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Alcohol use disorder (AUD) is a profound psychiatric condition marked by disrupted connectivity among distributed brain regions,
indicating impaired functional integration. Previous connectome studies utilizing functional magnetic resonance imaging (fMRI)
have predominantly focused on undirected functional connectivity, while the specific alterations in directed effective connectivity
(EC) associated with AUD remain unclear. To address this issue, this study utilized multivariate pattern analysis (MVPA) and spectral
dynamic causal modeling (DCM). We recruited 32 abstinent men with AUD and 30 healthy controls (HCs) men, and collected their
resting-state fMRI data. A regional homogeneity (ReHo)-based MVPA method was employed to classify AUD and HC groups, as well
as predict the severity of addiction in AUD individuals. The most informative brain regions identified by the MVPA were further
investigated using spectral DCM. Our results indicated that the ReHo-based support vector classification (SVC) exhibits the highest
accuracy in distinguishing individuals with AUD from HCs (classification accuracy: 98.57%). Additionally, our results demonstrated
that ReHo-based support vector regression (SVR) could be utilized to predict the addiction severity (alcohol use disorders
identification test, AUDIT, R* = 0.38; Michigan alcoholism screening test, MAST, R?*=0.29) of patients with AUD. The most
informative brain regions for the prediction include left pre-SMA, right dACC, right LOFC, right putamen, and right NACC. These
findings were validated in an independent data set (35 patients with AUD and 36 HCs, Classification accuracy: 91.67%; AUDIT,
R? =0.17; MAST, R?> = 0.20). The results of spectral DCM analysis indicated that individuals with AUD exhibited decreased EC from
the left pre-SMA to the right putamen, from the right dACC to the right putamen, and from the right LOFC to the right NACC
compared to HCs. Moreover, the EC strength from the right NACC to left pre-SMA and from the right dACC to right putamen
mediated the relationship between addiction severity (MAST scores) and behavioral measures (impulsive and compulsive scores).
These findings provide crucial evidence for the underlying mechanism of impaired self-control, risk assessment, and impulsive and
compulsive alcohol consumption in individuals with AUD, providing novel causal insights into both diagnosis and treatment.
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INTRODUCTION

Alcohol misuse and dependence present significant global public
health concerns, with high rates of morbidity and mortality [1].
Alcohol use disorder (AUD) is a chronic relapsing condition
characterized by an impulsive compulsion to consume alcohol
and an inability to inhibit its consumption despite adverse
consequences [2]. Despite recent advances in understanding the
neurobiological mechanisms underlying alcohol-induced neuroa-
daptations, significant challenges persist in elucidating how
different brain regions interact. Moreover, while pharmaceutical
and behavioral interventions have been employed to reduce
alcohol consumption or promote abstinence, their efficacy
remains modest and underutilized. Critically, the identification of

personality traits that render individuals susceptible to alcohol use
and the development of AUD, along with elucidating the
neurobiological mechanisms associated with AUD and identifying
potential clinical biomarkers through neuroimaging, can signifi-
cantly enhance diagnostic accuracy for AUD at various stages.
Several researchers have proposed that personality traits
associated with heightened negative emotionality and decreased
constraint may serve as predictive factors for the development of
AUD [3-6]. Individuals with high levels of constraint (opposite to
impulsivity) exhibit robust self-regulation, refrain from engaging in
physically perilous or exhilarating activities, and uphold conven-
tional values and norms for behavior [7]. Although several
longitudinal studies have demonstrated that traits associated
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with heightened impulsivity during adolescence serve as pre-
dictors of AUD in adulthood [8-10], a consensus has yet to be
reached regarding whether impulsivity arises as a consequence of
prolonged alcohol exposure or predates alcohol consumption,
thereby augmenting individuals’ vulnerability to addiction.
Furthermore, the intricate relationship between impulsivity,
alterations in brain function, and AUDs remains unclear.

An increasing number of studies employ resting-state fMRI to
investigate brain alteration in alcoholism and drug addiction.
Regional homogeneity (ReHo) is a prevalent method for analyzing
resting-state fMRI data, which quantifies the temporal synchroni-
zation of nearest neighbors’ time series and can be utilized to map
local spontaneous neural activity, rendering it a valuable tool for
detecting alterations in cerebral function [11]. Previous research
has suggested that chronic alcohol use may result in aberrations
in localized connectivity within executive control, mood regula-
tion, decision-making, memory, motor coordination, and reward
processing systems as evidenced by alterations in ReHo [2, 12-14].
These findings indicate disrupted localized functional integration
associated with AUD using traditional group-level analysis.
However, group-level analysis is limited in its ability to detect
subtle differences among individuals, thereby hindering the
diagnostic decision-making process for individual patients.
Machine-learning algorithms offer alternative tools, such as
multivariate pattern analysis (MVPA), which can examine multi-
variate patterns in data and aid in clinical diagnoses of relevant
mental disorders [15, 16]. MVPA methods have the potential to
identify clinical biomarkers associated with AUD based on ReHo,
However, no MVPA study to date has explored ReHo in
distinguishing AUD subjects from a control group.

Our brain is a network of various regions, and addiction involves
intricate interactions among specific brain areas. Research on AUD
has revealed significant variability in functional connectivity
among regions implicated in executive control, reward processing,
motor coordination, and memory consolidation [17-19]. However,
functional connectivity does not provide information about the
directed casual interactions among brain regions and this
limitation calls for a characterization in terms of effective
connectivity (EC) [20, 21]. Friston et al. [22] introduced spectral
dynamic causal modeling (DCM) using the cross-spectra of the
blood oxygenation level dependency (BOLD) signals to estimate
dynamic EC in the resting state brain. Subsequently, some studies
demonstrated the reliable estimation of intrinsic EC in the absence
of external stimulation using spectral DCM [23, 24]. Spectral DCM
is widely employed in substance and behavioral addiction
research, such as smoking, cocaine, and internet gaming disorder,
providing valuable insights into the causal brain mechanisms
underlying addiction [25-27]. In contrast to these addictions, the
formation and development of AUD are influenced by specific
genetic and environmental risk factors [28-30]. One example of an
alcohol-specific mechanism is a variant of the aldehyde dehy-
drogenase gene, ALDH2 [31]. The investigation of causal brain
mechanisms underlying AUD through spectral DCM offers novel
insights into the diagnosis and treatment of this condition,
contributing to a more sophisticated understanding of the field.
However, to date, no study utilizing spectral DCM has assessed
AUD in the absence of external stimulation. Furthermore, the
previous studies in resting state analysis relied on a priori
knowledge for selecting regions of interest (ROIs), potentially
overlooking other meaningful domains that could be explored
using MVPA. In this investigation, we utilized MVPA to identify
ROIs for efficient connectivity, thereby capitalizing on the
informative value provided by MVPA.

