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Abstract: Background and Objectives: Addiction and relapse prevention of alcohol and
drug users is a real problem globally. Studies report different pharmacological and non-
pharmacological methods in preventing relapse with varying ranges of results across
the time of relapse. The study aims to identify novel insights into relapse prevention
for high-risk alcohol and drug addiction across diverse global populations, ages, and
intervention types during detoxification. Materials and Methods: This meta-analysis followed
PRISMA guidelines, synthesizing 12 eligible studies published between 2013 and 2023,
totaling 2162 participants. Data extraction and statistical analysis were conducted using
Python-based libraries. Regression models were applied to examine the influence of
age, gender, and intervention type on the mean relapse period. Results: 12 studies with
2162 patients were identified. These studies examined substances, interventions, and
demographics, highlighting male predominance in addictive behaviors. OSL regression
assessed factors influencing mean relapse periods, finding that age explained 44.2% of the
variability (p = 0.0131). The male percentage explained 17.1%, but the significance was
inconclusive, as was the female gender’s negligible impact (14.7% variability). Intervention
types significantly influenced relapse periods, supported by a large F-statistic. Linear
regression showed no consistent trend in relapse periods, with declining research post-
2018. Forest plots indicated disparities in relapse periods due to treatment or methodology.
Most participants were high-risk drug users, though alcohol use was also represented.
A declining trend in publication rates after 2018 was observed. Conclusions: Age and
intervention type were identified as key factors influencing relapse duration, while gender
and substance-specific effects require further study. The findings underscore the need for
more targeted, gender-sensitive, and context-aware treatment strategies.

Keywords: addiction; relapse prevention; pharmacological intervention; non-pharmacological
intervention; detoxification

1. Introduction
Addiction is defined as a chronic, relapsing brain disorder. Substance misuse is a

significant global issue, particularly in developed countries. The most commonly abused
substances are alcohol and illicit drugs [1]. In 2020, an estimated 284 million people
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(5.6%) aged 15–67 had used a drug in the last 12 months [2,3]. This fact represents a 26%
increase compared to 2010 [4]. Global estimates of drug users include 209 million for
cannabis, 61 million for opioids, 34 million for amphetamines, and 20 million for cocaine
and ecstasy [4]. The World Health Organization (WHO) estimated that 283 million people
had alcohol use disorders worldwide in 2016 [1]. The most dangerous substance is opioids,
which are the leading cause of drug overdose deaths, as tolerance decreases after a period
of abstinence during the relapse phase [5–7]. Relapse rates for substance use, ranging
from 40% to 93% within the first six months after treatment, highlight the need for relapse-
sensitive care and additional treatment methods [1].

Relapse in substance use is a concept applied across all disciplines in health and
behavioral science, particularly in the field of addiction. It refers to a return to substance
use after an individual has previously managed to control or altogether quit the addiction.
Nicotine, heroin, and alcohol have shown similar relapse rates over one year, ranging from
80% to 95% [8].

Various mechanisms can trigger relapse in drug and alcohol use, including stress,
high-risk situations, failure to cope with temptation, and craving [9].

Several methods exist to prevent relapse from addiction to high-risk substances such
as drugs, alcohol, tobacco, or gambling. These methods can be categorized into pharmaco-
logical and non-pharmacological approaches.

Pharmacological treatments work by targeting specific neurotransmitters in the brain
to reduce cravings, withdrawal symptoms, and the reinforcing effects of addictive sub-
stances or behaviors. Naltrexone or acamprosate are prescribed for alcohol addiction;
bupropion or varenicline for smoking cessation; and methadone or buprenorphine for
opioid addiction [10–13].

Non-pharmacological approaches to relapse prevention include cognitive behavioral
therapy (CBT), motivational interviewing, peer support groups, mindfulness-based relapse
prevention (MBRP), psychoeducation, and holistic therapies such as yoga, acupuncture,
and sound therapy. An innovative and thoroughly researched strategy involves using
cutting-edge virtual reality technology to reduce the risk of relapse, revolutionizing the
field of addiction intervention and prevention.

