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Abstract: Substance use disorders (SUDs) are complex biopsychosocial diseases that cause neurocog-
nitive deficits and neurological impairments by altering the gene expression in reward-related brain
areas. Repeated drug use gives rise to alterations in DNA methylation, histone modifications, and
the expression of microRNAs in several brain areas that may be associated with the development
of psychotic symptoms. The first section of this review discusses how substance use contributes to
the development of psychotic symptoms via epigenetic alterations. Then, we present more evidence
about the link between SUDs and brain epigenetic alterations. The next section presents associations
between paternal and maternal exposure to substances and epigenetic alterations in the brains of
offspring and the role of maternal diet in preventing substance-induced neurological impairments.
Then, we introduce potential therapeutic agents/approaches such as methyl-rich diets to modify
epigenetic alterations for alleviating psychotic symptoms or depression in SUDs. Next, we discuss
how substance use–gut microbiome interactions contribute to the development of neurological im-
pairments through epigenetic alterations and how gut microbiome-derived metabolites may become
new therapeutics for normalizing epigenetic aberrations. Finally, we address possible challenges and
future perspectives for alleviating psychotic symptoms and depression in patients with SUDs by
modulating diets, the epigenome, and gut microbiome.

Keywords: substance use disorder; psychotic symptoms; epigenetic alterations; substance use
disorder–gut microbiome interactions

1. Introduction

Substance use disorder (SUD) is defined as a chronic state of the uncontrolled explo-
ration and use of drugs that exert detrimental effects on the family, society, and professional
aspects of a patient’s life. The high prevalence of psychotic symptoms such as hallucina-
tions and delusions has been reported in patients with substance use [1]. For instance,
cannabis and amphetamine users exhibit a higher prevalence of psychotic disorders and
cognitive symptoms like schizophrenia [2–4]. Moreover, a greater frequency of both opioid
and cocaine use has been reported in individuals with psychotic symptoms compared to
individuals with nonpsychotic symptoms [5]. Similar to other neuropsychiatric diseases,
the etiology of SUDs is complex and multifactorial, in which a variety of responsible genes
interplay among each other and with the environment. This interplay alerts neuronal
function and structure in different brain areas and gives rise to continuous changes at the
cellular, molecular, and behavioral levels [6]. For example, it appears that amphetamine
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affects brain function via interplay with nerve terminals that utilize indoleamines, like
serotonin and catecholamines, including norepinephrine and dopamine as multifunctional
neurotransmitters [7]. The prevalence of psychotic symptoms in substance users may be
due to the burst release of dopamine in the striatum and subsequently excessive secretion
of glutamate into the brain cortex, which further leads to the injury of cortical interneurons
and the disruption of thalamocortical signals [8]. It has been found that there is also a potent
relationship between any type of SUD and the polygenic risk score for schizophrenia [9].
Genetic factors with a heritability of almost 50% (h2 = ~50%) are associated with SUDs and
their adverse consequences. For example, alcohol-related tendencies can be affected by loci
in alcohol-metabolizing genes (e.g., ADH1B and ALDH2), and nicotine-related tendencies
can be influenced by loci within the CHRNA5–CHRNA3–CHRNB4 gene cluster [10]. More
information about the genetics of SUDs is provided in a review written by Gelernter and
Polimanti [11].

The tight relationship among genes and environmental factors in the development
of psychotic symptoms in substance users can be mediated by epigenetic mechanisms as
well [12]. During this process, transcription factors and some specific enzymatic protein
complexes play a critical role in modulating gene expression and creating long-lasting
alterations through modification of chromatin structure [13,14]. These chromatin-modifying
mechanisms or other epigenetic alterations have the capacity to alter gene expression
without changing DNA sequences. Moreover, drug use or the toxic effects of alcohol may
create disturbances in the absorption of micronutrients (omega–3, choline, vitamins, and
folic acid) and hence imbalances in the levels of methyl donors, which further give rise
to the development of neuropsychiatric diseases via brain epigenetic changes, especially
DNA methylation [15]. Therefore, diet modifications and using supplementations with
adequate levels of methyl donors is a promising strategy in alleviating the development of
psychotic symptoms and neurological impairments in substance users (Figure 1).

This narrative review aims to elaborate links between substance use-induced neu-
ropsychiatric impairments and epigenetic alterations in brain tissue and the role of diet
modifications in alleviating such deficits via normalizing epigenetic aberrations. To this
end, we briefly present associations between substance use and the development of psy-
chotic symptoms and neuropsychiatric diseases via epigenetic aberrations. We will discuss
studies that support the link between substance use and epigenetic alterations, including
DNA methylation, histone modifications, and microRNAs (miRNAs), in particular, in the
brain tissue. Note that in DNA methylation, a methyl group is added to a cytosine residue,
or less frequently, to an adenine residue that is followed by guanine. This process, mediated
by different enzymes, results in methylated cytosines acting as targets for DNA-binding
proteins (e.g., MeCP2, MBD1, MBD3, and MBD4), which mediate chromatin condensation
and gene silencing. Histone modifications are another type of epigenetic regulation, during
which different amino acids of histone tail proteins can become acetylated or methylated
(mediated by various enzymes). These modifications affect the positive electric charge
of histone proteins and thus the intensity of their binding to DNA, which has a negative
electric charge. Histone acetylation generally decreases chromatin condensation and stimu-
lates gene expression, whereas histone methylation can either increase or decrease gene
expression depending on the identity or location of the methylated amino acids of histone
tail proteins. Additionally, in RNA interference, another type of epigenetic regulation,
miRNAs—small non-coding RNAs approximately 20 bases in length—bind to their cognate
RNAs and inhibit gene transcription or promote RNA degradation [16].

