed sleep/wake patterns [3,5,27-34].


Fewer evidence exists on relations between stress, behavior, and the adipose tissue–derived protein, adiponectin, whereas these associations are, in most cases, mediated by obesity or obesity-related metabolic complications [30,35]. Adiponectin is decreased in obesity [36], whereas hypoadiponectinemia is related to adverse metabolic and cardiovascular outcomes in humans [36-41]. Recent data have shown that high–molecular weight adiponectin also has a significant day/night rhythm that is not driven by the feeding/fasting cycle. However it is not well known whether the diurnal rhythm of high–molecular weight adiponectin interacts with the daily rhythms of insulin sensitivity [42].

3. Why stress is more damaging during childhood

There is solid evidence that factors acting during fetal life, childhood, and adolescence have a substantial effect on health and well-being of the individual throughout the life span [43,44]. In addition to early life indicators, such as gestational age, birthweight, early growth patterns, and onset of puberty, individual differences in behavioral and physiological adaptation during stressful situations may play important roles in mediating early life factors to coronary heart disease, type 2 diabetes mellitus, stroke, depression, and cognitive functioning in adulthood [45]. Fetal life, childhood, and adolescence are periods of incessant physical growth and brain development. Although the concepts of stress adaptation have been developed with reference to adults, the same principles also apply to children and adolescents. Chronic alterations in the activity of the stress system, expressed either as hyper- or hypofunctioning of the HPA axis and the LC/NE-SNS, during these periods of life may have permanent effects on brain development and endocrine and metabolic systems (Fig. 1) [1-3,44,46,47]. Endocrine systems, which are crucial for growth and puberty, including the gonadal, growth hormone, and thyroid axes, are influenced by the HPA axis. These axes are inhibited at several levels by stress mediators, whereas estradiol and thyroid hormones stimulate the stress system [2-5]. Timing of puberty and final stature may be influenced by chronic hypersecretion of stress mediators.

The experience of chronic and/or severe stress in adults may result in some sensitization of mature brain structures, whereas there is evidence that such alterations of biological stress systems may have permanent effects in chronically stressed children [44,46,47]: Studies in animals have shown that elevated levels of cortisol and catecholamines may lead to alterations in brain development through mechanisms of accelerated loss of neurons [48], delays in myelination [49], or abnormalities in developmentally appropriate pruning [50]. Elevated levels of glucocorticoids during intense stress may also result in frontal lobe deficiencies, amygdala hyperfunctioning, hippocampal damage, and consequent learning and

Somatic Consequences + Behavioral Consequences

Growth Restriction Anxiety
Metabolic Syndrome Depression
Cardiovascular Disease Addiction
Osteoporosis PCOS

Anxiety
Depression
Addiction
Psychosomatics

Fig. 1 – Acute and chronic stress and potential consequences. Adapted from Chrousos and Gold [46]. MCLS indicates mesocorticolimbic (reward) system; PVN, paraventricular nucleus; AVP, arginine vasopressin.

concentration difficulties [51]. Fluctuations of stress mediators during periods of brain plasticity may permanently "program" the brain to be vulnerable to stress. Such alterations in brain structures and functions may contribute to the development of behaviors related to food intake and reward.

4. Effects of physical stress

Severe injuries, burns, sepsis, and surgical or critically ill situations lead to significant cardiometabolic alterations, characterized by a hyperdynamic circulatory response associated with increased body temperature, glycolysis, lipolysis, and proteolysis [52]. Physical stress has also been shown to produce a variety of metabolic abnormalities in children; however, the contribution of concurrent emotional stress is not always clear or measurable. Pediatric burn patients provide an example of stress-related metabolic dysfunction, even after the acute phase: Insulin sensitivity was measured in a study of severely burned children before discharge, when wounds were 95% healed, with a 2-hour oral glucose tolerance test. The homeostasis model assessment of insulin resistance index was significantly higher in burned children compared with values in healthy children [53]. A variety of cellular stress-signaling pathways are thought to be activated as a result of the burns. Another study in pediatric burn patients revealed that stress-induced insulin resistance persisted not only after the acute phase but for up to 3 years postburn [54]. Several stress mediators, such as urinary cortisol, epinephrine, NE, serum interleukin (IL)-7, IL-10, IL-12, macrophage inflammatory protein-1b, monocyte chemoattractant protein-1, and resting energy requirements were significantly increased in this group of 194 children for up to 36 months postburn. Serum insulin and C-peptide remained also significantly increased for the entire period of 36 months, whereas serum glucose was high for 6 month postburn. It is quite likely that insulin resistance is due to the marked increases in endogenous stress hormones and inflammatory stress mediators [54].

