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Abstract

Misuse and accidental overdoses attributed to stimulants are
escalating rapidly. These stimulants include methamphet-
amine, cocaine, amphetamine, ecstasy-type drugs, and
prescription stimulants such as methylphenidate. Unlike
opioids and alcohol, there are no therapies approved by the
US Food and Drug Administration (FDA) to treat stimulant-
use disorder. The high rate of relapse among this population
highlights the insufficiency of current treatment options,
which are limited to abstinence support programs and
behavioral modification therapies. Here, we briefly outline
recent regulatory actions taken by FDA to help support the
development of new stimulant use disorder treatments and
highlight several new therapeutics in the clinical development
pipeline.
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All facets of illicit drug use are on the rise globally. In
2021, 296 million people worldwide had used a nonpre-
scription drug with the potential for misuse (addictive) in
the past 12 months, which is a 23% increase from 2011
[1]. While nonmedical opioid use contributed the most
heavily to severe illicit drug-related harm (~ 60 million
people), stimulant misuse is rapidly escalating. In 2022,

36 million people reported past-year use of amphet-
amines, 22 million reported using cocaine, and 20 million
reported using ecstasy-type substances (e.g. 3, 4-meth-
ylenedioxy-N-methamphetamine [MDMA]). Among
these individuals, 35 million people met the criteria for a
stimulant-use disorder (StUD) [2]. Moreover, nearly half
of all individuals who use amphetamine-like substances
are women (45%), which is proportionately higher than
for every other illicit drug class (opioids: 25%, cocaine:
27%, cannabis: 30%, and ecstasy-like: 38%; [1]). Only
nonmedical prescription opioid use outweighs the
percent of women using amphetamine-like substances, at
47% [1].

An additional area of concern is the misuse of prescription
stimulants, such as amphetamine and dextroamphet-
amine combinations (Adderall and Dexedrine), methyl-
phenidate (e.g. Ritalin, Concerta), and
methamphetamine (Desoxyn). These are commonly
prescribed for attention-deficit/hyperactivity disorder
(ADHD) and narcolepsy and, occasionally, for treatment-
resistant depression and obesity [3—6]. The number of
ADHD diagnoses is increasing across all ages, particularly
in adults. With this increase, misuse is inevitably on the
rise. In 2018, 16 million individuals were prescribed a
stimulant, and an estimated 5.4 million misused one [7].
In 2022, misuse was reported to be greatest among college-
age individuals (age: 18—25) at 3.7% [8]. These in-
dividuals almost exclusively misused prescription stimu-
lants as a study aid with the goal of reducing fatigue and
increasing focus.

Diagnostic and statistical manual of mental disorders
(DSM-5) criteria states that StUD is diagnosed when an
individual exhibits at least 2 of 11 symptoms over a 12-
month period across 4 different categories: 1) loss of
control, 2) risky use, 3) social problems, and 4) drug
effects. Severity of the diagnosis is based on the number
symptoms displayed: mild (2—3 symptoms), moderate
(4—5), and severe (6 or more). Interestingly, nearly half
of all individuals with methamphetamine- or cocaine-
use disorder qualify as severe at 48.8% and 46.6%,
respectively [8]. There is a strong current focus on
opioids in the United States because of the high rate of
fatal overdoses. However, it is worth noting that ten
times more people used a stimulant in 2021 than heroin
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(10 vs 1 million) [9]. While this likely highlights the
infiltration of fentanyl, the high rates of stimulant use
cannot be dismissed. Indeed, in 2022, 35,000 people
died of a stimulant overdose in the United States [8],
and 71.2% of overdoses across 28 states and DC were
associated with the particularly dangerous combination
of an opioid and a stimulant [10]. Consistent with this,
polydrug use is extremely common among individuals
who use stimulants [11] and clinicians in the United
States report that methamphetamine use can derail
what would otherwise be successful treatment for
opioid-use disorder [12]. Treatment of StUD is partic-
ularly challenging because, unlike opioid- and alcohol-
use disorders, there are no Food and Drug Administra-
tion (FDA)-approved therapies. Thus, to better meet
the needs of a growing global, often polydrug-use
problem, there is a critical need for therapeutics that
target StUD.