In this work, we will summarize those studies that show the impact of paternal and
maternal exposure to substances on epigenetic alterations in the brains of offspring and
the role of maternal diet on the prevention of substance induced neurological impair-
ments notably psychosis, possibly via epigenetic mechanisms. In addition, we provide an
overview on the use of different types of diet, especially the methyl-rich diet, for alleviating
psychotic symptoms and depressive-like behaviors in patients with SUDs. The next step
involves determining how substance use–gut microbiome interactions contribute to the
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development of psychotic symptoms and depressive-like behaviors through epigenetic
alterations and how gut microbiome-derived metabolites help researchers in the design
of new therapies based on normalizing epigenetic aberrations. The last section discusses
potential challenges and presents future perspectives relevant to alleviating psychotic
symptoms and depressive-like behaviors in patients with SUDs using diet modifications
and modulation of the gut microbiome.
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Figure 1. Therapeutic approaches using diet or epigenetic drugs (methyl donor micronutrients,
antipsychotic drugs, and gut microbiome-derived metabolites) for improving substance-induced
neurological impairments via normalizing epigenetic aberrations. Methyl donor nutrients, such as
methionine, choline, folate, and some B vitamins, participate in one-carbon metabolism and hence
could serve as potential epigenetic diets to reduce substance-induced neurological impairments.
Likewise, antipsychotic drugs and gut microbiome–derived metabolites like butyrate and acetate
can target a gene for epigenetic regulation and thus could serve as potential epigenetic modifiers to
improve psychotic symptoms, learning and memory impairments, and depressive-like behaviors in
substance users.

2. Association between Substance Use and the Development of Psychotic Symptoms
and Depressive-Like Behaviors

There is increasing evidence that drug use is associated with the development of psy-
chotic symptoms in various contexts encompassing substance withdrawal, acute or chronic
intoxication, in the form of substance-induced psychosis, and delirium [17]. Substance-
induced psychosis is described as a condition in which the onset of psychosis appears to be
due to substance use, but it remains for days, weeks, or even months in the absence of sub-
stance use [18]. Long-term neuropsychiatric deficits induced by substance use are mainly
attributed to the activation of different signaling pathways relevant to triggering and the
progression of oxidative stress and inflammation [19,20]. For example, methamphetamine-
induced psychosis is related to changes in the balance of the immune system, the activation
of a variety of chemokines and cytokines (e.g., IL-1α, CCL11, and CCL27), elevated lipid
peroxidation, and decreased antioxidant defenses [21,22]. Persistent psychotic symptoms
can be induced by amphetamines, cannabis, and alcohol [23]. It is estimated that almost
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40% of methamphetamine users suffer from psychotic symptoms like hallucinations and
delusions in addition to violence, impulsivity, and cognitive disturbance [24,25].

Mechanistically, the emergence of psychotic symptoms in patients with SUDs could
be linked to epigenetic alterations leading to gene expression dysregulation. For example,
it was found that decreased DNA methylation at a particular dopamine receptor type
4 (DRD4) CpG2.3 unit was associated with paranoid symptoms in patients with metham-
phetamine use disorder, and higher methylation levels at the catechol-O-methyltransferase
(COMT) CpG 51.52 unit was linked to reduced motor-impulsivity scores in the same set of
patients [26]. In another study, Veerasakul et al. found a significant elevation in parvalbu-
min (PVALB) DNA methylation in methamphetamine-induced psychosis, indicating that
methamphetamine dependence confers the GABAergic deficits by epigenetic changes [27].
Kalayasiri et al. reported a strong link between methamphetamine-induced paranoia and
alterations in long interspersed element-1 methylation patterns, which modulate the im-
mune and neuro-oxidative pathways [28]. In addition to DNA methylation and histone
modifications, substance-induced psychosis is connected to alterations in miRNAs. In
this line, an interesting study demonstrated that patients with methamphetamine-induced
psychosis exhibited significant differences in the levels of miR-let-7d, miR-let-7e, miR-15b,
and miR-181a compared to control subjects [29]. In a more recent study, Chen et al. re-
ported that psychological comorbidities in substance users are linked to the dysregulation
of some crucial exosomal miRNAs connected to changes in the levels of certain neuro-
transmitters, such as serotonin, in these patients [30]. In another study by the same group,
they found a negative correlation between the expression levels of exosomal miR-92a-
3p, miR-16-5p, miR-129-5p, and miR-363-3p and Hamilton Anxiety/Depression scores in
methamphetamine-dependent patients as well as heroin-dependent patients.

In the following sections, we address more details pertaining to the link between sub-
stance use and substance-induced psychiatric diseases. Overall, current findings demon-
strate that substance use is associated with the development of psychotic symptoms and
depressive-like behaviors, and such malfunctions are mediated by epigenetic shifts causing
gene expression dysregulation.