Sepsis represents another physical stressor with potential metabolic complications. Children with meningococcal disease often show hyperglycemia on admission. A study in critically ill children with meningococcal infection showed that both insulin resistance and β -cell dysfunction play a role in the occurrence of hyperglycemia in these children [55]. The effects of physical injury on stress hormones and adipocytokines were examined prospectively in children and adolescents after motor vehicle accidents [56]. Stress hormones were compared longitudinally between a group with physical injury and a group of children that experienced only emotional stress associated with a traffic accident. In the aftermath of the trauma, serum cortisol was higher in the physically injured group, whereas IL-6 concentrations were increased in both trauma groups compared with controls, indicating that both physical and psychological stress produce similar elevations of this cytokine. In the same study, adiponectin was lower in the physically stressed group than the emotionally stressed and the control groups; and this was mainly attributed to females. Circulating catecholamines and leptin did not differ between groups. Serum cortisol and IL-6

normalized 1 month after the accident and remained normal 6 months later. Adiponectin in the physically injured group, in females, remained low 1 and 6 months after the accident, indicating a persistent effect of physical stress on this adipocytokine, which may represent a potential risk factor for further development of cardiovascular disease [56].

5. Effects of emotional stress

Epidemiologic studies link anxiety disorders and depression to adverse health outcomes, such as type 2 diabetes mellitus and cardiovascular disease in adults [57,58], whereas obesity and obesity-related metabolic abnormalities possibly mediate such relations. In fact, anxiety and depression have been linked to abdominal obesity, elevated blood pressure, and metabolic abnormalities, such as insulin resistance and an abnormal lipid profile [59]. Further to stress-related psychopathology, the experience of intense and/or chronic stress, especially during childhood, may also produce clinical and metabolic abnormalities related to adverse health outcomes.

5.1. Anxiety disorders and depression

Both behavioral and biologic pathways mediate relations between anxiety/depression and metabolic abnormalities in adults and children (Fig. 2). There is evidence that anxiety and mood disorders are related to dysregulation of the HPA axis, as evidenced by centrally elevated CRH concentrations and/or increased or decreased peripheral cortisol concentrations in serum, urine, or saliva and increased, in most cases, catecholamines in urine or plasma [60-62]. Pediatric patients with a history of exposure to chronic stress and/or suffering from anxiety, posttraumatic stress disorder (PTSD), or depression have, in most cases, high peripheral cortisol concentrations, especially in the evening [63-65]. Similarly, increased catecholamine concentrations are noted in most cases, as evidenced by high epinephrine and NE levels in urine and plasma [63-65].

One of the first neuroendocrine studies in sexually abused girls with depression and suicidal behavior revealed significantly greater 24-hour urinary concentrations of catecholamines and their metabolites than matched controls [66]. The same group of children exhibited reduced evening, CRH-stimulated, plasma corticotropin concentrations compared with matched nonabused, symptom-free girls [67]. Longitudinal data in children and adolescents with PTSD after accidents [63] revealed that the group that developed and maintained PTSD, an anxiety disorder that develops after traumatic life events, manifested a longitudinal divergence of the 2 axes of the stress system, with NE increasing and cortisol gradually decreasing over time. These neuroendocrine changes reflect a potential mechanism of how chronic stress can lead to chronic hormonal disturbances with potential clinical and metabolic consequences.

