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A B S T R A C T   

Substance use disorders are characterized by reduced control over the quantity and frequency of psychoactive substance use and impairments in social and occu
pational functioning. They are associated with poor treatment compliance and high rates of relapse. Identification of neural susceptibility biomarkers that index risk 
for developing a substance use disorder can facilitate earlier identification and treatment. Here, we aimed to identify the neurobiological correlates of substance use 
frequency and severity amongst a sample of 1,200 (652 females) participants aged 22–37 years from the Human Connectome Project. Substance use behaviour across 
eight classes (alcohol, tobacco, marijuana, sedatives, hallucinogens, cocaine, stimulants, opiates) was measured using the Semi-Structured Assessment for the Ge
netics of Alcoholism. We explored the latent organization of substance use behaviour using a combination of exploratory structural equation modelling, latent class 
analysis, and factor mixture modelling to reveal a unidimensional continuum of substance use behaviour. Participants could be rank ordered along a unitary severity 
spectrum encompassing frequency of use of all eight substance classes, with factor score estimates generated to represent each participant’s substance use severity. 
Factor score estimates and delay discounting scores were compared with functional connectivity in 650 participants with imaging data using the Network-based 
Statistic. This neuroimaging cohort excludes participants aged 31 and over. We identified brain regions and connections correlated with impulsive decision- 
making and poly-substance use, with the medial orbitofrontal, lateral prefrontal and posterior parietal cortices emerging as key hubs. Functional connectivity of 
these networks could serve as susceptibility biomarkers for substance use disorders, informing earlier identification and treatment.   

1. Background 

Substance use disorders (SUDs) describe a constellation of symptoms 
characterized by continuing use of one or more intoxicating substances 
despite significant negative consequences (American Psychiatric Asso
ciation, 2013). Symptoms include reduced control over the quantity and 
frequency of use, hazardous patterns of consumption, and accompa
nying impairments in social and occupational functioning (American 
Psychiatric Association, 2013). Prevalence of SUDs is estimated as high 
as 12% for alcohol and 2–3% for illicit drugs (Merikangas & McClair, 
2012). Additionally, SUDs are associated with significant social harms 
and often poor treatment response characterized by poor compliance 
and high rates of relapse (Miller, 1996). Thus, there is a need for earlier 
identification and treatment of SUDs (Yücel et al., 2019). For example, 
the term ‘preaddiction’ has been coined to refer to mild to moderate 
SUDs that have not yet progressed to severe levels (‘addiction’) and may 
represent a critical treatment window (McLellan et al., 2022). However, 
there are no objective biological assessments available for evaluating 
risk for SUD. 

A central aim of contemporary psychiatric research is the 

identification of susceptibility biomarkers - measurable biological 
characteristics that index liability for psychiatric illness (Beauchaine, 
2009; Califf, 2018; Singh & Rose, 2009). Susceptibility biomarkers hold 
great promise for improving mental health treatment through earlier 
identification of psychopathology (Cook, 2008). Over the past decade, 
there has been an interest in incorporating neurobiological findings into 
the diagnosis and treatment of mental disorders (Cuthbert & Insel, 2013; 
Hyman, 2007). Shared neurobiology emerged as a key validator intro
duced by the Diagnostic and Statistical Manual of Mental Disorders – 
Fifth Edition (DSM-5) Task Force Study Group for exploring the pro
posed reorganization of diagnostic categories, including SUDs, into 
metastructures based on comorbidity, common etiology, course of 
illness, treatment response, and shared neural substrates (Andrews et al., 
2009). 