3. The Effects of Substance Use on Changing Brain Functions via Epigenetic Alterations

Epigenetic regulatory mechanisms such as DNA methylation, histone modifications,
and miRNAs play powerful roles in adaptive alterations in neuroplasticity following
prolonged drug use [31,32]. Previous studies have shown that neuronal functions rele-
vant to learning, memory, and synaptic plasticity can be dynamically regulated by DNA
methylation and histone modifications in individuals with SUDs [33,34]. For example,
heroin-induced remodeling of the actin cytoskeleton via alterations in DNA methylation
levels might participate in behavioral plasticity [35]. In this process, the proteasomal
degradation of DNA methyltransferase DNMT3a by the E2 ubiquitin-conjugating enzyme
contributes to the initiation of CaMKK1 gene transcription and the elevation of CaMKK1
protein expression via decreasing DNA methylation of its promoter region and thereby
facilitates actin polymerization through the activation of the CaMKIα/βPIX/Rac1 pathway
in the dorsal hippocampus [35]. Likewise, there is an interesting association between
DNA hypermethylation of the dopamine transporter gene (DAT1) and dopamine release in
individuals addicted to psychoactive substances [36]. Furthermore, reduced levels of brain-
derived neurotrophic factor (BDNF) methylation in CpG 5–11 have been found in subjects
with tobacco use and depression compared to those who did not consume tobacco with or
without depression [37]. In addition to DNA methylation, histone modifications may play
important roles in altering neuronal functions in subjects with SUDs [38]. For example, hu-
man primary astrocytes treated with opioid and psychostimulants exhibited elevated levels
of global acetylation of H3 histone lysine residues, except for the acetylation of the 14th
lysine residue [39]. It is hypothesized that illicit drugs like ∆9-tetrahydrocannabinol have
the capacity for the activation of histone deacetylases, causing heterochromatic sequences
of genes involved in cognitive functions, and higher risks of schizophrenia development
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and aggravation [40]. Similarly, the retrieval of heroin-related memories is associated with
changes in histone acetylation during reconsolidation, and hence interventions to modulate
histone acetylation can serve as valid approaches to cure SUD and hamper relapses [41].
Another study showed that adolescent-intermittent ethanol exposure diminishes the level
of H3 acetylation in the hippocampus, reduces the expression of BDNF, and, subsequently,
suppresses neurogenesis in this brain region [42]. Figure 2 illustrates how drug use and
alcohol consumption increase the risk of psychosis, anxiety, depressive-like behaviors, and
learning and memory deficits in users via epigenetic alterations.
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Figure 2. An illustration of association among substance use, epigenetic aberrations, and the de-
velopment of neurological impairments in users. Substance use causes aberrant alterations in DNA
methylation, post-translational histone modifications, and microRNA (miRNA) expression in different
brain areas of substance users and subsequently gives rise to the development of psychosis, depressive-
like behaviors, and learning or memory deficits. Ethanol intake and illicit drugs (for example, cannabis,
methamphetamine, and cocaine) lead to changes in gene expression by combinatorial epigenetic events
and, hence, increase the risk of developing psychosis and other neurological impairments.

Other lines of evidence linking substance use to epigenetic alterations, including DNA
methylation and histone modifications in the different brain areas, are summarized in
Tables 1 and 2, respectively. In addition to DNA methylation and histone modifications,
substance use epigenetically alters gene expression by changing the levels of endogenous
non-coding RNAs, like miRNA and circular RNA (circRNA), in the brain tissue [43–45].
circRNAs are capable of influencing substance behavioral effects through interplay with
miRNAs [44]. For instance, striatal miRNAs play powerful roles in neuroplasticity, learning
and memory, and reward circuit function and regulation [46,47]. As another example,
a study by Chavoshi et al. indicated that astrocyte over-activation and striatal atrophy
following treatment with methamphetamine is connected to 167 differentially expressed
miRNAs in the striatum region [48]. Gu et al. reported that heroin users could exhibit
elevated serum levels of miR-486-5p, miR-206, and let-7b-5p, whereas methamphetamine
users had increased serum levels of miR-9-3p [49]. Another study found that elevated levels
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of let-7b-3p in the nucleus accumbens and the ventral tegmental area of methamphetamine
users may be considered a potential biomarker for the diagnosis of addiction in these
patients [50]. Furthermore, miRNA–mRNA network analysis of postmortem brains and
blood samples of subjects with opioid use disorder revealed a potent overlap between their
differentially expressed target genes, despite the distinct profiles of the altered brain and
blood miRNAs [51].

Table 1. Substance-induced DNA methylation alterations in brain tissue.

Type of Substance/Type of Study Brain Region Key Findings Ref.

Methamphetamine/in male rats Nucleus accumbens (NA) and
dorsal striatum

Elevated expression of DNA
(cytosine-5-)-methyltransferase 1 (DNMT1) [52]

Methamphetamine/in male mice Prefrontal cortex (PFC) and
hippocampus

Alterations in the DNA methylation of several
CpG sites of the Arc and the Fos in the PFC as well
as klf10 and the Nr4a1 in the hippocampus of
chronic methamphetamine-administrated mice

[53]

Methamphetamine/in male mice PFC Reduced levels of total histone 3 and 4 tail
acetylation/elevated levels of DNA methylation [54]

Methamphetamine/in male mice Striatum Demethylation within α-syn (SNCA) promoter [55]

Methamphetamine/in male rats NA
Elevated levels of DNA methylation of some K+

channel genes following methamphetamine
self-administration

[56]

Methamphetamine/in male rats PFC Hypomethylation of BDNF-associated
CpG islands [57]

Methamphetamine/in human
and male rats PFC and hippocampus

Increased levels of BDNF methylation in human
methamphetamine dependence and in the PFCs of
methamphetamine-administered rats/decreased
BDNF methylation in the hippocampi of
methamphetamine-administered rats

[58]

Cocaine/in male mice NA
DNA hypermethylation and elevated binding of
MeCP2 at PP1c promoter/overexpression of
DNMTs like DNMT3A and DNMT3B

[59]

Cocaine/in male rats Caudate putamen Elevated levels of DNA methylation at the PP1Cβ

gene plus its binding to Mecp2 [60]

Cocaine/in honey bees
Central brain (excluding
gnathal ganglia and optic
lobes)

Changes in DNA methylation and, hence,
derangements in consolidation of
extinction memory

[61]

Cocaine/in male rats NA/lateral habenula Changes in methylation levels of TAAR7B,
PPP1CC, and A2AR in high or low explorer rats [62]

Cocaine/in male mice Dorsal striatum Hypomethylation in exon 3 of IRX2 in
neuronal nuclei [63]

Cocaine/in human Striatum
Hypermethylation in a cluster of CpGs present in
the body of tyrosine hydroxylase gene, including a
putative EGR1-binding site

[64]

Cocaine/in human Human PFC
The presence of differentially methylated regions
relevant to genes involved in synaptic signaling
and neuroplasticity

[65]

Nicotine or amphetamine/in
male rats

mPFC, OFC, and nucleus
accumbens A reduction in global DNA methylation [66]

Morphine/in male rats Hippocampus

Hypermethylation of glucocorticoid receptor 17
promoter after chronic morphine exposure and its
association with hypothalamus–pituitary–adrenal
axis dysfunction

[67]

Morphine/in male rats Cerebellum/hippocampus/
pons/medulla oblongata

Differential methylation of IL1B in the
hippocampus, Nr3c1 in the cerebellum, and BDNF
and Il6 in the pons after acute exposure to
morphine/differential methylation of NR3C1 in
the hippocampus, BDNF and COMT in the pons,
and l1b in the medulla oblongata after chronic
exposure to morphine

[68]
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Table 1. Cont.