FDA regulatory actions taken to support
development of stimulant-use disorder
treatments

Remarkable advances have been made in understanding
the neurobiology of StUD, leading to a long list of po-
tential therapeutic targets [13]. Unfortunately, this
disorder is a particularly extreme example of the gap
that often exists between preclinical research and
medication development. Specific reasons for this with
regards to StUD include a lack of interest from sources
of private investment, as well as pharmaceutical com-
panies that might otherwise be excellent licensing
partners. This is attributed to both the perceived high-
risk nature of working with this population (e.g. poor
patient compliance; insurance coverage concerns) and
existing regulatory challenges, such as the expectation
of complete abstinence as the primary measure of effi-
cacy. Despite this, it has become undeniable that this is
a very large and rapidly growing population in great need
with high rates of insurance coverage (~75%) and
protections under the Americans with Disabilities
Act [14]. Furthermore, the cost of a medication is likely
to be far lower than the cost of repeated stays in recovery
programs and more easily adhered to by this population
than many behavioral modification therapy regimens,
which should garner the support of payers.

To help alleviate some of the pressures limiting devel-
opment of StUD therapeutics, FDA held a patient-
focused drug development (PFDD) meeting in
October 2020 specifically dedicated to this disorder. A
PFDD is designed to ensure the patients’ perspectives
and needs are being incorporated into drug develop-
ment and evaluation [15]. In this meeting, patients and
providers articulated the need to define success as use
reduction, rather than complete abstinence, arguing
that there are clear health and economic benefits to a
harm reduction approach [16]. Then, in October 2023,

the FDA released draft guidance for developing drugs
for the treatment of StUD. This included recognition
that there may be appropriate measures to demonstrate
clinical benefit other than complete abstinence, such as
an extension in the number of nonuse days for an indi-
vidual [17]. In addition, the draft guidance encourages
sponsors to determine and clearly focus on a phase of the
use disorder (e.g. active use versus relapse).

Stimulant-use disorder treatments in the
clinical development pipeline

Currently, the most effective treatment course for StUD
is a combination of contingency management (CM) and
cognitive behavioral therapy (CBT) [18—20]. While
treatment with CM and CBT have yielded short-term
and moderate effects in reducing use relapse, the
addition of medications, similar to treatment methods
utilized for opioid use disorder, has the potential to yield
even better outcomes [19,21—23]. Currently there are
no approved therapeutics for StUD, though several
treatments are being explored in the clinical develop-
ment pipeline that cover a range of mechanisms and use
both small-molecule and biologic modalities. Here, we
highlight several of these (Figure 1).

Catecholamines

One of the main characteristics of stimulants is their
interference with catecholamine reuptake, particularly
dopamine, resulting in significant accumulation in the
synaptic cleft. Therefore, it is not surprising that
targeting this process is a treatment line of inquiry with
the longest history for StUD [24—26]. However, to date,
these programs have not been successful [27]. This is, at
least in part, due to the inherent challenges of manip-
ulating the catecholamine system, including potential
drug—drug interactions and anhedonia, which can lead
to safety issues and poor patient compliance, respec-
tively. Recently, interest in the dopamine reuptake
transporter (DAT) as a therapeutic target has been
rekindled by studies of the molecular chaperone sigma-1
receptor, which binds to DAT and regulates dopamine
signaling [28—33]. While still at the early stage of lead
optimization, Sparian Biosciences is developing a com-
bined DAT inhibitor and sigma-1/-2 antagonist that is
reported to prevent methamphetamine and cocaine
self-administration without interfering with physiologic
transport of dopamine in preclinical studies.