The purpose of this meta-analysis is to highlight significant new developments
in the field of high-risk alcohol and drug addiction relapse, focusing on various study
populations worldwide, across different age groups, and including individuals who have
received pharmacological and non-pharmacological interventions during detoxification
for relapse prevention.

The objectives of this paper are to explore and evaluate recent advancements in relapse
prevention strategies for individuals recovering from high-risk addictions to substances
such as alcohol, opioids, and illicit drugs. The research aims to identify and synthesize
key findings across diverse populations and age groups, focusing on the effectiveness of
pharmacological and non-pharmacological interventions in reducing relapse rates during
and after detoxification.

2. Materials and Methods
All methodologies adhered to the guidelines outlined in the Preferred Reporting Items

for Systematic Reviews and Meta-analysis (PRISMA) [14] to execute this study.

2.1. Data Collection

A comprehensive literature search was conducted across medical, psychiatric, and
psychological databases for studies published between January 2013 and December 2023.
Multiple electronic databases were systematically explored, including PubMed, Cochrane
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Library, Google Scholar, Semantic Scholar, and Consensus. The search strategy utilized
the following key terms: ‘Addiction relapse prevention’, ’Drug relapse prevention’, and
‘Alcohol relapse prevention’, combined with the Boolean operator ’OR’ to ensure a broad
retrieval of relevant studies.

The studies incorporated in the meta-analysis fulfilled the inclusion criteria:

1. Participants: studies that include patients diagnosed with alcohol use disorder (AUD)
and high-risk drug addiction who were enrolled in relapse prevention programs.
Participants were selected based on predefined eligibility criteria, including the sever-
ity of addiction, willingness to participate, and engagement in structured relapse
prevention interventions.

2. Study Design: Studies were selected based on specific inclusion criteria, such as
publication date (e.g., studies published within the last 10 years), peer-reviewed status,
and language (English only). These criteria were established to ensure the inclusion
of high-quality, recent, and accessible evidence. Randomized trials were prioritized
to minimize bias and establish causal relationships, while the cross-sectional study
provided additional insights into population characteristics and trends.

3. Intervention: Participants received various interventions, including pharmacolog-
ical (e.g., medications like naltrexone or acamprosate) and non-pharmacological
approaches (e.g., cognitive-behavioral therapy, motivational interviewing, and contin-
gency management). The selection of interventions was based on their evidence-based
efficacy in relapse prevention and their applicability to the target population.

4. Outcomes: The studies reported key outcomes such as gender distribution, type of
addiction (alcohol vs. drug), and the effectiveness of interventions in reducing relapse
rates. The primary outcome measure was the average relapse period, reported in
months. Secondary outcomes included adherence to treatment, quality of life, and
adverse effects of interventions.

The inclusion criteria ensured methodological rigor and relevance to the research
question. Randomized clinical trials were prioritized to reduce selection bias and confound-
ing factors. However, potential sources of bias, such as publication bias (the tendency to
publish only positive results) and heterogeneity in intervention protocols across studies,
were acknowledged. A comprehensive search strategy was employed to address these,
including gray literature and unpublished studies where possible. Additionally, while
limited in establishing causality, the cross-sectional research provided valuable descriptive
data on patient demographics and addiction profiles.

2.2. Study Selection

Studies were independently assessed for inclusion based on titles, keywords, and
abstracts. A workflow diagram was created to illustrate the research process for literature
screening and study selection (Figure 1).

2.3. Data Extraction

The data were extracted as follows: country of research and year of publication, type
of study, number of participants, mean age of participants, gender distribution (percentage
of females and males), type of substance use issue, average relapse period of patients in
each study, and the specific relapse prevention intervention used (Figure 1).
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2.4. Data Synthesis and Analysis

The extracted data were analyzed using Python 3 in Google Colaboratory, employing
libraries such as pandas, statsmodels, matplotlib, seaborn, and scipy.stats. The analysis
included descriptive statistics and regression models examining relationships between
the mean relapse period, average age, and gender distribution (percentage of males and
females). Additionally, the study presents the results of hypothesis testing, linear regression
trends over the years, and the distribution of patients based on the type of substance use. A
significance level of p < 0.05 was considered the threshold for statistical significance in all
analyses, indicating that the probability of the observed results occurring by chance is less
than 5%.