The primary purpose of this study was to investigate the specific
brain regions that contribute significantly to the classification of
individuals with AUD from healthy controls (HCs), utilizing a ReHo-
based MVPA approach. We hypothesized that executive control,
decision-making, and reward/loss processing-related brain regions
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would exhibit the greatest contribution to classification accuracy.
The second purpose was to investigate the neural mechanisms
underlying AUD and identify the potential clinical biomarkers
associated with AUD by assessing the EC among the brain regions
that provide the most information features for the classification.
We hypothesized that individuals with AUD exhibit an atypical
pattern of EC among brain regions implicated in executive control
and reward/loss processing, and that these aberrant connectivities
are associated with symptoms of both obsessive-compulsive
behavior and impulsivity. The third purpose of this study was to
evaluate the accuracy and reliability of a classification model that
utilizes ReHo values and machine learning techniques in
distinguishing between individuals with AUD and HCs, using
two independent datasets. The fourth purpose was to investigate
the personality traits that render individuals susceptible to alcohol
use and the development of AUD. We postulated that impulsivity
and compulsivity may constitute crucial personality traits in
diagnosing AUD.

MATERIALS AND METHODS

Participants

The sample size was pre-estimated using G*Power 3.1. Based on a large
effect size estimated by a previous study for EC difference between AUD
and HCs (Cohen’s d =0.80) [32], a sample size of 21 participants was
required to detect a reliable effect with an error probability of 0.05 and
power of 0.80 in an independent sample t-test. Thirty-two men with HCs
and 30 men with AUD in abstinence were recruited from Anhui Mental
Health Center at Hefei Fourth People’s Hospital (data set 1). All HCs were
recruited through posters and Internet advertisements. Before the
experiment, all AUD patients had abstained from alcohol for a minimum
of two weeks (mean, 32.9 days; range, 15-120 days) and were prohibited
from consuming alcohol in the center. Briefly, AUD patients met the
following criteria: (a) DSM-V diagnostic criteria for AUD without acute
alcohol withdrawal syndrome (abstinent for at least two weeks), and
having a Clinical Institute Withdrawal Assessment of Alcohol Scale (CIWA)
score of greater than 7; (b) without dependent on substances other than
alcohol or nicotine. Both AUD patients and HCs met the following criteria:
(a) 18-55-years-old; (b) right-handed; (c) normal or corrected vision; (d) no
history of brain injury; (e) no taking drugs with significant anticholinergic
effects such as benzodiazepine and clozapine, and (f) no any contra-
indications for magnetic resonance imaging (MRI) study. HCs also met the
inclusion criteria, without any neurological or mental disorders; Overall, a
total of n =36 males with AUD were enrolled of whom n =30 patients
with complete behavioral assessments and fMRI data were included in
current analyses (n =2 patients had to be excluded due to fMRI artifacts
and n =4 additional patients had to be excluded due to they had been
diagnosed with another mental disorders, three patients had anxiety
disorders and one patients had mild depression). The severity of alcohol
dependence was assessed using the alcohol use disorders identification
test (AUDIT) [33] and Michigan Alcoholism Screening Test (MAST) [34]. To
determine the duration of problematic drinking, each AUD patient was
asked to calculate the number of years they had been experiencing issues
with alcohol. Additionally, in order to ensure score reliability, a similar
question regarding duration was posed to a family member of each
participant. A smoking questionnaire (Fagerstrom test of nicotine
dependence, FTND) helped determine the amount and frequency of
AUD patients’ cigarette use.

To investigate the personality traits that make individuals vulnerable to
alcohol use and predispose them to develop AUD, we recruited 36 HCs and
35 patients with AUD from outpatients of Anhui Mental Health Center at
Hefei Fourth People’s Hospital (data set 2), following the same inclusion
criteria as data set 1 mentioned above. Overall, a total of n = 45 males with
AUD were enrolled of whom n =35 patients with complete behavioral
assessments and fMRI data were included in current analyses (n=3
patients had to be excluded due to fMRI artifacts; n = 5 patients had to be
excluded due to they had been diagnosed with another mental disorder,
three patients had anxiety disorders, one patient had mild depression and
one patient had a history of epilepsy; n = 2 patients had a history of severe
brain injury). HCs were recruited via posters and online advertisements,
while the severity of alcohol dependence (measured by AUDIT and MAST
scores) was assessed in data set 2. A smoking questionnaire (FTND) helped
determine the amount and frequency of AUD patients’ cigarette use.
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Additionally, symptoms of obsessive-compulsive disorder and impulsivity
among AUD patients in data set 2 were measured using the yale-brown
compulsive scale [35] and the Barratt Impulsiveness Scale-11 [36],
respectively.

MRI data acquisition

The fMRI resting-state data were acquired at the Medical Sciences Building,
University of Science and Technology of China, on a 3-T scanner (Discovery
MR750 system, General Electric Health Care, Milwaukee, WI, United States).
During the resting-state fMRI examination, the participants were instructed
to maintain eye closure and refrain from succumbing to somnolence.
Additionally, the subjects were required to minimize head movements as
much as possible. The resting-state fMRI images were acquired using a T2'-
weighted echo-planar imaging sequence covering the whole brain:
FOV=240x240mm?, TE=30ms, TR=2000ms, flip angle =90°,
matrix = 64 X 64, slice thickness =3 mm, voxel size: 3.75 X 3.75 x 3 mm>,
36 axial slices, and total volumes = 180. High-resolution T1-weighted spin-
echo images were also collected with a gradient recalled scanning
sequence with the following parameters: TR=8.16 ms, TE=3.18 ms,
FOV = 250 x 250 mm?, flip angle =12° inversion time=450ms, slice
thickness = 1 mm, voxel size = 1.0 x 1.0 x 1.0 mm?, and 188 sagittal slices.