Limited studies have investigated directly the role of peripheral cortisol in mediating the chronic effects of stress on obesity. A study in adults revealed that patients with depression and urinary cortisol levels in the highest tertile had an increased prevalence of the metabolic syndrome, which suggests that hypercortisolemic depression constitutes a specific risk factor for the metabolic syndrome [68]. Because

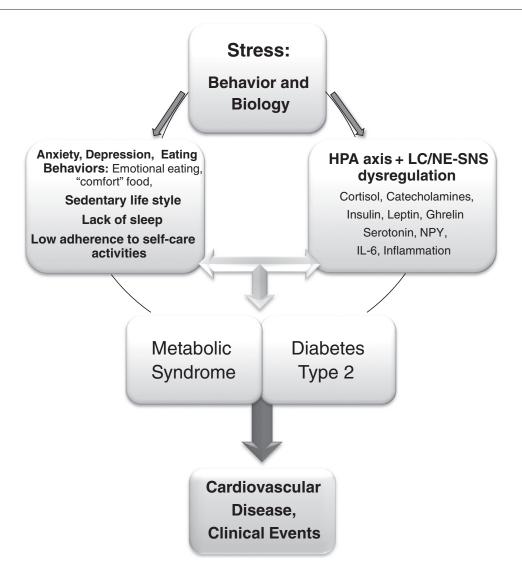


Fig. 2 - Biologic and behavioral pathways linking stress to obesity and the metabolic syndrome.

metabolic syndrome cannot be diagnosed in childhood and most often develops later in life, studies linking directly anxiety disorders/depression, HPA dysregulation, and metabolic syndrome in childhood are lacking.

In addition to cortisol and the catecholamines, other molecules also link stress and obesity/metabolic abnormalities: glucocorticoids induce insulin and leptin secretion, and cause the "leptin resistance" that characterizes obesity. Stressinduced cortisol abnormalities are also followed by elevated neuropeptide Y secretion and disruption of food intake regulation. Recent data also support that insulin and leptin play important roles in the regulation of central pathways related to food reward [69].

In addition to dysregulation of the HPA axis and LC/NE-SNS in chronically stressed individuals, disturbed eating behaviors and lifestyle parameters also contribute to the development of metabolic abnormalities (Fig. 2). Stress-related eating behaviors, such as emotional eating and consumption of "comfort" foods [70], are of great importance in the pathogenesis of obesity. In fact, a study in overweight children and adolescents showed that increased anxiety was associated with

emotional eating and loss of control over eating. It was found that emotional eating mediated the relation between anxiety and loss of control, whereas depression in the same group was associated with emotional eating as well [70]. The researchers assumed that the emotional eating behavior is a way of coping with anxiety and hyperarousal because children feel that it provides distraction and comfort from painful negative emotions. Furthermore, children suffering from chronic stress are typically characterized by poor adherence to self-care activities and sedentary habits, such as exaggerated television viewing and Internet use. These sedentary habits correlate with obesity, especially in adolescent girls, independently of the level of physical activity [71].

Sleep disturbances is a common feature of chronic stress in children. A variety of cross-sectional epidemiologic studies in adults and children have shown that sleep duration is inversely associated with obesity, whereas prospective studies have found that a short sleep duration predicts weight gain or obesity over the follow-up period. Furthermore, sleep deprivation was shown to predict type 2 diabetes mellitus in adults [72]. Recent studies have shown that hormones that

regulate glucose homeostasis and appetite are influenced by sleep. Sleep problems and disorders, such as difficulties in sleep onset, duration, and quality, are some of the most prevalent symptoms in pediatric stress-related disorders. Sleep susceptibility is in general modulated by the interaction of the central nervous system circadian rhythmicity and sleep-wake homeostasis. During sleep, glucose levels remain stable, despite prolonged fasting, in contrast to a decrease in fasting conditions in the waking state [73].

5.2. Childhood stress and trauma

The experience of intense stress or trauma during childhood may also produce adverse adult health outcomes: a retrospective study in adults who survived the siege of Leningrad in 1941-1944 when they were children, adolescents, or young adults revealed that women who were 6 to 8 years old and men who were 9 to 15 years old at the peak of the starvation period had higher systolic blood pressure than unexposed individuals. Furthermore, higher mortality from ischemic heart and cerebrovascular disease was noted in women and men exposed at ages 6 to 8 and 9 to 15, respectively, showing that the experience of severe physical and emotional stress in childhood may have long-term consequences in survivors [74].

Research has also shown that the experience or childhood adversity may lead to the development of obesity and associated morbidity: a prospective study revealed that female victims of childhood abuse, in comparison to their nonabused peers, were more likely to manifest obesity in early adulthood and show high-risk growth trajectories throughout development [75]. Furthermore, neuroendocrine studies have shown that the experience of childhood abuse may disrupt the neurobiology of the HPA axis and LC/NE-SNS, providing support for the hypothesis of attenuation of cortisol across development, that is, cortisol hyposecretion subsequent to cortisol hypersecretion [65,76].