Opioid system

One of the most promising clinical trial results to date
for StUD comes from a multisite, two-stage Phase 3
clinical trial with a combination of extended-release
injectable naltrexone and oral extended-release bupro-
pion (ADAPT-2, NCT03078075) [34,35]. Naltrexone is
a combination opioid-receptor antagonist (mainly mu
with weak kappa [KOR] and delta effects), and bupro-
pion is an atypical DAT and norepinephrine-transporter
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Potential therapeutic targets for stimulant use disorder. Some of the oldest therapeutic targets for StUD have focused on stimulatants’ ability to block
reuptake of catecholamine out of the synaptic cleft. However, to date, few of these therapeutics have proven successful. Currently, there are a number of
potential therapeutic targets being investigated at the preclinical level. Many of these potential therapeutic targets focus on novel/molecular mechanisms,
such as monoclonal antibodies, phosphodiesterase 10A, 11-B-HSD, and nonmuscle myosin lIb/cytoskeletal actin. However, very few of these potential
targets have reached clinical trials yet. Targets that are currently undergoing clinical trials are marked with a gold star.

Abbreviation: StUD = stimulant-use disorder.

inhibitor. Six weeks of combination treatment reduced
methamphetamine-positive urine samples over a 12-
month period. This highlights the therapeutic poten-
tial of the opioid system for StUD, which has been
investigated in a number of preclinical studies
[13,36,37]. For example, KOR activation on dopami-
nergic neurons can modulate dopamine release and
potentiate stress-induced cocaine-conditioned place
preference [38,39]. Furthermore, PET imaging of in-
dividuals with cocaine-use disorder demonstrated
greater KOR agonist binding under stress-induced
cocaine self-administration conditions, as compared to
precocaine choice baseline images [37]. While the
ADAPT-2 trial highlights the potential for KOR inhibi-
tion, it is a complicated target as there is also evidence
indicating that, depending on the timing of treatment,
enhancing KOR activity could also potentially facilitate
treatment of cocaine-use disorder [39,40].

Nociceptin opioid peptide (NOP) may also prove to be a
therapeutic target. Buprenorphine, a - and NOP-opioid
receptor agonist, has already been approved for opioid-

use disorder, and preclinical studies indicate that coac-
tivation of these receptors inhibits acquisition of
methamphetamine self-administration and reduces
context and drug-induced seeking behavior [41—43].
Furthermore, NOP is significantly increased in in-
dividuals with cocaine-use disorder, compared to that in
controls, after 2 weeks of abstinence [44]. Phoenix
Pharmal.abs is currently developing a novel NOP-
targeting compound, PPL-138, as a nonaddictive anal-
gesic, but it may also have potential for the treatment
of StUD.

GABA
Stress can serve as a major motivating factor in StUD. To
that end, Embera NeuroTherapeutics has been

exploring the potential of targeting anxiety by simulta-
neously modulating two neural processes—the
hypothalamic—pituitary adrenal (HPA) axis and GABA
transmission. In support of focus on the latter, meth-
amphetamine and cocaine training decrease expression
of GABAp receptors in the ventral tegmental area and
the nucleus accumbens. When reversed through
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upregulation or GABA agonism, drug-induced hyper-
locomotion and drug-seeking behavior are attenuated in
preclinical studies [45,46]. Embera NeuroTherapeutics
has found that the combination of two FDA-approved
medications targeting the HPA axis and GABA, the
cortisol synthesis inhibitor metyrapone and the benzo-
diazepine oxazepam, respectively, reduced cocaine but
not food self-administration in rats [47]. Interestingly, a
similar reduction was not seen with administration of
metyrapone or oxazepam alone. Embera has formulated
this combination in EMB-001 and showed in a Phase 1
study that it reduced cocaine intake and craving over a
six-week period, as compared to placebo [48]. The two
targets are both potentially problematic as metyrapone
can induce adrenal insufficiency, and benzodiazepines,
such as oxazepam, have abuse potential. However, effi-
cacious doses of each, when combined, may be low
enough to be tolerated. Embera states it is also pursuing
disorders associated with methamphetamine, cannabis,
tobacco, gambling, eating, and post-traumatic stress
with EMB-001. Unfortunately, it is difficult to deter-
mine how active the EMB-001 program is, given that the
results of the cocaine-use-disorder Phase 1 trial were
published in 2012 without publicly available information
on follow-up trials to date. However, Embera’s website
indicates they received funding for a Phase II trial
in 2019.