3. Results
A workflow chart for study selection was prepared following the Preferred Reporting

Items for Systematic Review and meta-analysis guidelines [14]. The titles and abstracts
of 934 articles were screened; 12 studies [10,11,13,15–23] fulfilled all inclusion criteria and
included 2162 patients. Table 1 summarizes the studies’ characteristics.
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Table 1. Characteristics of studies.

Study Country Year Study Type No.
Participants Mean Age Percent

Male Percent Female Substance Use
Issue

Mean Relapse
Period

(Months)
Intervention Type Effect Size/Key Findings Follow-Up

Duration

Bowen S. [16] USA 2014 RCT 286 54 71.50% 42.10% drug use,
heavy drinking 3

Mindfulness-Based
Relapse Prevention

(MBRP), Relapse
Prevention (RP),

Treatment As Usual
(TAU)

MBRP led to significantly
fewer days of substance use

and heavy drinking at
12-month follow-up vs RP
and TAU; effect sizes not

explicitly provided

12 months

Chen X. [17] China 2018 RCT 180 36.5 83% 17% methamphetamine 3

MBRP + Virtual Reality
Cue Exposure (VRCE),

MBRP alone, Treatment
As Usual (TAU)

Study protocol only; no
outcome data or effect sizes

available yet

3 and 6 months
planned

Glasner S. [18] USA 2016 RCT 63 45.3 71.40% 28.60% stimulants 2
MBRP + Contingency
Management (CM) vs

Health Education + CM

Medium effect sizes for
reduced depression (d=0.58)

and psychiatric severity
(d=0.61); lower odds of

stimulant use in MBRP group
(OR=0.78 for depression,

OR=0.68 for anxiety)

1 month
post-treatment

Grabski M. [12] UK 2022 double blind
clinical trial 96 44.07 53.54% 36.46% alcohol use 1

Ketamine infusions (with
or without MBRP) vs

placebo infusions (with
or without alcohol

education)

Ketamine + therapy group
had 15.9% more abstinent

days vs control (95% CI: 3.8%,
28.1%) at 6 months;

well tolerated

6 months

Lynch K.G. [13] USA 2023 double blind
clinical trial 156 51 78% 22% cocaine use 2

Varenicline + Cognitive
Behavioral Therapy

(CBT) vs Placebo + CBT

No significant differences in
cocaine abstinence, craving,
or withdrawal symptoms

between groups

12 weeks

Harada T. [19] Japan 2022 RCT 48 53.3 75% 25% alcohol use 3
CBT-based Relapse
Prevention (RP) vs

Psychoeducation (PE)

No significant differences
between RP and PE groups in

relapse rate or
psychological measures

3 and 6 months

Paterson L. [20] UK 2015 RCT 87 42.5 81% 19% alcohol, opiate,
cocaine 3

Pharmacological
(naltrexone, GSK598809,

aprepitant) in
experimental medicine

study with fMRI

Study focused on feasibility
and brain response; no clinical

relapse outcome or effect
size reported

Not applicable

Witkiewitz
K. [21] USA 2014 RCT 105 35.8 0% 100%

methamphetamine,
heroin, cocaine,

alcohol,
marijuana,

nicotine

2

Mindfulness-Based
Relapse Prevention
(MBRP) vs Relapse

Prevention (RP)

MBRP group had fewer drug
use days and fewer

legal/medical issues at
15-week follow-up

15 weeks
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Table 1. Cont.