5.3. The example of anorexia nervosa

Anorexia nervosa is a condition of severe undernutrition, initiated in most cases during adolescence and characterized by alterations in multiple neuroendocrine axes and peptides that regulate energy intake [77]. This condition of chronic stress is associated with dysregulation of the HPA axis [5,77], as expressed by hypercortisolemia together with low insulinlike growth factor 1 (IGF-1), triiodothyronine (T3), insulin, and leptin concentrations and increased ghrelin and peptide YY concentrations [77-81]. Both chronic stress and severe undernutrition contribute to the metabolic changes found in individuals with anorexia nervosa; however, high cortisol and peptide YY concentrations seem to be associated with psychopathology (disordered eating) independent of body mass in women across the spectrum of body mass index [82].

Although the majority of alterations related to undernutrition are adaptive to low caloric intake and body weight, they affect body composition, puberty, final stature, bone metabolism, and reproduction [83,84]. Recent promising data have shown that leptin administration in replacement doses in women with hypothalamic amenorrhea may be a safe and

effective therapy correcting the abnormalities in the gonadal, thyroid, growth hormone, and adrenal axes, as well as in markers of bone metabolism [85,86].

6. Fetal stress and programming of the adipose tissue

The fetal origins of adult disease hypothesis, which originated from the epidemiologic research of Barker and colleagues, demonstrated an association between low birth weight and hypertension, insulin resistance, dyslipidemia, and cardiovascular disease later in life [87]. The researchers, in an attempt to explain this association, proposed the "thrifty" phenotype hypothesis, according to which the fetus in a poor intrauterine environment maximizes the uptake and conservation of fuel resources by altering its metabolism. This alteration is adaptive in a deprived environment but maladaptive in an environment of plentiful resources [88]. The hypothesis of predictive adaptive response, however, expands the one suggested by Barker and colleagues beyond energy use and conservation. According to predictive adaptive response, developmentally plastic processes are used to set a postnatal physiological and behavioral phenotype that the stressed fetus predicts in an attempt to ensure an optimal chance for survival. The prediction of a deprived and hence stressful environment leads to adaptive changes in body size, organ size, body composition, neuroendocrine activity, and behavior. These predictive adjustments that could be advantageous in a stressful environment are maladaptive in conditions of plenty [88,89].

Both human and animal studies have shown that early nutritional stress, as expressed by exposure of the fetus and infant to inadequate or excessive amounts of nutrition, is associated with an increased risk for obesity, metabolic syndrome, and type 2 diabetes mellitus in later life. A main concept of the fetal origins of adult disease hypothesis supports that prenatal exposure to excessive or deficient nutrition alters the development of the adipocyte (adipogenesis). These alterations consist of a permanent increase in the capacity to form new cells in the adipose tissue and/or to store lipids in existing adipocytes (lipogenesis) [90,91]. Adipogenesis occurs mainly during late fetal and early postnatal life and is a highly sensitive process to the nutritional environment at this time frame. The number of adipocytes is relatively fixed in adulthood, with a very low turnover rate of adipose cells, supporting further the idea that fetal and early postnatal periods are crucial for the development of adipose tissue.

Growth-restricted humans or animals in fetal life have lower adipose stores at birth. However, the postnatal exposure to a nutrient-rich environment results in growth acceleration (catch-up) and increased visceral adipose tissue accumulation. Apart from fetal growth restriction, maternal obesity and maternal gestational diabetes constitute further risk factors for childhood obesity and related disease. Based on animal data, it has been hypothesized that changes in gene expression within visceral adipocytes before birth influence the subsequent properties of subcutaneous adipose tissue that continues to develop. These "programmed" adipocytes may secrete factors that promote preadipocyte differentiation in

other depots, resulting in further increase in adipocyte number [91].

Recent data have also revealed an association between prenatal stress and subsequent shorter telomere length in young adulthood, which is a predictor of age-related disease onset and mortality, expanding the existing literature of the effects of fetal stress on health and disease [92].