Research based on traditional psychiatric nosology has conspicu
ously failed to yield robust evidence of the neurobiological mechanisms 
underlying psychopathology (Hyman, 2007; Jablensky, 2016; Maj, 
2014). To circumvent these limitations, psychiatric research is tran
sitioning away from traditional categorizations of mental disorders as 
discrete diagnostic entities towards empirically-based, dimensional 
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models of psychopathology, such as the Research Domain Criteria 
(RDoC) (Cuthbert, 2014). Dimensional models are better positioned to 
identify shared aetiological mechanisms of psychiatric disorders by 
capturing phenotypic variation across the full spectrum of symptom 
severity (Cuthbert, 2014; Patrick et al., 2013). A wealth of evidence 
indicates that substance use problems constitute a dimensional contin
uum in the population with no natural demarcation point designating 
problematic from non-problematic use (Kraemer et al., 2004; Miettunen 
et al., 2016). There is also evidence to suggest that partially discrete 
models with clinically relevant subgroups embedded within a dimen
sional continuum is the most accurate characterization of some forms of 
psychopathology (Helzer et al., 2006; Krueger & Bezdjian, 2009). In 
particular, clinical phenomena such as substance use measured in non- 
clinical samples are characterized by ‘zero-inflation’, in which there 
are a large number of individuals with little-to-no symptoms (B. Muthén, 
2006). Hybrid models, combining features of categorical and dimen
sional psychopathology, are a promising alternative approach to psy
chiatric research (Feczko et al., 2019; Krueger et al., 2018; Krueger & 
Bezdjian, 2009). Factor mixture modelling (FMM) is a type of latent 
variable analysis that combines the common factor modelling approach 
with latent class analysis (LCA) (Borsboom et al., 2016; Clark et al., 
2013). 

The approach can be used for identifying discrete, latent (i.e., not 
directly observed) classes or clinical subtypes embedded within multi
variate dimensional data, including zero-inflation (Borsboom et al., 
2016). Specification of a priori subtypes provides a natural demarcation 
in multivariate space that substantially reduce the dimensionality of the 
data and renders analysis of complex phenotypic data more tractable 
(Feczko et al., 2019). Hybrid models, such as FMM, may be important 
for identifying clinically meaningful subtypes with implications for 
informing earlier targeted interventions for those with ‘preaddiction’. 

In terms of what this proposed continuum of substance use frequency 
reflects neurobiologically, there are several possibilities. Functional 
neuroimaging analysis of human decision-making has converged on a 
collection of cortical and subcortical brain regions involved in value- 
setting and intertemporal choice, (the preferential selection of rewards 
based on both magnitude and delay until obtainment) (Hamilton et al., 
2015): the Valuation (VS), Executive Control (ECS) and Prospection (PS) 
Systems. The VS (ventromedial prefrontal cortex, nucleus accumbens, 
amygdala and the posterior cingulate cortex) encodes the subjective 
values of various options during decision-making (Kable & Glimcher, 
2007, 2010; Laurent et al., 2015; Peters & Buchel, 2010b), as well as 
generating goal-directed drug-seeking urges (Berridge, 2012; Leyton & 
Vezina, 2014; Steketee & Kalivas, 2011; Wolf, 2016). The ECS (dorsal 
anterior cingulate cortex, lateral prefrontal cortex and posterior parietal 
cortex) inhibits impulsive responses (van den Bos & McClure, 2013) via 
the incorporation of past outcomes and future goals (Kim et al., 2009; 
Sutton & Barto, 1998). The PS (dorsomedial prefrontal cortex, pre
cuneus and medial temporal lobe) is activated during episodic memory 
recall or simulation of potential future scenarios (Schacter et al., 2007) 
involving drug use behaviour (Fang et al., 2021; Karch et al., 2015) and 
is thought to be associated with a preference for delayed rewards 
(Lempert et al., 2019). It is worth noting that regions of the VS (parts of 
the medial prefrontal and posterior cingulate cortices) and PS (middle 
temporal lobe, middle prefrontal cortex and precuneus) overlap with 
those recruited by the default mode network (Alshelh et al., 2018). 
However, the terms VS and PS are used for clarity as they better define 
the roles played by these regions with respect to value-based decision- 
making and delay discounting. 