Study Country Year Study Type No.
Participants Mean Age Percent

Male Percent Female Substance Use
Issue

Mean Relapse
Period

(Months)
Intervention Type Effect Size/Key Findings Follow-Up

Duration

Sewak R. [11] USA 2018 RCT 116 40 62.93% 37.06% drugs use 4

Sound-based auditory
stimulation (binaural

beats, music, subliminal
messages)

Preliminary hypothesis and
early RCT suggest sound may

reduce relapse risk; no
standardized effect size

provided

Not specified

Appiah R. [23] Ghana 2017 clinical trial 15 43.5 86.60% 13.30% drugs use 2

Multilevel relapse
prevention strategies:

clinical, spiritual, social,
individual

Qualitative findings suggest
contextual and spiritual

strategies enhance recovery in
Ghana

1 year (post-
treatment

interviews)

Vo H.T. [10] USA 2016 clinical trial 56 23.1 70% 30% opioid use 6
Buprenorphine or
Extended-Release

Naltrexone (XR-NTX)

Retention ~65% at 12 weeks,
40% at 24 weeks; no

significant differences
between medications in

opioid abstinence

24 weeks

Rong C. [22] China 2016 RCT 554 41.6 80% 20% heroin use 3

Methadone or Jitai
tablets with

psychological counseling
and social support

Psychological counseling
significantly reduced relapse

(OR = 3.56); longer drug
history increased relapse risk

2 years
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All selected studies addressed issues related to substance or alcohol abuse. The most
frequently reported substances included combinations of opioids, heroin, cocaine, metham-
phetamine, and marijuana. The studies encompassed a wide range of pharmacological and
non-pharmacological interventions, such as mindfulness-based relapse prevention (MBRP),
psychoeducation, and holistic therapies.

An analysis of the demographic data across the studies showed that participants
ranged in age from 18 to 70 years, with a mean age of 41.43 years in the meta-analysis.
Regarding gender distribution, the data reinforce the well-documented trend that addictive
behaviors are more prevalent among men. Specifically, 70% of participants were male,
while 30% were female (Figure 2).
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3.1. Correlation of the Mean Period of Relapse in Studies over Other Characteristics

The initial line of analysis focused on determining the distribution of participants
across the studies based on the type of substance use. The findings revealed that the
majority of patients were high-risk drug users (Figure 3).
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To analyze how different participant characteristics influence the mean relapse period,
the best-fitting model, the Ordinary Least Squares (OSL) regression model, was selected
based on the dataset.

The model evaluating the relationship between mean age and relapse period demon-
strated an R-squared value of 0.442, indicating that age accounts for 44.2% of the variance
in relapse duration—a moderate explanatory power. The associated F-statistic (8.724) and
p-value (0.0131) confirm the statistical significance of this model at the 5% level, suggesting
that age is a meaningful predictor. In contrast, gender-related models (both male and
female percentages) yielded lower R-squared values (0.171 and 0.147, respectively) and
non-significant p-values (>0.05), indicating a weaker and statistically inconclusive relation-
ship with relapse duration. Additionally, an ANOVA test evaluating intervention type
revealed a highly significant F-statistic (2.195 × 1028) with a p-value < 0.0001, emphasizing
the strong impact of intervention strategies on relapse outcomes. These analyses support
the conclusion that age and intervention type are the most statistically relevant predictors
of relapse duration in the examined population.

In analyzing the influence of gender, an R-squared value of 0.171 was observed,
indicating that the percentage of male participants explains approximately 17.1% of the
variability in the mean relapse period. The F-statistic for the relationship between the
male group and the relapse period was 2.264, with a corresponding p-value of 0.161. This
suggests the model is not statistically significant at the conventional 0.05 significance level.
A 95% confidence interval ([0.025, 0.975]) provides a range of plausible values for the actual
population coefficient.

In the model examining the relationship between the female gender and the mean
relapse period, the coefficient for the percentage of female participants was −0.0338. This
indicates that the expected mean relapse period decreases by approximately 0.0338 months
for each one-unit increase in the percentage of females. The confidence interval reflects the
standard error [0.926, −0.025]. An R-squared value of 0.147 suggests that the proportion of
female participants can explain about 14.7% of the variability in the mean relapse period.
The F-statistic for this model was 1.901, with a corresponding p-value of 0.195, indicating
that the model does not reach statistical significance at the conventional 0.05 level.