7. Conclusions and perspectives for future research

In conclusion, today, there is strong evidence that physical and emotional stress during critical periods of growth and development has permanent effects on body size and composition, tempo of growth and sexual maturation, metabolism, and behavior, resulting in adverse health outcomes in later life. However, although stress is often implicated in the pathogenesis of a host of diseases and, more specifically, the development of obesity and/or metabolic syndrome, type 2 diabetes mellitus, and cardiovascular disease, it is not easy to estimate its quantitative contribution at this time. The nature and the chronicity of the stressor, as well as the vulnerability to and perception of stress by the individual, are important variables in determining the chronic adverse effects of stress. Furthermore, the metabolic effects of stress and their cardiovascular sequelae result from both dysregulation of stress hormone secretion and unhealthy lifestylerelated behaviors, such as excessive and/or deficient nutrition, chronic lack of sleep, irregular life routines, and a sedentary life [93].

The inclusion of stress as a variable in the estimation of metabolic and cardiovascular risk, even from the early stages of human development, would be an important contribution to the determination of high-risk groups for further morbidity and mortality. In this effort, both assessment instruments related to real or perceived stress, as well as biological markers, such as circulating stress hormones and cytokines, might be necessary to calculate such risk. The recognition of stress as a variable determining health-related risks might lead to improved methods for prevention and intervention and the development of family-, group-, and individual-based strategies to reduce stress and its damaging consequences in high-risk populations.

Conflict of Interest

The authors have nothing to declare. There is no conflict of Interest. None of the authors have relevant financial interests in this manuscript, and we certify that no financial support has been given for this work.

REFERENCES

[1] Pervanidou P, Chrousos GP. Post-traumatic stress disorder in children and adolescents: from Sigmund Freud's "trauma" to

- psychopathology and the (dys)metabolic syndrome. Horm Metab Res 2007;39:413-9.
- [2] Charmandari E, Kino T, Souvatzoglou E, Chrousos GP. Pediatric stress: hormonal mediators and human development. Horm Res 2003;59:161-79.
- [3] Pervanidou P, Chrousos GP. Stress and obesity/metabolic syndrome in childhood and adolescence. Int J Pediatr Obes 2011;6(Suppl 1):21-8.
- [4] Chrousos GP, Gold PW. The concepts of stress and stress system disorders. JAMA 1992;267:1244-52.
- [5] Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol 2009;5:374-81.
- [6] Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu Rev Physiol 2005;67:259-84.
- [7] Chrousos GP. 1997 Hans Selye memorial lecture: stressors, stress and neuroendocrine integration of the adaptive response. Ann NY Acad Sci 1998;851:311-35.
- [8] Chrousos GP, Gold PW. A healthy body in a healthy mind and vice versa—the damaging power of "uncontrollable" stress. J Clin Endocrinol Metab 1998;83:1842-5.
- [9] Chrousos GP. The role of stress and the hypothalamic-pituitary-adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obes Relat Metab Disord 2000;24(Suppl 2):S50-5.
- [10] Kino T, Chrousos GP. Glucocorticoid effects on gene expression. In: Steckler T, Kalin NH, Reul JM, editors. Handbook on stress and the brain. Amsterdam: Elsevier; 2005. p. 295-312.
- [11] Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995;332: 1351-62.
- [12] Chrousos GP. Glucocorticoid therapy. In: Felig P, Frohman LA, editors. Endocrinology and metabolism. New York: McGraw-Hill; 2001. p. 609-32.
- [13] Björntorp P. Do stress reactions cause abdominal obesity and comorbidities? Obes Rev 2001;2:73-86.
- [14] Nader N, Chrousos GP, Kino T. Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol Metab 2010;21:277-86.
- [15] Nader N, Chrousos GP, Kino T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J 2009;23:1572-83.
- [16] Charmandari E, Chrousos GP, Lambrou GI, et al. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man. PLoS ONE 2011;6:e25612.
- [17] Kino T, Chrousos GP. Circadian CLOCK-mediated regulation of target-tissue sensitivity to glucocorticoids: implications for cardiometabolic diseases. Endocr Dev 2011;20:116-26.
- [18] Dallman MF, Strack AM, Akana SF, et al. Feast and famine: a critical role of glucocorticoids with insulin in daily energy flow. Front Neuroendocrinol 1993;14:303-47.
- [19] Stephens TW, Basinski M, Bristow PK, et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 1995;377:530-2.
- [20] Askari H, Liu J, Dagogo-Jack S. Energy adaptation to glucocorticoid-induced hyperleptinemia in human beings. Metabolism 2005;54:876-80.
- [21] Dardeno TA, Chou SH, Moon HS, et al. Leptin in human physiology and therapeutics. Front Neuroendocrinol 2010;31: 377-93.
- [22] Mantzoros CS, Magkos F, Brinkoetter M, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 2011;301:E567-84.
- [23] Licinio J, Mantzoros C, Negrão AB, et al. Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat Med 1997;3:575-9.