Type of Substance/Type of Study Brain Region Key Findings Ref.

Morphine/in male rats Basolateral amygdala
Association between the DNA hypermethylation
of Gnas and the reconsolidation of morphine
reward memories

[69]

Heroin/in human PFC
Detection of 1298 differentially methylated CpG
sites (DMSs) between healthy individuals and
heroin users

[70]

Heroin/in male rats NA Hypomethylation of the GABRD gene following
heroin self-administration [71]

oxycodone/in male rats Hippocampus DNA hypomethylation [72]

Table 2. Substance-induced histone modifications in brain tissue.

Type of Substance/Type of Study Brain Region Key Findings Ref.

Cocaine/in male rats Striatum

H4 hyperacetylation at the cFos promoter after 30
min of a single injection of cocaine/H3
hyperacetylation at the Cdk5 and BDNF promoters
after chronic cocaine injection

[73]

Cocaine/in male rats NA Transcriptional activation of genes relevant to
addiction by H3 acetylation [74]

Cocaine/in male rats Ventral tegmental area (VTA)
Association between elevated acetylation of
histone 3 and cocaine-induced alterations in BDNF
mRNA

[75]

Cocaine/in male rats NA/hippocampus

Reducing expression-activity of class IIa HDACs
in the NA following high-cocaine intake and
reducing expression/activity in hippocampus
following low-cocaine intake

[76]

Amphetamine/in mice Striatum Increased level of histone H4 acetylation after
repeated treatment with amphetamine [77]

Methamphetamine/in male rats NA
Time-related elevations in acetylated H4K5 and
H4K8/down-regulation of HDAC1 and
up-regulation of HDAC2

[78]

Methamphetamine/in male rats Striatum Elevated acetylation levels of H4K5 and H4K8 in
gene promoter regions [79]

Methamphetamine/in male rats Striatum Reduction in HDAC6, 8, 9, 10 and 11 mRNA levels [80]

Methamphetamine/in male mice NA
Elevation of mRNA levels of HDAC3, HDAC4,
HDAC7, HDAC8, and HDAC11 in HDAC2KO
mice after methamphetamine injection

[81]

Methamphetamine/in male mice PFC
Elevated acetylation status of histone 4 at class I
HDAC1 and class IIb HDAC10 and reducing it at
class IIa HDAC4 and HDAC5

[82]

Methamphetamine/in male rats PFC
Hyper-acetylation of a number of genes (10 genes
with H4 acetylation and 821 genes with H3
acetylation)

[83]

Heroin /in human Striatum

Hyperacetylation of histone H3 at specific lysine
residues (K27 and K23) at discrete genomic
locations (GRIA1 and several genes involved in
glutamatergic synaptic plasticity)

[84]

Heroin /in male rats mPFC Elevated levels of H3K9ac at the promoter region
of brahma/SWI2-related gene-1 (BRG1) [85]

Morphine/in male rats Hippocampus

Enhanced binding of STAT3 to the CXCL12 gene
promoter and elevating the acetylation of histone
H4 in the CXCL12 gene promoter following
repeated context exposure with morphine
conditioning

[86]
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Table 2. Cont.

Type of Substance/Type of Study Brain Region Key Findings Ref.

Morphine/in male rats Dorsomedial prefrontal cortex
(dmPFC)

Enrichment of H3 acetylation at promoter regions
of three genes (Cdk5r1, Gabrb2, and Grm5) in male
animals

[87]

Morphine/in male rats Hippocampus/basolateral
amygdala

Association between morphine-withdrawal
aversive memories and elevation of H4K5
acetylation and p-Brd4 activation

[88]

Oxycodone/in male rats Dorsal striatum

Elevated levels of histone H3, phosphorylated at
serine 10 and acetylated at lysine 14
(H3S10pK14Ac) in self-administered oxycodone
animals using long-access paradigms

[89]

More studies linking substance use to the changes in the expression of miRNAs in the
brain tissue are summarized in Table 3.

Table 3. Association between substance use and alterations in miRNAs in various brain regions.

Type of Substance/Type of Study Brain Region Key Findings Ref.

Methamphetamine/in mice Nucleus accumbens (NA)
Expression changes of 47 miRNA responsible for
regulation of genes involved in modulation of
metabolism, autophagy, and immune response

[90]

Methamphetamine/in rats VTA Alterations in the expression of 78 miRNA
involved in addiction [91]

Methamphetamine/in rats NA
Overexpression of 166 miRNAs and
down-regulation of 4 miRNAs following chronic
treatment with methamphetamine

[92]

Methamphetamine/in rats NA Overexpression of 17 miRNAs and
down-regulation of 23 miRNAs [93]

Methamphetamine/in mice NA
Elevated levels of miR-128, a miRNA responsible
for regulating proteins involved in neuroplasticity,
after repeated-intermittent methamphetamine use

[94]

Methamphetamine/in rats Dorsal striatum Reductions in the expression of miR-181a-5p and
miR-181b-5p [95]

Methamphetamine/in mice NA
Down-regulation of novel-m009C expression, a
novel microRNA involved in modulating
methamphetamine-rewarding effects

[96]

Methamphetamine/in human
(postmortem human brain tissue) NA/VTA Up-regulation of microRNA let-7b-3p in brain

tissues of methamphetamine users [50]