Image preprocessing

The DPABI v3.0 (Data Processing & Analysis for Brain Imaging: http://
rfmri.org/ dpabi), a MATLAB-based toolbox [37], was used for preproces-
sing. To minimize initial signal instability and help participants adjust to
the scanning environment, the first ten volumes of each participant were
excluded, leaving 170 remaining volumes. The rest of the process included
slice timing, head motion correction, and normalization using EPI
templates into the Montreal Neurological Institute (MNI) space and
resampled into 3 x3x3mm> Data used in this study adhered to the
criteria of head motion <2 mm or 2°. Six motion vectors were regressed to
remove nuisance signals. Subsequently, a bandpass filter (0.01-0.08 Hz)
was implemented to mitigate the impact of low-frequency drift and high-
frequency noise.

Neuroimaging data calculation
The ReHo was used as the KCC for a voxel and its 26 nearest neighboring
voxels [11].

Briefly, filtered time series of voxels were subjected to frequency domain
transformation using the fast Fourier transform (FFT). The power spectrum
was calculated by squaring the amplitude of each frequency component.
The square root of this power spectrum was then averaged across
0.01-0.08 Hz at each voxel to derive the amplitude of low-frequency
fluctuations (ALFF). Non-brain tissues were removed using the MRIcro
software. The ALFF of each voxel was standardized by dividing it by the
global mean ALFF value for each subject, resulting in a relative ALFF.
Fractional ALFF (fALFF) represents the proportion of ALFF within the
frequency band of 0.01-0.08 Hz compared to the entire detectable
frequency range of 0.01-0.25 Hz in the signal. Finally, the individual-level
ALFF and fALFF were converted into a z-score map, reflecting spontaneous
neuronal activity.

The degree centrality (DC) was subsequently computed, followed by
the calculation of Pearson correlation coefficients between all pairs of
voxels within the gray matter mask to establish a time series correlation
among them. This matrix represents the total number of voxels in the
whole-brain mask. The graph for each subject was constructed by
creating a binary undirected adjacency matrix, with correlations
thresholded at r > 0.25. This threshold excludes voxels with low temporal
correlation due to signal noise and serves as the default setting for
calculating the DC map. Subsequently, The weighted DC was calculated
by summing up positive Pearson correlation coefficients between a
given voxel and other voxels, as negative correlations were not
interpreted in this study. Finally, the individual-level voxel-wise DC was
transformed into a z-score map.

MVPA

The MVPANI toolbox was utilized to perform MVPA on neuroimaging data
(including ReHo, ALFF, fALFF, and DC) in order to distinguish patients with
AUD from HCs [38]. The classification model, constructed using linear
support vector machine (SVM) algorithm to construct a classification model
(support vector classification [SVC], the SVC parameters: Kernel Function
(linear), penalty coefficient (c) =1, Gamma (g) = 0.1, and Degree (d) =3,
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coefficient (r) =0, nu (n) = 0.5, and epsilon in the loss function (p) =0.1),
outperformed other classification methods for our data, such as random
forest, logistic regression, naive Bayes, linear discriminant analysis,
K-nearest neighbor, and decision tree. This model was employed to
identify a hyperplane between AUD and HCs that maximized the distance
to the support vectors on each side. The training set was subjected to a 10-
fold cross-validation procedure in order to mitigate the risk of overfitting.
To obtain an average classification accuracy across all folds, a leave-one-
fold-out cross-validation approach was employed.

To predict addiction severity in the AUD group, we employed support
vector regression (SVR) constructed using a linear support vector machine.
The neuroimaging data (i.e.,, ReHo) from each participant were utilized as
input features, while.,, AUDIT and MAST scores served as labels. To mitigate
overfitting of the training set, a 10-fold cross-validation was conducted. A
leave-one-fold-out cross-validation procedure was employed to calculate
the average correlation coefficient across all folds. Regression analyses
were conducted using e-SVR with a linear kernel and default SVR
parameters.

Feature selection. The feature selection process is integrated into the
cross-validation procedure to prevent overfitting, given the substantial
disparity between the number of features and participants. In each
cross-validation step of the model training process, feature selection
based on F scores was conducted by using all features to train a classifier
with the training dataset. ReHo values were ranked based on their F
scores, which were calculated using an F-test to compare participant
groups (i.e,, AUD and HCs) in the training dataset. The SVM model was
constructed by selecting the top N% of ReHo with the highest weights,
which underwent training and testing using separate datasets. This
resulted in classification accuracy (or correlation coefficient) for this
cross-validation step. In this study, we tested a range of N% values (i.e.,
from 10% to 100% in increments of 10%) and calculated the
classification accuracy or correlation coefficient for each value. The
highest accuracy or correlation coefficient among ten cross-validation
steps was used to determine the performance for each N%, and the final
accuracy or correlation coefficient was obtained by averaging across all
cross-validation steps.

Permutation test. The final classification accuracy was assessed for
statistical significance compared to the chance-level accuracy, and
adjusted for multiple comparisons using a permutation test with 2000
iterations. First, the MVPA procedure was executed in a consistent manner
with the previously described method, utilizing a linear SVM and
employing the same feature selection process based on F scores.
Specifically, 10% of ReHo features were selected at intervals of 10% from
10% to 100%. However, during every cross-validation iteration, the class
labels were randomly permuted to produce ten classification accuracies;
subsequently, the highest accuracy was selected. Second, the initial step
was iterated 2000x to produce 2000 maximum accuracies for all
permutation steps. From these accuracies, a null distribution of chance-
level accuracies was established. Third, the P-value for each accuracy was
calculated by comparing the ten classification accuracies obtained from
actual labels with the null distribution. The resultant P-values were
adjusted for FWE P < 0.05.

In addition to assessing classification accuracy, the performance of the
classifiers was also evaluated using receiver operating characteristic (ROC)
curves and corresponding areas under the curve (AUCs). The final
correlation coefficient for SVR was statistically significant and corrected
for multiple comparisons (permutation test, n=2000). The predictive
power of SVR was evaluated by calculating the squared prediction-
outcome correlation (R%) and mean absolute error (MAE). The resulting ten
P-values were adjusted for FWE P < 0.05.