- [24] Ahima RS, Qi Y, Singhal NS. Adipokines that link obesity and diabetes to the hypothalamus. Prog Brain Res 2006;153:155-74.
- [25] Mullington JM, Chan JL, Van Dongen HP, et al. Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol 2003;15:851-4.
- [26] Shea SA, Hilton MF, Orlova C, et al. Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J Clin Endocrinol Metab 2005;90:2537-44.
- [27] Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 2009;106:4453-8.
- [28] Scheer FA, Hu K, Evoniuk H, et al. Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci U S A 2010;107: 20541-6.
- [29] Vgontzas AN, Lin HM, Papaliaga M, et al. Short sleep duration and obesity: the role of emotional stress and sleep disturbances. Int J Obes (Lond) 2008;32:801-9.
- [30] Pejovic S, Vgontzas AN, Basta M, et al. Leptin and hunger levels in young healthy adults after one night of sleep loss. J Sleep Res 2010;19:552-8.
- [31] Dinneen S, Alzaid A, Miles J, Rizza R. Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. J Clin Invest 1993;92:2283-90.
- [32] Vgontzas AN, Liao D, Bixler EO, et al. Insomnia with objective short sleep duration is associated with a high risk for hypertension. Sleep 2009;32:491-7.
- [33] Gangwisch JE, Heymsfield SB, Boden-Albala B, et al. Sleep duration as a risk factor for diabetes incidence in a large U.S. sample. Sleep 2007;30:1667-73.
- [34] Al-Disi D, Al-Daghri N, Khanam L, Al-Othman A, Al-Saif M, Sabico S, et al. Subjective sleep duration and quality influence diet composition and circulating adipocytokines and ghrelin levels in teen-age girls. Endocr J 2010;57:915-23.
- [35] Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med 2011;9:48.
- [36] Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999;257:79-83.
- [37] Kynde I, Heitmann BL, Bygbjerg IC, et al. Hypoadiponectinemia in overweight children contributes to a negative metabolic risk profile 6 years later. Metabolism 2009;58: 1817-24.
- [38] Lee YH, Magkos F, Mantzoros CS, Kang ES. Effects of leptin and adiponectin on pancreatic β -cell function. Metabolism 2011 in press.
- [39] Kim SM, Cho GJ, Yannakoulia M, et al. Lifestyle modification increases circulating adiponectin concentrations but does not change vaspin concentrations. Metabolism 2011;60: 1294-9.
- [40] Al-Daghri NM, Al-Attas OS, Alokail MS, Alkharfy KM, Yakout SM, Sabico SB, et al. Parent-offspring transmission of adipocytokine levels and their associations with metabolic traits. PLoS One 2011;6:e18182.
- [41] Al-Attas OS, Al-Daghri NM, Alokail MS, Alfadda A, Bamakhramah A, Sabico S, et al. Adiposity and insulin resistance correlate with telomere length in middle-aged Arabs: the influence of circulating adiponectin. Eur J Endocrinol 2010;163:601-7.
- [42] Scheer FA, Chan JL, Fargnoli J, et al. Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions. Diabetologia 2010;53:2401-5.
- [43] McEwen BS. Understanding the potency of stressful early life experiences on brain and body function. Metabolism 2008;57(Suppl 2):S11-5.
- [44] Teicher MH, Andersen SL, Polcari A, et al. Developmental neurobiology of childhood stress and trauma. Psychiatr Clin North Am 2002;25:397-426.