Cocaine/in rats Dorsal striatum
Overexpression of miR-212 and, hence, regulating
controlling the cocaine activity in brain reward
circuitries

[97]

Cocaine/in rats Dorsal striatum
Homeostatic interplays between miR-212 and
MeCP2 for controlling the effects of cocaine on
striatal BDNF

[98]

Cocaine/in rats NA/striatum

Elevated expression of miR-212 and miR-137 in the
dorsomedial and dorsolateral striatum,
respectively, and miR-132, miR-137, miR-101b, and
miR-212 in the NA shell

[99]

Cocaine/in mice Striatum

Down-regulation of miR-124 by cocaine and
thereby elevated levels of pro-inflammatory
cytokines due to microglial activation in a
TLR4-dependent mechanism

[100]

Cocaine/in mice NA Reduced levels of miR-124 following acute or
chronic cocaine exposure [101]

Cocaine/in mice NA

Reductions of mmu-miR-34b-5p in vulnerable
animals with high motivation for cocaine;
reduction of mmu-miR-1249-3p in animals with
high motor disinhibition

[102]
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Table 3. Cont.

Type of Substance/Type of Study Brain Region Key Findings Ref.

Heroin/in rats NA Mediating incubation of heroin craving by
down-regulation of miR-181a [103]

Heroin/in rats Orbitofrontal cortex Regulation of long-lasting heroin seeking by
miR-485-5p [104]

Morphine/in mice NA Alterations in the expression of 62 miRNAs [105]

Morphine/in rats Dentate gyrus
Overexpression of miR-132 following morphine
treatment and its role in modulating the structural
plasticity

[106]

Alcohol/in rats Hippocampus

Overexpression of miR-3541, miR-125a-3p, and
let-7a-5p and hypo-expression of their target genes
(Nras, Prdm5, Suv39h1, Rnf152, Ptprz1, Apbb3,
Mapk9, Ing4, Wt1, Nkx3-1, Dab2ip, Ripk1, Lin28a,
and Acvr1c) in male alcohol-treated
rats/decreased levels of miR-881-3p and miR-504,
and overexpression of their target genes (Ube2g1,
Naa50, Clock, Arih1, Cbfb, and Gng7) in female
alcohol-treated rats

[107]

Alcohol/in human (postmortem
brain tissues) Hippocampus Elevated levels of miR-34a and miR-34c in subjects

with alcohol use disorder [108]

Alcohol/in human (postmortem
brain tissues)

Amygdala, NA, caudate
nucleus, cerebellum, VTA,
hippocampus, PFC,
and putamen

Changes in the expression of 19 miRNAs [109]

Generally, aberrant changes in DNA methylation, post-translational histone modifi-
cations, and miRNA expression in various brain regions of substance users heavily affect
neuronal functions relevant to synaptic plasticity, learning, and memory, which may acceler-
ate the development of psychiatric disorders. However, it is crucial to recognize that while
these epigenetic alterations are associated with substance use, the exact causal mechanisms
and their implications for psychiatric disorders require further investigation. Understand-
ing these complex interactions will necessitate extensive research to differentiate between
correlation and causation and develop targeted therapeutic interventions.

4. Paternal and Maternal Substance Use and Epigenetic Alterations in the Brains of
the Offspring

It has been reported that illicit drugs and other substances are capable of passing
via the placenta, activation of the immune system, and disrupting the development of
offspring by changing gene expression and/or causing epigenetic aberrations in various
body organs, especially the brain tissue, and subsequently increasing the risk of mental
disorders (Figure 3) [110,111].

For example, methamphetamine has been found to be the most common illicit drug taken
by pregnant mothers, which gives rise to changes in the expression of neurodevelopment-
related genes and thereby cognitive deficits and neuropsychiatric diseases in offspring [112,113].
Other lines of evidence linking paternal and maternal substance use during pregnancy to
epigenetic changes with respect to DNA methylation and histone modifications in various
brain regions are summarized in Table 4. It has been found that maternal substance use
during pregnancy is connected to an elevated risk of psychotic symptoms in offspring as
well [114]. For example, both paternal and maternal cannabis use is linked to the higher
number of psychotic-like experiences in the offspring in childhood (at age ten years) [115].
The development of psychotic symptoms and other neurological impairments in offspring
owing to substance use can be mediated by epigenetic changes. For instance, a recent study
by Wendt Viola et al. indicated that prenatal cocaine exposure in humans can increase the
risk for psychosis in offspring, which is connected to epigenetic alterations [116]. In another
study by Hollins et al., it was shown that a combination of prenatal treatment with poly I:C
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and cannabinoid exposure caused strong differences (98%) in the miRNA expression of the
brain hemispheric region within the Dlk1-Dio3-imprinted domain on 6q32 that is related
to the syntenic human locus in schizophrenia [117]. A more recent genome-wide human
study showed that subjects with cannabis use disorder had differential DNA methylation at
four CpG sites, remarkably at the AHRR cg0557592 site, found to be an important mediator
linking cannabis use to mental disorders, particularly mood disorders [118]. Moreover,
maternal exposure to e-cigarette aerosols with nicotine could impair short-term memory,
which was connected to the elevated levels of global DNA methylation in the brains of
offspring [119].
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There is evidence showing that such epigenetic changes in offspring can occur due
to malabsorption of nutrients in pregnant women with SUDs. In this line, it has been
shown that drug use and alcohol consumption result in derangements in the absorption
of micronutrients such as folic acid, choline, and omega 3 during pregnancy, and hence
supplementation with such diets in pregnant women with SUD may prevent neurological
deficits in the offspring through normalizing epigenetic aberrations [120–123]. As another
interesting example, it was shown that prenatal alcohol exposure caused perturbances in
hippocampal miRNA expression, and choline supplementation could reverse an ethanol-
dependent increase in hippocampal miR-200c expression [124]. Another animal study
demonstrated that alcohol consumption increases DNA methylation in the PFC and hip-
pocampus of rat pups during the neonatal period, and supplementation with choline could
reduce DNA hypermethylation in both of these brain regions [125]. Collectively, these
findings show that drugs and other substances like alcohol can pass through the placenta,
activate the immune system, impair the development of offspring, and elevate the risk of
mental illnesses by altering gene expression and/or causing epigenetic aberrations in brain
tissue. However, while these studies provide significant insights, further research is needed
to fully understand the mechanisms involved and determine the short- and long-term
effects of these substances on human development and mental health.