Validation analysis in an independent data set. We also evaluated the
external validity of the SVC and SVR models by implementing the following
procedures. Firstly, we examined whether the ReHo classifier features in
data set 1 could effectively differentiate individuals with AUD from HCs in
an independent dataset. Subsequently, without any model fitting, we
applied the SVC model trained on data set 1 to an independent sample
comprising patients with AUD and HCs. Secondly, we evaluated whether
the ReHo predictor feature in data set 1 could effectively predict addiction
severity (as measured by AUDIT and MAST scores) in individuals with AUD
within the independent dataset. The SVR model, trained using the initial
dataset, was directly applied to data set 2 without any additional model
fitting.
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Table 1. Clinical and demographic characteristics.

Data set 1

AUD, (N=30) HCs, (N=32)
Age (mean * SD) 38.07+7.51 38.53+9.76
Gender (male/female) 30/0 32/0
Educations (years) (mean + SD) 12.50 + 4.45 13.63+3.18
Duration of problem drinking (years) 4.67 +3.00 -
MAST 23.30+4.81 -
AUDIT 16.27 +3.97 -

Compulsive score - -
Impulsive score - -

Data set 2

t P AUD, (N =35) HCs, (N =36) t P
0.21 0.84 38.69+8.13 37.67 £10.39 —0.46 0.65
= = 35/0 36/0 = =
1.15 0.25 12.80+4.36 13.22+4.02 0.42 0.67
5.00+3.28 = = =
2597 +6.84 = = =
17.49 £ 5.41 = = =
18.00 £ 6.07 = = =
68.14+£9.25 = = =

AUD alcohol use disorder, HCs healthy controls, MAST Michigan alcoholism screening test, AUDIT alcohol use disorders identification test

Statistical analysis. The demographic and clinical characteristics of
individuals with AUD and HCs were computed. Group differences in age
and education were assessed using two-sample t-tests.

Spectral DCM

The spectral DCM analyses were performed using DCM 12, which was
implemented in SPM 12 software (https://www.filion.uclac.uk/spm/
software/spm12/). The five ROIs for DCM analysis were determined based
on the results obtained from our MVPA. The pre-processed resting-state
data were modeled by applying a General Linear Model (GLM), which
included six nuisance regressors capturing head motion from each session,
as well as the confound time series derived from the WM and CSF. A high-
pass filter was utilized to eliminate potential ultraslow fluctuations
(<0.0078 Hz) [39]. After extracting the confounds-adjusted time series
values of all ROIs, we assumed a uniform model across all participants and
specified a “full” connected model, where each ROl was connected to
every other ROI (5% = 25 connectivity parameters, comprising five inherent
self-connections) for each subject. The spectral DCM encompassed
endogenous connections and was measured through matrix parameters
due to the absence of external inputs in the model [22, 26]. The Laplace
method with variational Bayes in the frequency domain was used for
Model Estimation. The model’s convolution kernel was transformed into a
spectrum and expressed in terms of frequency [22]. After estimating all
possible full models, we utilized a DCM network discovery (DND) routine
based on Bayesian model selection to perform group-level DCM structure
inference. The routine employed a greedy search algorithm to explore all
potential connectivity parameters of the model (22 = 256 reduced model
space), and the optimal model was selected as the one with the highest
posterior probability [25, 40]. We employed the Bayesian parameter
averaging (BPA) approach to estimate model parameters for each group
separately [24]. To correct for multiple comparisons across the 25
connectivity parameters (5 x 5), we applied FDR P < 0.05 to identify group
differences in connectivity.

RESULTS

Demographic and clinical characteristics

Table 1 presents the demographic and clinical characteristics of
patients with AUD and HCs, revealing no significant differences in
terms of age and years of education between AUD and HCs.

Classifier evaluation and brain regions that contributed most to the
SVC classification in data set 1. The SVC classification results are
presented in Fig. 1, indicating that SVC outperformed the other
five classification methods including random forest, logistic
regression, naive Bayes, linear discriminate, K-nearest neighbor,
and decision tree for our data. The highest classification
accuracies achieved for each measure were as follows: ReHo
had an accuracy of 98.57% (with a specificity of 91.67% and a
sensitivity of 95.00%), ALFF had an accuracy of 95.17%, fALFF
had an accuracy of 96.07%, DC, had an accuracy of 90.36%, and
DCpw had an accuracy of 87.32% (Fig. 1A, left). The
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corresponding AUC values for each measure were as follows:
ReHo (0.99), ALFF (0.98), fALFF (0.99), DC,y, (0.95), and DC,,
(0.94) (Fig. 1A, right). In comparison, ReHo exhibited the highest
classification accuracy and AUC in distinguishing AUD from HCs
(Fig. 1A). The weight map of the top 10% selected features of
ReHo is presented in Fig. 1B, C, while permutation tests
confirmed that its classification accuracy was significantly higher
than the chance level at P < 0.001.

Predictor evaluation and brain regions that contributed most to the
SVR prediction in data set 1. The SVR prediction results
demonstrated that ReHo values can serve as a predictor of
addiction severity in patients with AUD. Specifically, the ReHo
values could predict MAST scores (R>=0.29; P=1.96x 103
MAE = 3.61; permutation tests P=0.005; Fig. 2A), AUDIT scores
(RP=038 P=280x10"% MAE=3.11; permutation tests
P =0.005; Fig. 2B). The contributed most to the SVR prediction
model for MAST scores included the right NACC, right putamen,
left insula, right putamen pre-SMA, right dACC, left OFC and left
superior temporal gyrus. Similarly, the contributed most to the
SVR prediction model for AUDIT scores included the right NACC,
right putamen, right caudate, right putamen pre-SMA, right dACC,
left OFC and left medial temporal gyrus(Fig. 2C, D).