During dependency, addictive substances may enable the achieve
ment of desired states (e.g., euphoria or pain relief). This is underpinned 
by the activation of, and interactions between, the VS, ECS and PS 
(Loganathan & Ho, 2021). The instrumental pursuit of addictive drugs 
can then lead to the development of choice impulsivity (Oberlin et al., 
2021), the preferential selection of smaller, more immediate rewards 
over larger, delayed rewards (Hamilton et al., 2015). Research indicates 

a significant relationship between delay discounting (a measure of 
choice impulsivity) and substance use behaviour in both adolescents and 
adults (Audrain-McGovern et al., 2009; Khurana et al., 2013, 2017). A 
recent systematic review of task-based connectivity correlates with 
delay discounting behaviour (Owens et al., 2019) highlighted studies 
which showed positive correlation between functional connectivity and 
stronger delay discounting (i.e. greater impulsive choice) (Clewett et al., 
2014; Contreras-Rodriguez et al., 2015) among cocaine and tobacco 
dependents. Particularly, connections within the fronto-parietal 
network (i.e., lateral prefrontal and posterior parietal cortices) were 
positively-correlated with steeper discounting among tobacco-smokers 
(Clewett et al., 2014). Stronger connections were observed between 
the caudate and anterior cingulate cortex in correlation with steeper 
discounting in cocaine dependents (Contreras-Rodriguez et al., 2015). 
While these studies must be praised for linking task-based delay dis
counting data with functional connectivity among substance de
pendents, an over-arching limitation remains the focus on a single 
substance rather than considering poly-substance use behaviour. 

Turning the focus to resting-state fMRI studies, it has been observed 
that under normal circumstances, the interaction between VS and ECS is 
balanced, regulating impulsivity by incorporating phases of well- 
deliberated, disciplined thought and action (Dalley et al., 2011; Xie 
et al., 2014; T. Zhai et al., 2015). However, during dependency, VS 
activation appears to no longer be counterbalanced by the ECS, biasing 
decision-making towards the pursuit of drugs (Xie et al., 2014; T. Zhai 
et al., 2015). Interestingly, the PS has been implicated in reducing 
impulsive choice (Peters & Buchel, 2010a) by counteracting the growing 
predisposition towards more impulsive choices (VS) and concomitant 
reduced cognitive control (ECS) (Li et al., 2015; Liu et al., 2018; Verdejo- 
Garcia & Bechara, 2009; Xie et al., 2011; T.-Y. Zhai et al., 2014; T. Zhai 
et al., 2015). Participants living with cocaine dependence showed sig
nificant activation in the middle and superior frontal cortices, anterior 
cingulate, striatum and midbrain during a loss-chase task (Worhunsky 
et al., 2017), suggesting an integration of signals from regions of the VS, 
ECS and PS that contribute to choice impulsivity. These findings indicate 
that increased participation of valuation and decision-making regions 
may be required when losing gambles. Connectivity within the orbito
frontal cortex and amygdala (both VS) during cocaine dependency 
suggests that increased value has been placed on this stimulant as a 
reward of choice (Contreras-Rodríguez et al., 2016). Additionally, con
nections between the nucleus accumbens (VS) and parts of the dorso
lateral prefrontal cortex and dorsal anterior cingulate cortex (ECS) were 
weakened during dependency, reflecting reduced levels of behavioural 
control (Berlingeri et al., 2017; Motzkin et al., 2014). These individuals 
also expressed increased connectivity between regions of the anterior 
cingulate cortex and dorsolateral prefrontal cortex (both ECS) with 
middle temporal and superior frontal gyri (both PS), indicating 
increased cognitive resources required to implement cognitive control 
(Camchong et al., 2011). Among alcohol abstainers, an inverse activa
tion synchronicity between the nucleus accumbens (VS) and dorsolat
eral prefrontal cortex (ECS) suggests that increased resources are 
allocated to regulate behaviour away from alcohol consumption. 
Furthermore, reduced activation of the nucleus accumbens reflects 
restricted reward processing, possibly as a result of increased dorsolat
eral prefrontal cortex involvement (Camchong et al., 2013). Increased 
functional connectivity between the amygdala (VS) and both the frontal 
cortices (ECS and PS) as well as posterior parietal cortex (PPC) may 
trigger established drug-seeking behaviour and contribute to relapse 
(Kohno et al., 2017). 