Table 4 shows more examples of the associations between paternal and maternal
substance use and epigenetic alterations in various brain regions in offspring.
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Table 4. Paternal and maternal substance use and epigenetic changes in various brain regions of
offspring.

Type of Substance/Type
of Study Brain Area Epigenetic Changes Effects on the Brains of Offspring Ref.

Long-term parental
methamphetamine
exposure in mice

Hippocampus DNA methylation

Presence of DMSs in the brains of
offspring exposed to methamphetamine
during embryonic development
compared to control

[126]

Maternal
methamphetamine
exposure in mice

NA DNA methylation DMSs of some genes involved in
neurodevelopmental process [127]

Maternal cocaine exposure
in mice Hippocampus DNA methylation

Reducing global DNA methylation at 3
and elevation of global DNA
methylation at 30 days postpartum

[128]

Prenatal cocaine exposure
in mice Hippocampus DNA methylation

Cognitive deficits in offspring due to
overexpression of DNMT 1 and
L-methionine and subsequently
elevating DNA methylation of IGF-2

[129]

Maternal alcohol
consumption Hippocampus DNA methylation

Alterations in DNA methylation, gene
expression, and brain function in
offspring

[130]

Maternal alcohol
consumption Hippocampus DNA methylation Elevated levels of dnmt1, dnmt3a, and

hdac2 in offspring [131]

Paternal cocaine exposure
in rats Hippocampus Histone acetyla-

tion/methylation

Elevated levels of a single methylated
lysine 4 on histone H3 (H3K4me1) and
acetylated histone H3 (H3Ac) near the
Dao1 gene responsible for the oxidative
deamination of D-serine (an amino acid
with antipsychotic activity)

[132]

Prenatal cocaine exposure
in mice Frontal cortex Histone acetylation

Hyperacetylation of histone H3 at the
BDNF promoter and thereby elevating
the mRNA and protein levels of BDNF
at adult postnatal day 60

[133]

Parental morphine
exposure in rats

PFC and
hippocampus. Histone acetylation

Decrease in histone H3 acetylation and
∆FosB in the offspring of
morphine-withdrawn parents during
postnatal days 5, 21, 30, and 60

[134]

Prenatal morphine
exposure in rats VTA Histone acetylation Overexpression of HDAC5 [135]

Maternal cannabis
exposure NA Histone lysine

methylation

Reduced 3meH3K4 and elevated
2meH3K9 repressive marks at the DRD2
gene locus in the cannabis-exposed
offspring

[136]

Perinatal alcohol and
nicotine–alcohol exposure
in rats

VTA miRNA Alterations in the expression of miRNAs
in dopaminergic neurons [137]

Prenatal alcohol exposure
in mice

Brain cortex and
microvascular
endothelium at
embryonic day 18

miRNA
Elevated levels of MicroRNA-150-5p
and suppressing the angiogenic
factor Vezf1

[138]

5. Therapeutic Approaches Using Diet Modification or Epigenetic Drugs to Improve
Psychotic Symptoms, Learning Deficits, and Memory Impairments in Animal Models
and Patients with SUDs

Several lines of evidence have indicated that psychotic symptoms in patients with
SUDs are associated with changes in the nutrients that influence methylation machinery
for post-transcriptional gene regulation. For example, lower levels of folate, a cofactor for
methylation reactions involved in gene transcription regulation levels [139], have been
reported in psychotic methamphetamine users versus non-psychotic methamphetamine
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users. In fact, every 1-unit decrease in serum folate level may increase the risk of psychosis
by 27% [140]. Therefore, the use of a methyl-rich diet is considered a promising strategy
for alleviating psychotic symptoms in patients with methamphetamine use. As another
remarkable example, one study showed DNA hypomethylation of the promoter regions
of the DRD3, DRD4, MB-COMT, and AKT1 genes in patients with methamphetamine
psychosis [141]. It was concluded that the use of a methyl-rich diet may help improve
psychotic symptoms in these patients [141]. Tian et al. also reported that repeated treatment
with methionine (the main methyl donor amino acid in mammals) for 25 days before and
during conditioned place preference training could suppress the establishment of cocaine
rewarding effects by reversing global DNA hypomethylation in the PFCs of mice [142].

In another study, Wright et al. found that global hypomethylation and decreased
methylation at CpG dinucleotides in the c-Fos gene promoter are connected to cocaine-
induced c-Fos expression in the nucleus accumbens cores of rats [143]. Their results revealed
that prolonged methyl supplementation by L-methionine could alleviate drug-seeking
attitudes and behavioral sensitization to the locomotor-activating effects of cocaine by
enhancing DNA methylation of the c-Fos promoter region [143]. Likewise, treatment with
choline (the main source of methyl groups in mammals) is capable of reversing detrimental
effects of alcohol on brain function [121]. As other examples, in the adult offspring of
rats who consumed alcohol during pregnancy, elevated levels of MeCP2 (methyl-CpG-
binding protein), the Dnmt1 enzyme (DNA-methylating enzyme 1), and several repressive
histone marks (Setdb1, H3K9me2, and G9a), along with reduced levels of histone activation
marks (H3K9ac, H3K4me3, and H3S10 phosphorylation), were reported in the thalamic
β-EP-producing proopiomelanocortin neurons, which were normalized by gestational
choline supplementation [144]. Gitik et al. also identified 462 genes with altered promoter
DNA methylation in adult mice dorsal hippocampus after nicotine exposure associated
with learning deficits. They found that dietary choline supplementation was capable of
reducing learning deficits in mice exposed to nicotine by normalizing DNA methylation of
the hippocampus [145]. In addition to methyl-rich diets, a ketogenic diet is a promising
candidate for reducing neurotoxicity in substance users. During alcohol detoxification, a
paradoxical energy-deficit state occurs in the human brain owing to reduced plasma levels
of acetate and beta-hydroxybutyrate as epigenetic modifiers, which further contributes
to withdrawal symptoms and neurotoxicity in patients with alcohol use disorder [146].
Wiers et al. found that a shift in energy substrates during withdrawal in patients with
alcohol use disorder may be a major reason for withdrawal severity and neurotoxicity,
and a ketogenic diet could contribute to reducing withdrawal symptoms by elevating
ketone bodies (beta-hydroxybutyrate, acetoacetate, and acetone) and decreasing levels of
neuroinflammatory markers [147]. In another study, the same group reported that three
weeks of treatment with a ketogenic diet is capable of reducing a neurobiological craving
signature in patients with alcohol use disorder [148].