Between-group differences in efficient connectivity in data set 1
The ROIs for DCM analysis were determined based on the results
obtained from our MVPA. These ROIs include: the right dorsal
anterior cingulate cortex (dACC), right putamen, right nucleus
accumbens (NACC), right lateral orbitofrontal cortex (LOFC), and
left pre-supplementary motor area(pre-SMA) (Fig. 3 and Table 2).
The differences between groups in data set 1 are illustrated in
Fig. 4 and Table 3. The variance between the two groups under
statistical comparison exhibited a comparable magnitude. Nota-
bly, the intrinsic self-connections of the left pre-SMA were
inhibitory and reached significance after the t-test (t=—3.73,
P<0.001, FDR corrected, P<0.001). Additionally, the three
extrinsic connections involving the left pre-SMA, right dACC, right
putamen, and right NACC demonstrated significant differences.
These extrinsic connections involve from left pre-SMA to right
putamen (t=—3.89, P<0.001, FDR corrected, P<0.001), from
right dACC to right putamen (t = —3.17, P =0.002, FDR corrected,
P=0.002) and from right NACC to left pre-SMA (t=3.27,
P =0.002, FDR corrected, P = 0.002).

Correlation between the mean EC strength and addiction severity in
data set 1. Negative correlations (FDR correction, P = 0.05) were
observed between addiction severity (AUDIT and MAST scores)
and the mean EC strength from the left pre-SMA to right putamen
(AUDIT: r=—0.504, P=0.005, FDR corrected, P=0.008; MAST:
r=—0.554, P=0.001, FDR corrected, P=10.004), from the right
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Fig. 1 Classification results of data set 1. A Six classified methods were trained to classify AUD individuals from HCs using ReHo, ALFF, fALFF,
and DC. The overall most accurate classifier was SVC, which was used for subsequent analysis. Mean accuracies of classification are presented
in the left graph. Pattern classification of AUD and HCs based on the five resting-state fMRI measures over the whole brain using SVC. ROC
curves and the corresponding area under the curve (AUC) are displayed for each resting-state fMRI measure in the right graph. The weight
vector represents the relative relevance of each voxel to classify the groups. B The positive weight map for distinguishing HCs from AUD.
C The negative weight map for distinguishing HCs from AUD.
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Fig.2 The SVR-based addiction severity prediction results of data set 1. A The MAST scores prediction. B The AUDIT scores prediction; left,
the actual addiction severity scores and predicted addiction severity for each patient with AUD; middle, the ReHo values predict the addiction
severity scores in patients with AUD; and right, the permutation tests of the prediction model. C The ReHo value maps contribute to the SVR
prediction of MAST scores. D The ReHo value maps contribute to the SVR prediction of AUDIT scores.

dACC to right putamen (AUDIT: r=-0.491, P=0.006, FDR
corrected, P =0.008; MAST: r=—0.551, P=0.002, FDR corrected,
P =10.005). The results indicated significant positive correlations
between addiction severity (AUDIT and MAST scores) and the
mean EC strength from the right NACC to left pre-SMA (AUDIT:
r=—0.566, P=0.001, FDR corrected, P=0.004; MAST: r =0.523,
P=0.003, FDR corrected, P=0.006). Detailed information is
shown in Table 4. The correlation between the mean EC strength
and addiction severity (AUDIT and MAST scores) was still evident
after controlling for patient’s the FTND scores. Detailed informa-
tion is shown in Table 5.

Validation analysis of the SVC classification and SVR prediction in an

independent data set. The SVC classification model based on the
ReHo images obtained from data set 1 was utilized to discriminate

SPRINGER NATURE

AUD from HCs in an independent cohort. The SVC model yielded
an accuracy of 91.67%, a specificity of 94.67%, a sensitivity of
93.00%, and an AUC of 0.97 (Permutation tests, P<0.001),
indicating excellent generalizability in the independent data set
2 (Fig. 5A).

The SVR predictive model derived from data set 1 was utilized
to predict the addiction severity of patients with AUD in an
independent cohort. The SVR prediction model could predict
MAST scores (R*=0.20; P=0.007; MAE =5.16; Fig. 5B), AUDIT
scores (R =0.17; P=0.01; MAE = 3.85; Fig. 5C) in independent
data set 2.

Between-group differences in efficient connectivity in data set 1 are

repeated in data set 2. The differences between groups are
illustrated in Fig. 6 and Table 6. The variance between the two

Translational Psychiatry (2024)14:381
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Fig. 3 Five nodes of the spectral DCM. The model includes the following nodes: right dACC, left pre-SMA, right NACC, right putamen, and
right LOFC. The associated time series was used to invert the spectral DCM with a fully connected architecture.

Table 2. Brain region contributed most to ROI-based classification.

Brain regions Peak MNI, (mm) Cluster size
X Y z

Left pre-SMA -3 6 42 1017

Right dACC 6 30 24 153

Right LOFC 51 18 =9 281

Right Putamen 24 6 3 512

Right NACC 6 30 24 143

pre-SMA supplementary motor area, dACC dorsal anterior cingulate cortex,
LOFC lateral orbitofrontal cortex, NACC nucleus accumbens (NACC).

groups under statistical comparison exhibited a comparable
magnitude. Intrinsic self-connections of the left pre-SMA were
inhibitory and reached significance after the t-test (t=—3.03,
P=0.003, FDR corrected, P=0.004). Additionally, the four
extrinsic connections involving the left pre-SMA, right dACC, right
LOFC, right putamen, and right NACC showed significant
differences. These extrinsic connections include from left pre-
SMA to right putamen (t=-3.61, P<0.001, FDR corrected,
P<0.001), from right dACC to right putamen (t=—2.98,
P =0.004, FDR corrected, P =0.004), from right NACC to left pre-
SMA (t =3.75, P<0.001, FDR corrected, P <0.001) and from right
LOFC to right NACC (t=-3.32, P=0.001, FDR corrected,
P=0.002; data set 1 showed no significance after correction by
FDR at P < 0.05).

Correlation between the mean EC strength and behavioral measures
in data set 2. We observed significant negative correlations (FDR
correction, P = 0.05) between addiction severity (AUDIT and MAST
scores) and mean EC strength from the left pre-SMA to right
putamen (AUDIT: r = —0.468, P = 0.005, FDR corrected, P = 0.008;
MAST: r=—0.562, P<0.001, FDR corrected, P<0.001), from the
right dACC to right putamen (AUDIT: r=—0.556, P <0.001, FDR
corrected, P<0.001; MAST: r=—0.557, P<0.001, FDR corrected,
P <0.001). The results revealed significant positive correlations
between addiction severity (AUDIT and MAST scores) and mean
EC strength from the right NACC to left pre-SMA (AUDIT: r = 0.468,
P=10.005, FDR corrected, P=0.008; MAST: r=0.577, P<0.001,
FDR corrected, P < 0.001). Detailed information is shown in Table 7.
The correlation between the mean EC strength and addiction
severity (AUDIT and MAST scores) was still evident after
controlling for patient’s the FTND scores. Detailed information is
shown in Table 8.