- [45] Kajantie E, Räikkönen K. Early life predictors of the physiological stress response later in life. Neurosci Biobehav Rev 2010;35:23-32.
- [46] Chrousos GP, Gold PW. The inhibited child "syndrome." Thoughts on its potential pathogenesis and sequelae. In: Schmidt LA, Schulkin J, editors. Extreme fear, shyness, and social phobia: origins, biological mechanisms, and clinical outcomes. New York: Oxford Univ. Press; 1999. p. 193-200.
- [47] Pervanidou P, Kolaitis G, Chrousos GP. Bio-behavioral consequences of traumatic stress in childhood and adolescence: the effects of war on children's mental health, growth and development. In: Sher L, Vilens A, editors. War and suicide. Hauppauge. New York: Nova Science Publishers; 2009. p. 157-72.
- [48] Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci 1990;10:2897-902.
- [49] Dunlop SA, Archer MA, Quinlivan JA, et al. Repeated prenatal corticosteroids delay myelination in the ovine central nervous system. J Maternal-Fetal Med 1997;6:309-13.
- [50] Lauder JM. Neurotransmitters as morphogens. Prog Brain Res 1988;73:365-88.
- [51] Edwards E, Harkins K, Wright G, Menn F. Effects of bilateral adrenalectomy on the induction of learned helplessness. Behav Neuropsychopharmacol 1990;3:109-14.
- [52] Herndon DN, Tompkins RG. Support of the metabolic response to burn injury. Lancet 2004;363:1895-902.
- [53] Fram RY, Cree MG, Wolfe RR, et al. Impaired glucose tolerance in pediatric burn patients at discharge from the acute hospital stay. J Burn Care Res 2010;31:728-33.
- [54] Gauglitz GG, Herndon DN, Kulp GA, et al. Abnormal insulin sensitivity persists up to three years in pediatric patients post-burn. J Clin Endocrinol Metab 2009;94:1656-64.
- [55] Verhoeven JJ, den Brinker M, Hokken-Koelega AC, et al. Pathophysiological aspects of hyperglycemia in children with meningococcal sepsis and septic shock; a prospective, observational cohort study. Crit Care 2011;15:R44.
- [56] Pervanidou P, Margeli A, Lazaropoulou Ch, et al. The immediate and long-term impact of physical and/or emotional stress from motor vehicle accidents on circulating stress hormones and adipocytokines in children and adolescents. Stress 2008;11:438-47.
- [57] Whooley MA. Depression and cardiovascular disease: healing the broken-hearted. JAMA 2006;295:2874-81.
- [58] Brown LC, Majumdar SR, Newman SC, Johnson JA. History of depression increases risk of type 2 diabetes in younger adults. Diabetes Care 2005;28:1063-7.
- [59] Rosmond R, Dallman MF, Björntorp P. Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab 1998;83:1853-9.
- [60] Pervanidou P, Chrousos GP. Neuroendocrinology of posttraumatic stress disorder. Prog Brain Res 2010;182: 149-60.
- [61] Meyer SE, Chrousos GP, Gold PW. Major depression and the stress system: a life span perspective. Dev Psychopathol 2001;13:565-80.
- [62] Gold PW, Chrousos GP. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 2002;7:254-75.
- [63] Pervanidou P, Kolaitis G, Charitaki S, et al. The natural history of neuroendocrine changes in pediatric posttraumatic stress disorder after motor vehicle accidents: progressive divergence of noradrenaline and cortisol concentrations over time. Biol Psychiatry 2007;62:1095-110.
- [64] Pervanidou P, Kolaitis G, Charitaki S, et al. Elevated morning serum IL-6 or evening salivary cortisol predict PTSD in children and adolescents 6 months after motor vehicle accidents. Psychoneuroendocrinology 2007;32:991-9.