3.2. Effect of Interventions in Different Types of Addiction

The ANOVA test was chosen as the statistical test to evaluate the effect of different
interventions on each study’s mean relapse period registration.

The sum of squares for the factor intervention type was 52.77, representing the portion
of the variability in the mean relapse period explained by the different intervention cate-
gories. The F-statistic for the intervention type was approximately 2.20 × 1028, indicating an
extremely high test statistic value used to assess the overall significance of the intervention
type on the mean relapse period.

The probability associated with the F-statistic (PR(>F)) for the intervention type factor
was approximately 5.26 × 10−15, indicating a highly significant result. This suggests that
the likelihood of obtaining the observed F-statistic under the null hypothesis—assuming
no effect of intervention type on the mean relapse period—is extremely low. The absence
of an F-statistic and associated p-value for the residuals indicates insufficient information
to assess the significance of the residual variability.

Linear regression analysis of the mean relapse period across publication years did not
reveal an increasing trend, suggesting that the evolution of therapeutic approaches has
not significantly extended the average relapse period (Figure 4). Furthermore, a decline in
research interest on relapse prevention methods was noted over the past two decades, with
the majority of studies published between 2014 and 2018.
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The forest plot illustrates relapse outcomes across multiple studies (Figure 5). Effect
sizes represent the difference in relapse duration between treatment groups, with error bars
indicating the confidence intervals. Studies such as Mahajan (2020) [15] and Rong (2016) [22]
reported longer relapse periods, whereas others like Glasner (2016) [18] demonstrate shorter
durations. The plot highlights substantial variability in relapse outcomes across studies,
suggesting possible differences in treatment efficacy or methodological approaches.
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4. Discussion
This study conducted a comprehensive meta-analysis of 12 studies to examine key as-

pects of high-risk alcohol and drug addiction relapse across diverse populations worldwide,
spanning various age groups and including individuals who received pharmacological and
non-pharmacological interventions for relapse prevention during the detoxification phase.

The primary finding regarding the effect of mean age on relapse prevention is statis-
tically significant, with a p-value of 0.0131 in the regression model. An R-squared value
of 0.442 indicates that approximately 44.2% of the variance in the mean relapse period
is explained by age. Notably, the studies by Gonzales (2012) [24] and Satre (2011) [25]
offer valuable insights into relapse dynamics. The results suggest that younger individuals
are more responsive to relapse prevention interventions for alcohol and drug addiction,
highlighting the nuanced and complex nature of relapse within this demographic [24–27].

Age can influence various factors associated with relapse, including psychological
resilience, comorbidities, social dynamics, and treatment responses. Understanding these
can inform strategies that optimize recovery outcomes. Research shows that older adults
often experience complex health profiles, frequently with higher rates of comorbidity, which
can amplify the risk of relapse [28]. Young adults may respond well to technology-based
solutions, such as smartphone apps that help monitor mood and provide just-in-time
adaptive interventions based on behavioral triggers [29]. These technologies can effectively
engage younger populations in their recovery and prevent relapses by offering real-time
support and resources tailored to their needs [30].

The findings highlight that no single factor can independently predict relapse among
youth [25]. While individual-level factors significantly influence the initiation and mainte-
nance of substance use, a wide range of social and environmental influences also play a
critical role in this process [31,32]. Therefore, understanding the complex interplay between
personal characteristics, social dynamics, and broader environmental factors is essential
for comprehending the developmental trajectories of relapse among youth undergoing
treatment [24,33–35]. Rehabilitation has been linked to poorer outcomes over 5–9 years
of consumption, particularly among individuals aged 40 and above at the study’s out-
set. In such cases, rehabilitation may indicate a higher risk of relapse or more severe
substance-related issues within this population [25,36,37].