In data set 2, we observed significant negative correlations
between the compulsive scores and mean EC strength from the
left pre-SMA to right putamen (r=-0.55, P<0.001, FDR
corrected, P<0.001, Fig. 7A), from the right dACC to right
putamen (r=-0.64, P<0.001, FDR corrected, P<0.001,
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Fig. 7B). Additionally, significant positive correlations were
found between impulsive scores and mean EC strength from
the right NACC to left pre-SMA (r=0.66, P<0.001, FDR
corrected, P < 0.001, Fig. 7Q).

EC as a mediator

The mediation analyses revealed that EC strength from the right
NACC to left pre-SMA mediated the association between addiction
severity (MAST scores) and impulsive scores (Sobel test: t =2.48,
P=0.013, a bootstrap resampling analyses of the effect size
indicated that these mediation effects were different from zero
(95% confidence intervals: 0.097-0.536); Fig. 8A). We also
attempted to examine alternative models, such as utilizing
impulsive scores as the dependent variable and addiction severity
as the independent variable; however, none of these models
yielded statistically significant mediation effects. We also observed
that EC strength from the right dACC to right putamen mediated
the association between addiction severity (MAST scores) and
compulsive scores (Sobel test: t=2.42, P=0.015, a bootstrap
resampling analyses of the effect size indicated that these
mediation effects were different from zero (95% confidence
intervals: 0.090-0.520); Fig. 8B). We also attempted to examine
alternative models, such as utilizing compulsive scores as the
independent variable and addiction severity as the dependent
variable; however, none of these models yielded statistically
significant mediation effects.

DISCUSSION

The present study applied MVPA and spectral DCM analysis
methods to investigate the neurobiological substrates of AUD
during the resting state. Our results show that image-based
machine-learning techniques can be used to distinguish AUD.
Compared to ALFF, fALFF, DC,,, and DCg,, ReHo showed the
highest accuracy in classifying AUD from HCs (classification
accuracy: 98.57%). The most informative brain regions for the
classification are left pre-SMA, right dACC, right LOFC, right
putamen, and right NACC. These brain regions are involved in
executive control, decision-making, and reward/loss processing
and might provide a novel perspective for the clinical diagnosis of
AUD. These findings were validated using an independent data
set, achieving a validation accuracy of 91.67%. Our results
demonstrate the potential of image-based machine-learning
techniques in predicting addiction severity (MAST and AUDIT
scores) among patients with AUD. The most informative brain
regions for the prediction include left pre-SMA, right dACC, right
LOFC, right putamen, and right NACC. This finding was validated
in an independent data set. Moreover, this study represents the
first endeavor to employ spectral DCM to identify impaired causal
interactions among brain regions associated with executive
control, decision-making, and reward/loss processing based on
resting-state fMRI data obtained from healthy and AUD subjects.
Our findings reveal significant differences in intrinsic self-
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Fig. 4 EC difference between the AUD and HCs in data set 1. A Showing the significantly decreased EC strength from left pre-SMA to left
pre-SMA, from left pre-SMA to right putamen, and from right dACC to right putamen; the significantly increased EC strength from right NACC
to left pre-SMA. The dotted line indicates weakened connectivity in AUD, and the solid line indicates enhanced connectivity in AUD.
B Difference in average EC between AUD and HCs.

Table 3. EC parameters differences between groups in data set 1.
Model parameters AUD HCs t P FDR, P
Left pre-SMA — Left pre-SMA —0.32+0.36 —0.01+£0.29 —3.73 <0.001 <0.001
Left pre-SMA — Right putamen —0.19+£0.35 0.10£0.22 —3.89 <0.001 <0.001
Right dACC — Right putamen —0.01+£0.49 0.33+0.36 —-3.17 0.002 0.002
Right NACC — Left pre-SMA —0.17 £0.47 —0.58+0.50 3.27 0.002 0.002
Table 4. Correlation between EC strength and severity of alcohol dependence in data set 1.
Model parameters Addiction severity r P FDR, P
Left pre-SMA — Left pre-SMA AUDIT —0.290 0.121 0.121
MAST —0.335 0.056 0.064
Left pre-SMA — Right putamen AUDIT —0.504 0.005 0.008
MAST —0.554 0.001 0.004
Right dACC — Right putamen AUDIT —0.491 0.006 0.008
MAST —0.551 0.002 0.005
Right NACC — Left pre-SMA AUDIT 0.566 0.001 0.004
MAST 0.523 0.003 0.006
Table 5. Correlation between EC strength and severity of alcohol dependence after controlling for patient’s FTND scores in data set 1.
Model parameters Addiction Severity r P FDR, P
Left pre-SMA — Left pre-SMA AUDIT —0.293 0.123 0.123
MAST —0.357 0.057 0.065
Left pre-SMA — Right putamen AUDIT —0.530 0.003 0.006
MAST —0.584 0.001 0.004
Right dACC — Right putamen AUDIT —0.505 0.005 0.007
MAST —0.567 0.001 0.004
Right NACC — Left pre-SMA AUDIT 0.556 0.002 0.005
MAST 0.509 0.005 0.007

connections and extrinsic connections between AUD and HCs. In
addition, the strength of EC from the right NACC to left pre-SMA
and from the right dACC to right putamen mediated the
relationship between addiction severity (MAST scores) and
behavioral measures (impulsive and compulsive scores). These
results implicated that impulsiveness may be a critical personality
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trait individuals have that makes them vulnerable to alcohol use

and develop AUD.

Executive control deficit is a crucial characteristic of AUD [41].