While decision-making remains functional during dependence, it is 
now heavily skewed towards drugs, despite higher costs. Dependence 
results in activation of the posterior cingulate, nucleus accumbens, 
medial temporal lobe, amygdala and ventromedial prefrontal cortex, 
associated with willingness to pay more for drugs compared to non-drug 
items (Lawn et al., 2019). When challenged to pay more for increased 
drug doses, activations in the posterior cingulate cortex, ventromedial 
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prefrontal cortex, posterior parietal cortex and dorsolateral prefrontal 
cortex suggested that the subjective value, attentional orientation and 
intentionality of drugs may have taken precedence (Bedi et al., 2015; J. 
C. Gray et al., 2017; J. C. Gray & MacKillop, 2014). These results suggest 
changes in activation and functional connectivity between the VS, PS 
and ECS associated with substance dependency. What has not been 
established is whether quantitative changes in the activation and func
tional connectivity of these networks are observed prior to onset of 
dependence and index risk for developing SUDs. Additionally, there are 
pronounced neurotoxic effects of drugs of dependence which confounds 
neuroimaging studies of susceptibility biomarkers (Cunha-Oliveira 
et al., 2008; Gonçalves et al., 2014; Jacobus & Tapert, 2013; Squeglia 
et al., 2014). Thus, investigation of neural susceptibility biomarkers for 
SUDs in a normative population is essential to avoid the confounding 
effects of substance-induced neurotoxicity (Ersche et al., 2020; Ma et al., 
2015). 

Here, we propose investigation of neural susceptibility biomarkers 
for SUDs in a normative sample of young adults drawn from the Human 
Connectome Project (HCP). In order to deal with variations in substance 
use history and frequency while taking into account the mix-and-match 
tendency of users when consuming addictive substances (Scott et al., 
2007), we propose a two-stage study. The first stage involves charac
terizing a dimensional phenotype of substance use data using FMM. In 
dimensional models of psychopathology, substance use represents a 
homogenous dimension combining use across alcohol, marijuana, and 
other drug classes (Krueger & South, 2009; Patrick et al., 2013). Thus, 
we expected a unidimensional substance use continuum capturing 
covariance in the frequency of use of all substance classes, including 
alcohol, tobacco, marijuana, stimulants, sedatives, and opiates. We ex
pected a 2-class model to best capture the data, consisting of a zero- 
inflated class in which participants uniformly endorsed low frequency 
of use across all substance classes and a class in which there was a 
continuous dimension of substance use frequency (B. Muthén, 2006). 
This continuum will then form the foundation for the second stage of the 
study: identifying brain regions and functional connections of the VS, 
ECS and PS that are positively-correlated with the substance use con
tinuum among HCP participants using the Network-based Statistic 
(NBS) (Zalesky et al., 2010). The NBS is a robust network neuroscience 
tool for mapping connections between brain regions to produce sub
networks of brain regions correlated with the contrast of interest (such 
as cognitive task scores or substance use behaviour). One of the biggest 
advantages of the NBS is its ability to correct for family-wise errors at a 
network level, resulting in subnetworks that have a lower probability of 
being classified as false discoveries (Zalesky et al., 2010, 2012). 
Furthermore, given that sensation-seeking is a major dimension of both 
impulsivity construct (Norbury & Husain, 2015) and substance use 
(Owens et al., 2019) we further hypothesize that while a positive cor
relation exists between the continuum (i.e., more frequent drug use) and 
network functional connectivity, a negative correlation with delay dis
counting scores (i.e., greater impulsivity) may be observed. Taken 
another way, connectivity within and between regions of the VS, ECS 
and PS are hypothesized to be stronger as substance use and impulsive 
behaviour increases. 