- [65] Pervanidou P. Biology of posttraumatic stress disorder in childhood and adolescence. J Neuroendocrinol 2008;20:632-8.
- [66] De Bellis MD, Lefter L, Trickett PK, Putnam Jr FW. Urinary catecholamine excretion in sexually abused girls. J Am Acad Child Adolesc Psychiatry 1994;33:320-7.
- [67] De Bellis MD, Chrousos GP, Dorn LD, et al. Hypothalamic-pituitary-adrenal axis dysregulation in sexually abused girls. J Clin Endocrinol Metab 1994;78:249-55.
- [68] Vogelzangs N, Suthers K, Ferrucci L, et al. Hypercortisolemic depression is associated with the metabolic syndrome in late-life. Psychoneuroendocrinology 2007;32:151-9.
- [69] Figlewicz DP. Adiposity signals and food reward: expanding the CNS roles of insulin and leptin. Am J Physiol Regul Integr Comp Physiol 2003;284:R882-92.
- [70] Goossens L, Braet C, Van Vlierberghe L, Mels S. Loss of control over eating in overweight youngsters: the role of anxiety, depression and emotional eating. Eur Eat Disord Rev 2009;17: 68-78.
- [71] Schneider M, Dunton GF, Cooper DM. Media use and obesity in adolescent females. Obesity (Silver Spring) 2007;15:2328-35.
- [72] Seegers V, Petit D, Falissard B, et al. Short sleep duration and body mass index: a prospective longitudinal study in preadolescence. Am J Epidemiol 2011;173:621-9.
- [73] Spruyt K, Molfese DL, Gozal D. Sleep duration, sleep regularity, body weight, and metabolic homeostasis in school-aged children. Pediatrics 2011;127:e345-52.
- [74] Koupil I, Shestov DB, Sparen P, et al. Blood pressure, hypertension, and mortality from circulatory disease in men and women who survived the siege of Leningrad. Eur J Epidemiol 2007;22:223-34.
- [75] Noll JG, Zeller MH, Trickett PK, Putnam FW. Obesity risk for female victims of childhood sexual abuse: a prospective study. Pediatrics 2007;120:e61-7.
- [76] Trickett PK, Noll JG, Susman EJ, et al. Attenuation of cortisol across development for victims of sexual abuse. Dev Psychopathol 2010;22:165-75.
- [77] Misra M, Klibanski A. Neuroendocrine consequences of anorexia nervosa in adolescents. Endocr Dev 2010;17:197-214.
- [78] Misra M, Klibanski A. The neuroendocrine basis of anorexia nervosa and its impact on bone metabolism. Neuroendocrinology 2011;93:65-73.
- [79] Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet 2005;366:74-85.

- [80] Gordon CM. Clinical practice. Functional hypothalamic amenorrhea. N Engl J Med 2010;363:365-71.
- [81] Warren MP, Fried JL. Hypothalamic amenorrhea. The effects of environmental stresses on the reproductive system: a central effect of the central nervous system. Endocrinol Metab Clin North Am 2001;30:611-29.
- [82] Lawson EA, Eddy KT, Donoho D, et al. Appetite-regulating hormones cortisol and peptide YY are associated with disordered eating psychopathology, independent of body mass index. Eur J Endocrinol 2011;164:253-61.
- [83] Lawson EA, Donoho D, Miller KK, et al. Hypercortisolemia is associated with severity of bone loss and depression in hypothalamic amenorrhea and anorexia nervosa. J Clin Endocrinol Metab 2009;94:4710-6.
- [84] Schneider LF, Monaco SE, Warren MP. Elevated ghrelin level in women of normal weight with amenorrhea is related to disordered eating. Fertil Steril 2008;90:121-8.
- [85] Chou SH, Chamberland JP, Liu X, et al. Leptin is an effective treatment for hypothalamic amenorrhea. Proc Natl Acad Sci U S A 2011;108:6585-90.
- [86] Sienkiewicz E, Magkos F, Aronis KN, et al. Long-term metreleptin treatment increases bone mineral density and content at the lumbar spine of lean hypoleptinemic women. Metabolism 2011;60:1211-21.
- [87] Hales CN, Barker DJP. The thrifty phenotype hypothesis. Br Med Bull 2001;60:5-20.
- [88] Gluckman PD, Hanson MA, Spencer HG. Predictive adaptive responses and human evolution. Trends Ecol Evol 2005;20: 527-33.
- [89] Eleftheriades M, Pervanidou P, Chrousos GP. Fetal stress. In: Fink G, editor. Encyclopedia of stress, 2nd ed, Vol. 2. Oxford: Academic Press; 2007. p. 46-51.
- [90] Eleftheriades M, Creatsas G, Nicolaides K. Fetal growth restriction and postnatal development. Ann N Y Acad Sci 2006;1092:319-30.
- [91] Entringer S, Epel ES, Kumsta R, Lin J, Hellhammer DH, Blackburn EH, et al. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci U S A 2011;108:E513-8.
- [92] Muhlhausler B, Smith SR. Early life origins of metabolic dysfunction: role of the adipocyte. Trends Endocrin Metabol 2008;20:51-7.
- [93] Pervanidou P, Chrousos G. Emotional-behavioral disorders and obesity in childhood: a clinician's perspective. Eur Health Psychol 2011;13:48-52.