Psilocybin

Over the last decade, there has been a resurgence of
interest in the therapeutic potential of psychedelics and
psychoplastogens, such as psilocybin. The focus is on
both their ability to aid psychotherapy and in their
direct mechanistic actions. While no clinical studies on
the effectiveness of psilocybin-assisted psychotherapy
for the treatment of StUD have been completed, psi-
locybin’s therapeutic efficacy in major depressive dis-
order, as well as alcohol- and tobacco-use disorders
suggests there may be potential [49,50]. In further
support, psilocybin suppresses methamphetamine-
induced hyperlocomotion and the acquisition of
methamphetamine-associated conditioned reward in
rodent studies [51]. Psilocybin’s actions are primarily
attributed to serotonin 2A receptor (5-HT,4R) agonism,
and activation of this receptor has been linked to
cocaine-seeking behavior in rats [52,53]. Furthermore,
relapse-like behavior in cocaine self-administration is
disrupted by inhibition of 5-HT2aAR during forced
abstinence [54]. A number of clinical trials with psilo-
cybin have been initiated for StUD. For example, a
Phase 1/2 trial of psilocybin-assisted psychotherapy for
methamphetamine-use disorder was initiated in 2022.
The Sponsor, the Portland VA Research Foundation,
anticipates results in late 2024 (NCT04982796). Last
year (2023), Revive Therapeutics initiated a Phase 1/2
trial to test oral psilocybin for the treatment of meth-
amphetamine use disorder (NCT05322954). An initial

readout was expected in Q3 last year but has not been
released. The latest update indicates that Revive is
preparing a Phase 2 completion report for FDA. A similar
trial for cocaine-use disorder sponsored by University of
Alabama at Birmingham is expected to be completed
this year (NCT02037126). Earlier-stage efforts are also
underway to modify psychedelics to remove their
hallucinogenic properties while maintaining the bene-
fits. Delix Therapeutics is one such company, and they
are developing DILX-007, a compound based on ibogaine
and 5-MeO-DMT, for opioid use disorder.

Phosphodiesterase 10A

As the understanding of the cellular and molecular
mechanisms supporting and driving compulsive drug
use has progressed, so have the scientific tools to address
specific targets [55,56]. Phosphodiesterase 10A is an
enzyme that hydrolyzes cAMP and ¢cGMP to the inac-
tive form. It is heavily expressed in medium spiny
neurons of the striatum, where it can modulate dopa-
mine transmission [57]. Its inhibition has shown po-
tential as a therapeutic for schizophrenia, cancer, and
erectile dysfunction [55,58—60]. In 2017, MediciNova
completed a randomized Phase 2 trial for metham-
phetamine dependence with ibudilast (MN-166), an
inhibitor of several PDEs, including PDE10
(NCTO01860807). Unfortunately, the study failed to
reach its primary endpoint of methamphetamine absti-
nence at the end of the 12-week trial (NCT01860807).
An ongoing Phase 2 trial is currently exploring ibudilast’s
effects on neuroinflammation in methamphetamine

dependence (NCT03341078).