Emerging treatment approaches—such as virtual reality (VR) and digital medicine—
offer new perspectives in relapse prevention [38–40]. Huang (2021) observed that VR
therapy was more effective in preventing relapse among younger individuals compared
to adults [41]. VR therapy enhances the sense of presence, allowing individuals to engage
with simulated environments actively [41]. Digital interventions encompass a variety of
strategies, including psychological therapies, cognitive function enhancement programs,
and innovative technologies such as VR and biofeedback/neurofeedback. The primary
appeal of digital medicine lies in its accessibility and convenience. As these technologies
advance and become more widely adopted, digital medicine is expected to provide cost-
effective alternatives to traditional medical services [41–43].

Regarding the impact of gender, the regression model suggests that a higher percentage
of male participants may be associated with a longer mean relapse period; however, this
effect is not statistically significant at the conventional 0.05 significance level. The model
accounts for approximately 17.1% of the variability in the mean relapse period, but the
overall significance remains questionable. Similarly, the model analyzing the percentage
of female participants explains about 14.7% of the variance. The constant term has a
coefficient of 4.324 with a standard error of 0.926. The coefficient for the percentage of
females is −0.034, with a standard error of 0.025, but this result is not statistically significant
(p = 0.195), and the overall model significance remains uncertain (p = 0.195).
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Becker (2016) suggests that women may be more vulnerable to addiction, with a
faster progression from initial use to dependence on both drugs and alcohol compared to
men [44]. Additionally, women are reported to be more sensitive to the effects of stress and
interpersonal difficulties in the context of alcohol addiction and relapse [44,45]. However,
a 2021 review of clinical studies challenges this view, finding no consistent evidence that
women are more vulnerable than men to psychostimulants, opioids, or related relapse. The
available data do not support significant gender differences in craving or relapse rates [46].
On the other hand, research shows that women experience different antecedents and risks
associated with substance abuse compared to men. For instance, women are more often
influenced by personal relationships and social dynamics, such as stress from marriage,
feelings of depression, and relationship-based substance use, which can markedly elevate
their relapse potential [47,48]. Greenfield et al. emphasize that the reasons for female
relapse are frequently tied to their psychosocial contexts, fundamentally differing from the
external situational factors more often cited by male substance users [49]. This illustrates a
need for gender-sensitive treatment approaches that consider the relational and emotional
factors impacting women specifically. Moreover, studies indicate that, while women may
initially engage in substance use for reasons like mood regulation and emotional coping,
men are more likely to use substances for experimentation and social acceptance [50]. This
fundamental difference carries through to treatment and relapse scenarios. It has been
found that women are less likely to relapse after treatment compared to men, mainly when
they obtain sufficient social and familial support. Yet, when they do relapse, it tends to
occur in connection with intimate partner dynamics or familial stress, highlighting the
intersectionality of gender and social situations in SUDs [48,51]. For instance, women
often report higher levels of distress associated with family conflicts compared to men,
amplifying the risk of SUD relapse. This contrasts with men’s relapse triggers, which are
often tied to social factors such as living alone or peer pressure [52].

The findings highlight a clear emphasis on analyzing the distribution of participants
based on the type of substance used. Notably, the results indicate a predominance of high-
risk drug users within the study population. This observation calls for further exploration
of how substance type may influence treatment outcomes and emphasizes the need for
tailored interventions targeting this high-risk subgroup. According to the European Drug
Report 2023, the most commonly consumed drug was cannabis, followed by cocaine and
crack, amphetamines, heroin, and other substances [53]. Additionally, a study from the
United States reported that the prevalence of individuals engaging in both alcohol and
drug co-use was 5.6% [54].

Our study underscores the multifaceted nature of the factors influencing relapse
periods, highlighting the need for further research into additional variables that may
contribute to the observed outcome variability.