2. Methods 

2.1. Participants and measures 

A total of 1200 participants (652 females), aged between 22 and 37 
years old, were sampled from the Human Connectome Project (HCP) 
Young Adult dataset. Recruitment and inclusion/exclusion criteria are 
described elsewhere (Van Essen et al., 2013). Briefly, the HCP con
sortium defined ‘healthy’ in broad terms so as to generate a pool of 
subjects representative of the population at large, capturing a wide 
range of variability in healthy individuals with respect to behavioural, 
ethnic, and socioeconomic diversity. They excluded individuals having 

severe neurodevelopmental disorders (e.g., autism), documented 
neuropsychiatric disorders (e.g., schizophrenia or depression) or 
neurologic disorders (e.g., Parkinson’s disease). They also excluded in
dividuals with illnesses such as diabetes or high blood pressure, as these 
might negatively impact neuroimaging data quality. Additionally, they 
included individuals who are smokers, and/or have a history of heavy 
drinking or recreational drug use without having experienced severe 
symptoms to facilitate connectivity studies on psychiatric patients who 
have subclinical substance use behaviours (Van Essen et al., 2013). 

For this study, 6 subjects were excluded from the original 1206 
participants due to having incomplete records of substance use behav
iour, as well as other cognitive assessments. Variables of interest were 
SSAGA (Semi-Structured Assessment for the Genetics of Alcoholism) 
Alcohol DSM4 Abuse Diagnosis (i.e., Does the participant meet the 
DSM4 criteria for Alcohol Abuse sometime over his/her lifetime?), 
SSAGA FTND Score (Fagerstrom FTND test for nicotine dependence), 
SSAGA Times Used Cocaine, SSAGA Times Used Hallucinogens, SSAGA 
Times Used Opiates, SSAGA Times Used Sedatives, SSAGA Times Used 
Stimulants, times used marijuana, as well as age and sex. These SSAGA 
Assessments were performed before any brain scans were collected, as 
part of an early screening process to ensure all prospective participants 
met HCP inclusion criterion (Van Essen et al., 2012, 2013). All variables 
were categorical. Missing SSAGA FTND data were imputed using the k- 
nearest neighbour method (Malarvizhi & Thanamani, 2012). The au
thors applied for access to participants’ drug use records and parental 
use history via the University of Melbourne’s Research Innovation and 
Commercialization department. This request was granted by the Human 
Connectome Project Consortium. 

2.2. Factor mixture modelling 

Substance use data were available for 1,200 participants, whereas 
only 1,008 participants had neuroimaging data. We chose to conduct the 
factor mixture modelling (FMM) on the total sample (N = 1,200), 
because statistical techniques that test for latent classes embedded in 
multivariate data are sensitive to sample size, such that larger samples 
enable more complex models to be tested (Nylund-Gibson & Choi, 
2018). Additionally, analyses of multivariate data should use all avail
able data to avoid converging on biased estimates (Enders, 2010). For 
these reasons, we chose to analyse all available data from the HCP. 

FMM is a combination of latent class analysis and factor analysis. In 
latent class analysis (LCA), one or more (k) unobserved classes (C) ex
plains the observed pattern of responses on a set of observed variables 
(e.g., item responses on a questionnaire). Class assignment (i.e., class 
probabilities) of each participant is determined as posterior probabilities 
based on the observed response pattern (see Clark et al., 2013 for de
tails). The observed variables are assumed to be conditionally inde
pendent of each other after the response pattern is explained by the 
latent class variable (see Fig. 1a). Each participant is allowed fractional 
class membership and may have non-zero probabilities of being in 
multiple classes. However, participants are assigned to a specific class 
based on the highest posterior probability. A summary measure of 
classification accuracy of participants based on the posterior probabili
ties of class membership within an LCA and FMM is provided by the 
entropy (E), which ranges between 0.00 and 1.00, with higher entropy 
indicating better classification accuracy (Clark & Muthén, 2009). When 
entropy is high (e.g., ≥0.80) class membership can be used as a discrete 
categorical variable for subsequent analyses to compare results between 
classes (Clark & Muthén, 2009). Classes must be compared using alter
native analytic approaches that take into account the probabilistic na
ture of class membership when entropy is low (Nylund-Gibson et al., 
2019). However, the limitation of LCA is that classes are assumed to be 
homogenous, such that participants within the same class are assumed 
to have the same scores. 