Nonmuscle myosin Il

Stimulants induce significant and lasting neuroplasticity
in the brain that later supports the sustained motivation
to seek drugs, even following long periods of abstinence
[61—66]. The molecular ATPase motor, nonmuscle
myosin [T (NMII), drives much of this plasticity through
its effects on the synaptic cytoskeleton [67—69].
Interestingly, our group found that NMII remains
uniquely active in the basolateral amygdala long after
methamphetamine exposure and that a single adminis-
tration of an NMII inhibitor selectively excises the
motivation to seek methamphetamine in preclinical
models [64,70,71]. The effect persists for at least one
month post treatment in rodent studies. Myosin Ther-
apeutics is currently developing a first-in-class NMII
inhibitor, M'T-110, and is expected to begin patient
recruitment for a Phase 1 clinical trial in late 2024. The
single-administration modality is seen as particularly
promising by clinicians in light of the patient compli-
ance challenges associated with StUD.

Monoclonal antibodies
Utilizing monoclonal antibodies as a potential thera-
peutic for cocaine use disorder (CUD) was first
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purposed in the early 90s and has been recently
reviewed in detail [72,73]. Currently, high-affinity,
antimethamphetamine monoclonal antibodies are
being developed to antagonize the drug’s peripheral
actions. These nonaddictive antibody-based therapies
are being developed with a long half-life to remain
present in the bloodstream for weeks, sequestering
methamphetamine and reducing the drug’s effects
throughout the body, from reward to potential over-
dose [74,75].

The human/mouse chimeric form of the antibody (ch-
mAb7F9) binds to its targets (methamphetamine,
amphetamine, and MDMA) with high affinity and
specificity [76]. In rats, it reduces methamphetamine’s
volume of distribution and increases its elimination half-
life [76]. From a series of Phase 1 and 2 clinical studies,
InterveXion Theraeputics reported that ch-mAb7F9
(also known as IXT-m200 or devestinetug) has excel-
lent tolerability and a long half-life (17—19 days), is safe
in methamphetamine-overdose patients who present to
a hospital emergency department, and improves symp-
toms such as agitation [77,78] (NCT04715230,
NCT03336866). In an ongoing Phase 2 trial, its efficacy
in preventing or reducing relapse is being evaluated in
people seeking treatment for methamphetamine-use
disorder (NCT05034874).

IXT-v100 (also known as ICgp-SMQO9) is another
strategy under development for methamphetamine-use
disorder by InterverXion. IXT-v100 is a conjugate vac-
cine in which a methamphetamine-like hapten (SMO?9)
is covalently linked to a protein (immunocyanin mono-
mers from keyhole limpet hemocyanin, ICkp1y) [79]. Tt
generates a strong and long-lasting antibody response
against methamphetamine both in mice and rats
[79,80]. In rats, IXT-v100 also increases methamphet-
amine serum concentrations [80], and decreases meth-
amphetamine-secking and self-administration, without
altering food seeking [81]. The increased serum con-
centration of methamphetamine is accompanied by an
extended half-life as methamphetamine is sequestered
by antimethamphetamine IgG antibodies in the blood,
changing the distribution of the drug in the body [82].
These results suggest that IXT-v100 could not only
improve general health but also decrease the con-
sumption and motivation for methamphetamine.

Conclusion

While not exhaustive, this review highlights just how
troublingly thin the therapeutics pipeline is for StUD.
'This is particularly true when contrasted against efforts
focused on opioid treatments. Our hope is that researchers
in academia and industry are spurred to push more com-
pounds with novel mechanisms of action into the pipeline.
"This is no simple task, particularly given the complications
introduced to clinical testing by the high rate of polydrug
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use, as well as the rate of failure inherent to any drug
development program. However, developing treatments
for StUD is critically needed to realize this therapeutic
goal in order to help a rapidly growing patient population
and potentially to save many lives. And finally, given the
complex and highly individualistic nature of all substance
use disorders, the ideal approach will be a multimodal
treatment plan, in which novel pharmacotherapies for
StUD are paired with abstinence support mechanisms and
behavioral modification therapies, such as CM and CBT
[83—85]. This could be further combined with recent
technology-mediated advancements that utilize smart-
phone apps, text messaging, and telephone counseling
modalities to strengthen the impact of other therapeutic
approaches, such as CM and CBT (reviewed
in Refs. [86—88]).
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