The forest plot of this meta-analysis visually summarizes individual studies’ effect
sizes and confidence intervals, offering insights into the comparative effectiveness of
various interventions in prolonging time to relapse. Each effect size reflects the magnitude
of the difference in relapse duration between treatment groups, while the confidence
intervals indicate the precision of these estimates. Notably, studies such as Mahajan
(2020) and Rong (2016) exhibit larger effect sizes, suggesting substantial differences in
relapse times favoring the treatment groups [15,22]. In contrast, studies like Glasner (2016)
demonstrate smaller effect sizes, indicating less pronounced differences or potentially
non-significant effects [18].

The variability in relapse times observed across studies may be attributed to multiple
factors, including differences in study populations, intervention protocols, follow-up dura-
tions, and methodological designs [10]. Heterogeneity in patient demographics, severity
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of addiction, comorbid conditions, and treatment adherence can all influence relapse out-
comes, contributing to the dispersion of effect sizes. Furthermore, variations in the type
and intensity of interventions—from pharmacotherapy and psychotherapy to holistic or
lifestyle-based approaches—may impact relapse rates and further underscore the diversity
of findings across studies.

Understanding the diversity of relapse outcomes illustrated in the forest plot carries
significant implications for clinical practice. Clinicians must account for the heterogeneous
nature of patient populations and their varied responses to treatment when designing
and implementing personalized intervention strategies [55–57]. Identifying interventions
associated with larger effect sizes—as demonstrated in studies such as Mahajan (2020) and
Rong (2016)—can guide treatment selection and optimization efforts [15,22]. Conversely,
studies reporting minimal or null effects, such as Glasner (2016), highlight the need to
critically assess the efficacy of existing interventions and explore alternative therapeutic
approaches [18].

In addition to established pharmacological and non-pharmacological methods, in-
creasing attention is being directed toward digital relapse prevention strategies [58–60].
Emerging research explores the use of virtual reality (VR) as a tool to support relapse
prevention, offering unique benefits such as enhanced self-awareness, behavioral moni-
toring within simulated environments, and the opportunity for individuals to adopt new
perspectives through avatar-based experiences [61–66]. These innovations may provide
practitioners with deeper insights into the recovery process while offering patients immer-
sive, personalized support during critical stages of relapse prevention.

One of the primary challenges associated with implementing VR interventions in
mental health and rehabilitation is the requirement for significant resources, including
financial investment, infrastructure, and trained personnel [67,68]. Despite its promise,
developing high-quality VR applications necessitates substantial time and expertise, which
can delay deployment within clinical settings. Furthermore, practitioners often must nav-
igate the complexities of patient training and familiarization with VR tools, which can
hinder immediate effectiveness. These challenges are compounded by the evolving nature
of VR technology, which may lead to frequent updates and modifications, creating an
additional burden for healthcare providers who wish to effectively incorporate these inno-
vations into their practices. Another critical challenge is the ethical and clinical validation
of VR applications. As VR technologies advance, questions regarding informed consent,
data privacy, and the potential for unintended psychological effects during exposure to
virtual environments become essential. For VR therapies targeted at treating conditions
like PTSD or anxiety disorders, clinicians must ensure that exposure techniques do not
retraumatize patients, particularly in vulnerable populations [69,70]. Additionally, ensur-
ing robust safety protocols for monitoring patient reactions in a VR setting is imperative,
though the immersive nature of the technology may inadvertently detract from direct
human interaction.

Additional studies on alcohol relapse prevention and craving have provided valuable
insights into the effectiveness of combining VR interventions with CBT [71–75]. VR repre-
sents a novel technique that complements traditional treatment approaches and has shown
the potential to elicit cravings through controlled exposure to alcohol-related environments.
However, while promising, the superiority of VR in assessment and relapse management
still requires further empirical validation [75]. High-fidelity simulations offer potential
therapeutic benefits but also pose challenges, including the risk of overstimulation or
triggering. Nevertheless, the VR approach is a powerful tool for developing personalized
interventions, marking a promising frontier in psychiatry and psychology [76,77].
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The limitations of this meta-analysis include the relatively small number of studies
available in this field, the inherent challenges of enrolling individuals with addiction into
clinical trials, and the limited quality and consistency of data reported in the included studies.