Likewise, some drugs are capable of maintaining neuronal function in substance users
by reversing epigenetic aberrations. For instance, Wang et al. reported that acute treatment
of mice with phencyclidine resulted in a drastic decrease in miRNA-143 expression in
astrocytes of the PFC region and hence the development of psychotic symptoms resembling
schizophrenia. Their results revealed that while a D2 receptor-specific agonist (quinpirole)
also decreased miRNA-143 expression, antipsychotic drugs like clozapine or haloperidol
could prevent phencyclidine-induced hyperactivity by restoring miR-143 expression and
suppress D2 receptors induced expression of Neuregulin-1, a target of miRNA-143 [149].
In another study, it was found that cocaine could impair DNMT activity in astrocytes,
which, in turn, accelerates neurodegeneration [150]. However, Piracetam, a drug for the
treatment of cognitive disorders, could hamper cocaine induced-impairments of DNMT
activity and reduce cell death [150]. In sum, psychotic symptoms, learning deficits, and
memory impairments in patients with SUDs are linked to altering the nutrients capable of
modulating methylation machinery for post-transcriptional gene regulation, and, hence,
methyl donor micronutrients or epigenetic drugs may be considered as potential candidates
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to prevent or treat such abnormalities in patients with SUDs. However, it is important to
note that the results from animal studies presented in this work cannot be directly translated
to humans; clinical trials are necessary to validate the efficacy of these approaches and their
potential side effects in human subjects.

6. Substance Use-Induced Gut Microbiome Alterations May Intensify Psychopathology
via Epigenetic Aberrations

Accumulating evidence has demonstrated that substance use contributes to the dis-
turbance of gut barrier integrity, elevation of intestinal permeability, and changing the gut
microbiota composition, which further result in derangements in brain function and the
patient’s mental status. Alterations in the gut microbiota and their metabolites by sub-
stance use heavily affect brain function by causing unfavorable shifts in the immune and
inflammatory pathways and the release of specific neurotransmitters [151,152]. Numerous
bacteria have demonstrated their ability to produce different types of neurotransmitters,
like serotonin, dopamine, and GABA [153]. While the link between gut dysbiosis and the
pathogenesis of various psychiatric diseases are reviewed elsewhere [154], the impacts of
substance use on the gut microbiome and corresponding neurochemical changes in the
brain tissue may also contribute to the development of psychiatric disorders [155]. For
instance, as patients with psychiatric disorders exhibit reduced abundance of the butyrate-
producing Faecalibacterium and increased abundance of pathogenic and pro-inflammatory
bacteria such as Eggerthella and Streptococcus, methamphetamine use can lead to similar
bacterial dysbiosis as well [154,156,157].

A growing body of evidence has demonstrated a close relationship between SUDs
and gut microbiome dysbiosis [158–160]. Opioid-induced bowel dysfunction is one of the
adverse effects of chronic opioid use [161]. A clinical study showed that methadone-treated
individuals exhibited lower fecal bacterial α-diversity and composition compared to non-
opioid users [162]. In addition, patients with heroin use disorder exhibited drastic changes
in gut microbiome diversity, composition, and functions, and the abundance levels of Turi-
cibacter, Actinomyces, and Weissella bacteria could be considered biomarkers for predicting
heroin-induced depression symptoms [163]. In methamphetamine users, it has been shown
that an altered gut microbiome is associated with cognitive decline, psychotic syndrome,
and the pathogenesis of methamphetamine-induced psychosis [164]. Furthermore, elevated
abundance levels of Lachnospiraceae, Xanthomonadale, Romboutsia, and Sphingomonadales, as
well as decreased abundance levels of Bacteroidaceae and Deltaproteobacteria, were connected
to the development of psychotic symptoms in methamphetamine users [164]. Interestingly,
fecal microbiota transplantation from methamphetamine-administered mice was also ca-
pable of creating methamphetamine-induced anxiety- and depressive-like behaviors and
elevating neuroinflammation in the hippocampus region of recipient mice [165].

In another study, Panee et al. found that the lower Prevotella–Bacteroides ratio of the
fecal microbiome in marijuana users was associated with cognitive deficits [166].

Remarkably, alerted gut microbiome composition in subjects with SUDs can heavily
influence the production of gut microbiome-derived metabolites as well, which further
affect mental health. For example, a reduction in the abundance of Akkermansia muciniphila,
a species responsible for the production of some metabolites involved in modulating the
expression of tight junction proteins and maintenance of intestinal barrier integrity, was seen
in methadone-treated individuals in comparison with non-opioid users [162]. It has been re-
ported that substances like cannabis, nicotine, and methamphetamine have a great impact on
the regulation of bacterially derived products like neuroactive metabolites, epigenetic modi-
fiers, neurotransmitters, and anti-inflammatory metabolites, which play critical roles in the
cross-talk between the gut and the central nervous system (CNS) [167–170]. For instance, a
reduced concentration of butyric acid, an epigenetic modifier and anti-inflammatory metabo-
lite involved in preventing the development and progression of neuropsychiatric diseases,
has been reported as the result of oral and fecal bacteria alterations in patients with cocaine
use disorder [171]. Overall, it appears that systemic inflammation in methamphetamine
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use disorder is due to the decreased abundance levels of butyrate-producing bacteria like
Faecalibacterium, Dorea, and Blautia as well as increased abundance of pro-inflammatory
bacteria [157,172,173].