In factor analysis, the pattern of observed responses is explained by a 
continuous latent variable called a factor (f) (see Fig. 1b). Observed 
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responses are assumed to be conditionally independent once their 
covariance is explained by the common factor (see Clark et al., 2013 for 
details). For individual participants, each observed variable is decom
posed into a combination of elements, including an intercept, a factor 
loading determining the influence of a factor on the measured variable, 
and the unique variance/error of the measured variable that is not 

explained by the factor loading (Bollen & Noble, 2011). The factor 
loadings capture the shared variance across the items explained by the 
factor. Participants are not assumed to be comprised of two or more 
subpopulations, but rather differences in pattern responses are deter
mined by differences on the underlying factor. Thus, participants can be 
rank-ordered along a continuous dimension of the factor, which can be 

Fig. 1. Model diagrams of a) latent class analysis; b) factor analysis; and c) factor mixture modelling. Adapted from Clark et al. (Clark et al., 2013). Note. Boxes 
represent observed categorical variables. u1 - ur = item responses on a questionnaire (e.g., SSAGA). Circles represent unobserved (i.e., latent variables). C = latent 
unordered class variable with k discrete classes. f = continuous factor / latent variable. Straight single-headed arrows indicate causal paths. Dashed straight lines 
indicate conditional independence of item responses after being explained by the latent variables C and/or f. Small diagonal arrow pointing to the factor in 1c is the 
factor variance. 

Fig. 2. Model diagrams of different types of 
factor mixture models: a) FMM-1 – class mem
bership determines differences in factor means 
(ak) only; b) FMM-2 – class membership de
termines differences in factor means and factor 
variances (as indicated by small single-headed 
diagonal arrow pointing to f; and c) FMM-3 – 
class membership determines observed variable 
thresholds/intercepts and the factor var
iance–covariance matrix is also free to vary 
across classes); FMM-4 – class membership de
termines factor loadings, observed variable 
thresholds/intercepts and the factor var
iance–covariance matrix is also free to vary 
across classes) Adapted from Clark et al. (Clark 
et al., 2013). Note. Boxes represent observed 
categorical variables. u1 - ur = item responses 
on a questionnaire (e.g., SSAGA). Circles 
represent unobserved (i.e., latent variables). C 
= latent unordered class variable with k 
discrete classes. f = continuous factor / latent 
variable. Straight single-headed arrows indicate 
causal paths. Dashed straight lines indicate 
conditional independence of item responses 
after being explained by the latent variables C 
and/or f.   
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expressed through the derivation of observed variables called factor 
score estimates (Grice, 2001). Factor score estimates are an approxi
mation of the sample distribution of the factor and express where each 
individual is located on the factor relative to the rest of the sample (Clark 
et al., 2013). However, a limitation of factor analysis is that participants 
in a sample are assumed to be from the same subpopulation with no 
qualitative or quantitative differences in the structure of the factor on 
which they are rank ordered. 

FMM is a hybrid approach that combines the features of LCA and 
factor analysis (see Fig. 1c). The pattern of observed variables (i.e., item 
responses) is determined both by one or more latent classes and one or 
more factors (as indicated by the solid single-headed straight arrows) 
(see Clark et al., 2013 for details). Moreover, the factor means and 
variances (as indicated by the solid straight-headed arrow pointing from 
C to f) and factor loadings (as indicated by the dashed single-headed 
arrows) are allowed to vary as a function of class membership, which 
adds a great deal of flexibility to the model. FMM allows for the char
acterization of heterogeneity with latent classes by modeling the 
continuous factor and allowing the derivation of factor score estimates 
to quantify individual differences in scores within each class. 

There are four variations of the FMM, ordered from the most 
restrictive to the least restrictive (i.e., the most to the least model pa
rameters fixed to equality across classes) (see Fig. 2a – 2d). In the most 
restrictive model, the FMM-1, factor variances, observed variable 
thresholds (i.e., for categorical variables) or intercepts (i.e., for contin
uous variables), as well as factor loadings are fixed to equality across 
classes. This model suggests only differences in factor means across 
classes as would be expected for a non-normally distributed latent var
iable. For the FMM-2, factor variances are free to vary across classes, 
such that the factors are measured equivalently along the same contin
uum (i.e., factor means can be compared), but have different distribu
tions. For the FMM-3, observed variable thresholds or intercepts vary 
across classes, suggesting differences in observed variables independent 
of differences in the factor (e.g., systematic response biases on ques
tionnaire items within classes/groups), such that factor means can no 
longer be meaningfully compared across classes. Finally, for FMM-4, 
factor variances, thresholds/intercepts and factor loadings all vary 
across classes, such that the factors are no longer measured equivalently 
and do not have the same substantive interpretation across classes (e.g., 
items in a questionnaire are differentially related to the factor) (see 
Clark et al., 2013 for details). 