This meta-analysis is subject to limitations, including potential publication bias and
methodological heterogeneity across the included studies, which may affect the generaliz-
ability and consistency of the findings.

We have noted a reduction in relapse prevention research output since 2018. This
downturn may stem from various overlapping causes, such as evolving focus areas within
addiction science, financial constraints limiting support for long-term studies, and increas-
ing ethical or regulatory hurdles—especially when working with high-risk populations.
Furthermore, challenges in maintaining participant engagement and continuity through-
out studies can impede reliable data gathering. These issues point to an underexplored
field that merits deeper examination to better understand its consequences for develop-
ing effective strategies to prevent relapse. Future research should move beyond basic
demographic profiling to explore the complex interplay between intervention type, social
determinants, and individualized treatment needs. Integrating these multidimensional
factors into large-scale randomized controlled trials could yield more nuanced insights into
relapse prevention and contribute to improved outcomes for diverse populations affected
by substance use disorders.

5. Conclusions
This meta-analysis highlights that, while age emerged as a statistically significant

predictor of relapse duration, it should not be viewed in isolation. Our findings indi-
cate that intervention type—mainly the distinction between pharmacological and non-
pharmacological methods—is essential in influencing relapse outcomes, as demonstrated
by highly significant ANOVA results. Interventions such as mindfulness-based relapse
prevention (MBRP), cognitive behavioral therapy, and emerging digital tools like virtual
reality have shown promising variability in effectiveness, suggesting that tailored treatment
approaches may enhance long-term recovery. The influence of gender in relapse preven-
tion appears to be multifaceted, with current evidence suggesting that, while statistical
significance remains limited, gender-specific psychosocial factors may influence shaping
relapse risk and treatment responsiveness. Additionally, although not directly measured in
all studies, the impact of social and environmental factors—such as family support, peer
influence, and gender-specific psychosocial dynamics—warrants more profound attention.
These contextual variables, often underrepresented in statistical models, may mediate or
moderate the effectiveness of clinical interventions and should be considered essential
elements in designing relapse prevention strategies.
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74. Ghiţă, A.; Gutiérrez-Maldonado, J. Applications of Virtual Reality in Individuals with Alcohol Misuse: A Systematic Review.
Addict. Behav. 2018, 81, 1–11. [CrossRef]

75. Mazza, M.; Squillacioti, M.R.; Pecora, R.D.; Janiri, L.; Bria, P. Effect of Aripiprazole on Self-Reported Anhedonia in Bipolar
Depressed Patients. Psychiatry Res. 2009, 165, 193–196. [CrossRef] [PubMed]

76. Lebiecka, Z.; Skoneczny, T.; Tyburski, E.; Samochowiec, J.; Kucharska-Mazur, J. Is Virtual Reality Cue Exposure a Promising
Adjunctive Treatment for Alcohol Use Disorder? J. Clin. Med. 2021, 10, 2972. [CrossRef] [PubMed]

77. Emmelkamp, P.M.G.; Meyerbröker, K. Virtual Reality Therapy in Mental Health. Annu. Rev. Clin. Psychol. 2021, 17, 495–519.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/jcm9093018
https://doi.org/10.3389/fpsyg.2019.00074
https://doi.org/10.3389/fnhum.2020.00124
https://doi.org/10.1016/j.addbeh.2018.01.036
https://doi.org/10.1016/j.psychres.2008.05.003
https://www.ncbi.nlm.nih.gov/pubmed/18973955
https://doi.org/10.3390/jcm10132972
https://www.ncbi.nlm.nih.gov/pubmed/34279455
https://doi.org/10.1146/annurev-clinpsy-081219-115923
https://www.ncbi.nlm.nih.gov/pubmed/33606946

	Introduction 
	Materials and Methods 
	Data Collection 
	Study Selection 
	Data Extraction 
	Data Synthesis and Analysis 

	Results 
	Correlation of the Mean Period of Relapse in Studies over Other Characteristics 
	Effect of Interventions in Different Types of Addiction 

	Discussion 
	Conclusions 
	References