Therefore, dietary sodium butyrate supplementation and the microbiome-derived
short-chain fatty acids (SCFAs) may act as potent epigenetic modifiers and anti-inflammatory
agents to treat drug-induced toxicity and substance-induced psychosis [174–177]. Some sup-
porting evidence comes from the recent Zhang et al. studies showing that gut microbiome-
derived SCFAs could exhibit great potential for reducing methamphetamine-induced
anxiety- and depressive-like behaviors by suppressing colonic inflammation and improv-
ing gut homeostasis [178]. In another study, it has been shown that sodium butyrate
supplementation is capable of alleviating detrimental effects of alcohol use disorder on
the CNS by inhibiting neuroinflammation [179]. Some therapeutic agents are also capable
of improving mental disorders induced by methamphetamine use through increasing
the abundance of butyrate-producing and hydrogen-producing bacteria. For example,
Wang et al. reported altered gut microbial composition (decreased abundance of butyrate-
producing bacteria like Bacteroides and Roseburia), reduced alpha diversity, and elevated
self-rating scales of depression (SDS) and anxiety (SAS) in methamphetamine users com-
pared to their age-matched healthy subjects [180]. They found that inhaling hydrogen could
improve neuropsychiatric impairments induced by methamphetamine use through chang-
ing gut microbiota profiles and increasing the abundance of Bacteroides and Roseburia [180].
Considering current data indicating that SCFAs are affected in SUDs and microbial or other
therapeutic interventions improve substance-induced psychiatric symptoms by increasing
butyrate or other SCFAs levels, it is conceivable to suggest that epigenetic alterations me-
diate mental health impacts of substance-induced gut dysbiosis in SUDs. Taken together,
these findings indicate that substance use is capable of disturbing the gut barrier’s integrity,
increasing intestinal permeability, and alterations in the gut microbiota composition, which
further lead to disturbances in brain function and the patient’s mental status. As an example,
since gut microbiome dysbiosis in patients with SUDs is related to a reduced abundance of
butyrate-producing bacteria and increased abundance of pathogenic and pro-inflammatory
bacteria, dietary sodium butyrate supplementation and/or SCFA-producing probiotics
may serve as epigenetic remedies to reduce the risk of mental illnesses in substance users
pending confirmation in human clinical studies.

7. Challenges and Potentials for Clinical Translation

In order to accelerate translational relevance, consistency in substance exposure
paradigms and the establishment of human-relevant dosage regimens or change to voli-
tional models of substance exposure are essential. In addition, epigenetic alterations in the
brain tissue should be assessed in both short-term and long-term use/exposure or with-
drawal to precisely estimate the stability of substance-induced epigenetic aberrations [181].
Moreover, in order to obtain greater insights on shared substance-induced neuroplasticity
changes and neurological impairments and promote clinical translation based on these find-
ings, systematic comparisons of different substances and their epigenetic consequences are
required. Some studies have shown that there are sex-dependent differences in substance-
induced epigenetic modifications in the brain; hence, future studies should have more
of a focus on unresolved issues to explore how sex differences affect substance-induced
epigenetic alterations [182].

In order to achieve more effective diagnostic and therapeutic strategies for substance-
induced neurological impairments, single-cell next-generation sequencing technologies and
approaches should be utilized more extensively in future research relevant to substance-
induced epigenetic alterations in the brain tissue. Single-cell RNA sequencing can also be
applied for the detection of new gene targets regulated by opioids and other substances.
Investigation of the genome for areas of opened or closed chromatin after short or long-term
exposures to substance can be conducted by ATAC-seq. ChIP-seq is capable of connecting
this type of epigenetic alteration with the affected gene loci. Moreover, locus-specific
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epigenetic editing tools provide an opportunity for researchers to detect the functional
consequences of substance-induced epigenetic alterations via manipulating such targets in
a cell type-specific manner [183,184].

Owing to the complexity of experimental variables like the host’s genotype and diet
and the difficulty of controlling them, investigating substance use disorder–gut microbiome
interactions in humans and their roles in the development and progression of mental
disorders is still a great challenge [185]. Similarly, it might be difficult to reproduce mi-
crobiome research data using animal models since many factors, such as co-housing with
other animals, vendors, facility conditions, and other environmental conditions, give rise
to differences in the composition and structure of the gut microbiome [186].

8. Conclusions

This literature review supports the idea that drug use is capable of influencing neuro-
plasticity, learning and memory, and reward circuit functions by targeting DNA methyla-
tion, post-translational histone modifications, and miRNA in different regions of the brain
tissue. Moreover, these findings show that substance-induced psychosis can be associated
with epigenetic alterations, and, hence, epigenetic-based therapies can be considered in-
teresting approaches for alleviating psychotic symptoms in patients with SUDs. Dietary
nutrients such as methyl donors (folic acid, vitamins B6 and B12, methionine, betaine, and
choline) can serve as therapeutic agents for alleviating psychotic symptoms and depressive-
like behaviors in patients with SUDs by reversing the epigenetic aberrations caused by
substance use or modulation of the gut microbiome. Therefore, it is strongly reasonable
to investigate new connections between them, since alterations in the human diet may be
considered the easiest and first stage of treatment of substance-induced psychosis or may
actualize a neuroprotective role in neuropsychiatric diseases.
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