Despite being aware of the negative physical,

psychological,

occupational, or social consequences of continued alcohol use,

AUD

individuals are unable to

reduce or

inhibit alcohol
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Fig. 5 Results of validation analysis of the SVC and SVR models in data set 2. A The classification performance in data set 2 is based on the
model obtained from data set 1 in the left graph. The permutation test results are in the right graph. B The prediction for MAST scores in data
set 2 is based on the model obtained from data set 1. C The prediction for AUDIT scores in data set 2 is based on the model obtained from
data set 1. left, the actual addiction severity scores and predicted addiction severity for each patient with AUD; middle, the ReHo values
predict the addiction severity scores in patients with AUD; and right, the permutation tests of the prediction model.

consumption [41, 42]. An emerging view considers impaired
executive control as both a determinant and a consequence of
addictive behaviors [43]. Brain regions implicated in executive
control include the dorsolateral prefrontal cortex, inferior frontal
gyrus, dACC, and pre-SMA [44-48]. In our study, one of the most
consistent findings with previous research is that the most
informative brain region for classification and prediction includes
the dACC and pre-SMA. We also observed decreased intrinsic
effective self-connections of the left pre-SMA. These findings
suggest that individuals with AUD exhibit significant impairment of
executive control, and the degree of executive control impairment
worsens with the increase of the severity of the addiction.

Translational Psychiatry (2024)14:381

The dACCis also involved in detecting the presence of cognitive
conflict, and error monitoring and detection [49, 50]. In addition to
error and conflict monitoring, the dACC may be critical for the
expression of conditioned fear and anxiety [51, 52]. Studies related
to obsessive-compulsive disorder suggested that the dACC-
mediated faulty error signals, elevated fear, and anxiety contribute
to the obsessions observed in obsessive-compulsive disorder
[53, 54]. Compulsivity has been identified as the central
characteristic of AUD, including excessive time spent drinking,
neglect of other goal-directed behaviors (such as employment
and family activities), and even a failure to avoid physical self-
harm, as well as subjective correlates of drinking behavior, such as

SPRINGER NATURE
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Fig.6 EC difference between the AUD and HCs in data set 2. A Showing the significant decreased EC strength from left pre-SMA to left pre-
SMA, from left pre-SMA to right putamen, from right dACC to right putamen, and from right LOFC to right putamen; the significant increased
EC strength from right NACC to left pre-SMA. The dotted line indicates weakened connectivity in AUD, and the solid line indicates enhanced
connectivity in AUD. B Difference in average EC between AUD and HCs.

Table 6. EC parameters differences between groups in data set 2.

Model parameters AUD HCs t P FDR, P
Left pre-SMA — Left pre-SMA —0.07£0.34 0.23+0.46 —3.03 0.003 0.004
Left pre-SMA — Right putamen —0.18+0.35 0.08 £0.26 —3.61 <0.001 <0.001
Right dACC — Right putamen —0.05+0.26 0.12+0.21 —2.98 0.004 0.004
Right NACC — Left pre-SMA —0.19+£0.37 —0.56 £ 0.45 3.75 <0.001 <0.001
Right LOFC — Right NACC 0.02+0.20 0.17+0.18 —3.32 0.001 0.002

Table 7. Correlation between EC strength and severity of alcohol dependence in data set 2.

Model parameters Addiction severity r P FDR, P
Left pre-SMA — Left pre-SMA AUDIT —0.292 0.089 0.098
MAST —0.334 0.050 0.063
Left pre-SMA — Right putamen AUDIT —0.468 0.005 0.008
MAST —0.562 <0.001 <0.001
Right dACC — Right putamen AUDIT —0.556 <0.001 <0.001
MAST —0.557 <0.001 <0.001
Right LOFC — Right NACC AUDIT —0.284 0.098 0.098
MAST —0.349 0.040 0.057
Right NACC — Left pre-SMA AUDIT 0.468 0.005 0.008
MAST 0.577 <0.001 <0.001

Table 8. Correlation between EC strength and severity of alcohol dependence after controlling for patient’s FTND scores in data set 2.

Model parameters Addiction severity r P FDR, P
Left pre-SMA — Left pre-SMA AUDIT —0.289 0.098 0.108
MAST —0.324 0.062 0.078
Left pre-SMA — Right putamen AUDIT —0.466 0.005 0.008
MAST —0.568 <0.001 <0.001
Right dACC — Right putamen AUDIT —0.559 <0.001 <0.001
MAST —0.545 <0.001 <0.001
Right LOFC — Right NACC AUDIT —0.281 0.108 0.108
MAST —0.339 0.050 0.070
Right NACC — Left pre-SMA AUDIT 0.476 0.004 0.008
MAST 0.552 <0.001 <0.001
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Fig. 8 EC mediated the relationship between behavioral measures and addiction severity. A The EC strength from the right NACC to left
pre-SMA fully mediated the association between addiction severity (MAST scores) and impulsive scores. B EC strength from the right dACC to
right putamen fully mediated the association between addiction severity (MAST scores) and compulsive scores.

craving [55-57]. Consistent with previous research [58, 59], we also
found a bio-marker effect of the dACC (it is one of the brain
regions that contributes the most information to the HCs and AUD
classification) in categorical AUD. These findings suggest that the
dysfunctional dACC-mediated faulty error signals, elevated fear,
and anxiety contribute to the obsessions observed in AUD.

AUD individuals are also impaired across several measures of
decision-making [60, 61]. In the evaluation of risk, AUD individuals
showed decreased loss sensitivity in a mixed gamble study [62],
which can lead to a change in ongoing behavior. A large meta-
analysis of the existing neuroimaging data was used to show that
LOFC activity is related to the evaluation of loss [63]. Our results
show that the LOFC is also one of the most informative brain
regions for classification and prediction. These results indicate that
AUD individuals show significant impairment in the evaluation of
risks of drinking, and the sensitivity to the negative consequences
of alcohol consumption decreases with the increase of the severity
of the addiction.

Moreover, burgeoning evidence suggests that addiction to
drugs (e.g., alcohol) is associated with a general bias to a habitual
(also known as ‘model-free’) mode of behavior, as distinct from
goal-directed (or ‘model-based’) behavior. Habitual behavior is
generally associated with activity in the putamen, whereas goal-
directed behavior is associated with activity in the caudate
[64, 65]. Habitual behavior can also be perseverative to the extent
that it can be said to be ‘out of control'. Lacking top-down
executive control over habitual behavior, individuals will exhibit
compulsive behaviors (e.g., compulsive alcohol intake) [66]. In our
study, we further observed decreased EC from the left pre-SMA to
the right putamen and from the right dACC to the right putamen.
The effective strength from the left SMA to the right putamen and
from the right dACC to the right putamen showed a significant
negative correlation with addiction severity (AUDIT and MAST
scores). More importantly, the effective strength from the right
dACC to the right putamen mediated the association between
addiction severity (MAST scores) and compulsive scores. These
findings suggest that AUD individuals exhibit a lack of top-down
control over habitual alcohol consumption-compulsive alcohol
consumption, and the impairment is exacerbated by increased
alcohol consumption.

The most informative regions for the classification and
prediction also included the right NACC. As part of the reward
system, the NACC plays an important role in processing rewarding,
reinforcing stimuli (such as alcohol) [58]. Alcohol consumption has
rewarding properties in both animals and humans driven by
enhanced dopamine and opioid transmission in the basal ganglia
[67]. Human imaging studies of acute alcohol administration
demonstrated that intravenous alcohol increased dopamine
release in the right NACC [68, 69]. In addition, we also observed
increased EC from the right NACC to the left pre-SMA. Moreover,
the effective strength from the right NACC to the left pre-SMA
mediated the association between addiction severity (MAST
scores) and impulsive scores. These results suggested that AUD
individuals  exhibit  excessive  sensitivity to rewarding
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reinforcement (e.g., alcohol consumption), and are significantly
impaired in their ability to inhibit the impulsiveness to seek such
rewarding reinforcement. These may be the underlying neural
bases for impulsive alcohol consumption.

Several researchers have proposed a significant correlation
between AUDs and impulse control disorders [70-72]. Never-
theless, a consensus has not been reached regarding whether
impulsivity emerges as a result of prolonged alcohol exposure or
predates alcohol consumption, thereby increasing individuals’
susceptibility to addiction. Argues and her colleagues suggested
that impulsivity could already be present practically from birth as a
personality trait, and it may be a marker for early use and/or abuse
of alcohol [73]. The results of our mediation analysis indicate that
impulsivity as an independent variable affected the addiction
severity (MAST scores) through the mean EC strength from the
right NACC to the left pre-SMA. This study offers crucial evidence
supporting the notion that individuals exhibiting high levels of
impulsivity are at heightened susceptibility to AUD. These findings
present an opportunity to further develop robust methods for
identifying hazardous drinkers or individuals with an AUD, as well
as refine diagnostic instruments to increase their applicability
across treatment settings and subpopulations. Additionally, these
findings offer important targets for interventions aimed at
preventing and treating AUD. Utilizing various techniques, such
as transcranial electrical stimulation, to decrease impulsivity in
individuals with a high risk of AUD by reducing the EC strength
from the right NACC to the left pre-SMA may prove to be an
efficacious approach for preventing and treating AUD.

Limited research has been conducted to investigate the
underlying causal neural mechanisms of substance use disorder
by integrating resting-state fMRI data with spectral DCM. Tang
et al. [27], employed a limited sample of resting-state fMRI data,
consisting of 15 cigarette smokers and 15 nonsmokers, to explore
the impact of smoking addiction on the default mode network
using spectral DCM. They unveiled the causal and distributed
impacts of smoking addiction on four key brain regions (the
medial prefrontal cortex, posterior cingulate cortex, left and right
inferior parietal lobule) within the default mode network. In
another study, a spectral DCM was employed to investigate
resting-state causal brain connectivity in individuals with cocaine
addiction, using a limited sample size of 15 non-treatment-seeking
chronic cocaine smokers and 17 healthy control participants [26].
The findings revealed that the cocaine group exhibited higher EC
from the ventral tegmental area to the NACC, hippocampus, and
medial frontal cortex compared to the control group. Previous
studies have initially explored the causal brain mechanism in the
resting state of substance use disorder; however, due to
limitations such as small sample size and lack of independent
verification, further follow-up studies are required to investigate
the causal brain mechanism in the resting state of substance use
disorder more comprehensively. In this study, we employed MVPA
and spectral DCM to investigate the underlying causal brain
mechanisms during rest in a relatively large sample of patients
diagnosed with AUD. We have also observed that individuals with
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AUDs exhibit atypical EC from the cortex to reward-related brain
regions, which may represent a shared underlying neural
mechanism for substance use disorders. Furthermore, we con-
ducted independent validation of our findings, thereby offering
valuable insights for studying the causal brain mechanisms
associated with substance use disorders.

Although our study is the first to identify abnormalities in brain-
EC specific to individuals with AUD using spectral DCM based on
the MVPA, there are several notable limitations. Firstly, due to the
demographic distribution of AUD in treatment, data were
collected exclusively from male subjects, and future research
should give full consideration to including female subjects.
Secondly, the co-occurrence of smoking and AUDs is common,
and although we performed a partial correlation analysis to
control for the effects of smoking, future studies could employ
more rigorous controls to mitigate potential confounding effects
of smoking. Thirdly, future studies should consider incorporating
multimodal neuroimaging data to improve the classification of
AUD from HCs. Additionally, it is important to investigate the
efficacy connectivity among all brain regions as excluded regions
may contain valuable information. This could lead to a better
understanding of large-scale efficacy network connectivity
abnormalities in individuals with AUD.

CONCLUSIONS

For the first time, our results reveal alterations in causal
connectivity in individuals with AUD. We demonstrate that it is
possible to distinguish AUD individuals from HCs at an individual
level using MVPA. Notably, brain regions with high weight include
the left pre-SMA, right dACC, right LOFC, right putamen, and right
NACC. The results of spectral DCM revealed altered EC in AUD
individuals, specifically from the left pre-SMA to right putamen,
from the right dACC to right putamen, and from the right NACC to
left pre-SMA. In addition, the EC strength from the right NACC to
left pre-SMA and from the right dACC to right putamen mediated
the association between addiction severity (MAST scores) and
behavioral measures. These results suggest that the reciprocal
causal connections among the most informative brain regions for
the classification may be particularly targeted by AUD, explaining
deteriorated self-control, and impulsive and compulsive alcohol
consumption in AUD. Additionally, impulsivity may represent a
crucial personality trait that renders individuals susceptible to
alcohol use and the development of AUD. These findings provide
novel causal insights into the diagnosis and management of AUD.
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