We conducted the analyses following the procedure outline by Clark 
et al. (Clark et al., 2013) and using the Mplus program version 8.3 (L. K. 
Muthén, 2017). First, we fit factor analysis and latent class models to the 
SSAGA data for later comparison and to determine the upper bound for 
the number of factors and classes for the factor mixture models (Clark 
et al., 2013). For factor analysis, we used exploratory structural equation 
modelling (ESEM) and the weighted least square mean- and variance 
adjusted (WLSMV) estimator, which is the preferred estimator with or
dered categorical (i.e., ordinal) data (Byrne et al., 2012; B. Muthén et al., 
1997; L. Muthén & Muthén, 2017). ESEM is a hybrid of exploratory and 
confirmatory factor analysis, which takes an exploratory approach to 
modelling whilst also enabling model-data consistency to be evaluated 
with fit statistics (Asparouhov & Muthén, 2009; Marsh et al., 2014). We 
used a competing models strategy to determine whether the most 
parsimonious unidimensional model provided a superior fit compared to 
models with two or more factors (Hair et al., 2014a; Jöreskog, 1993). As 
it was possible that local dependencies between subsets of items could 
cause poor fit for a unifactorial model, we considered freely estimating 
correlated residuals (θδ) where consistent with theory and if significant 
after correction for Type I error using the Benjamini-Hochberg proced
ure (Benjamini & Hochberg, 1995; Silvia & MacCallum, 1988). To 
evaluate model-data consistency, we used a combination of absolute and 
approximate global fit statistics, as well as indices of local fit. We 
referred to the chi square (χ2) test statistic first, where p >.05 suggests 
the exact fit hypothesis for model-data consistency cannot be rejected 

(Hayduk et al., 2007; Marsh et al., 2004). We also report three 
approximate fit indices, the comparative fit index (CFI), the root mean 
square error of approximation (RMSEA), and the standardized root 
mean square residual (SRMR). Higher values for the CFI, and lower 
values of the RMSEA and associated 90% confidence interval (90 %CI), 
and SRMR are indicative of better fitting models. (Barrett, 2007; Byrne, 
2013; Hair et al., 2014; Hayduk et al., 2007). To evaluate local fit, we 
used the matrix of correlation residuals (ε), which reveal discrepancies 
in the model estimated and observed bivariate correlations; where a 
pattern of ε greater than 0.10 indicates potential sources of poor local fit 
(Kline, 2015). 

For latent class analysis (LCA), we used the maximum likelihood 
estimator with a chi square statistic and standard errors robust to non- 
normality (MLR) to handle the ordinal data. To determine the optimal 
number of classes in LCA, we followed the procedure outlined by Nylund 
et al. and Asparouhov and Muthen (Asparouhov & Muthén, 2009; 
Nylund et al., 2007). We generated 1–5-class models examining the 
inflection points for the trend in the log likelihood and Bayesian infor
mation criterion (BIC) values to identify a smaller range of plausible 
models (Nylund et al., 2007). From this smaller range of candidate 
models, the best log likelihood values were obtained for each number of 
classes tested using an initial number of random starting value pertur
bations and final stage optimizations (160, 32). The model was then 
rerun with double the number of random starting value perturbations 
and final stage optimizations (320, 64) to ensure that the analyses did 
not converge on local maxima in estimating the best log likelihood value 
(Asparouhov & Muthén, 2012; L. Muthén & Muthén, 2017). 

Once the best log likelihood was replicated, each model was rerun to 
obtain the Lo–Mendell–Rubin (LMR) adjusted Likelihood Ratio Test 
(LRT) and Bootstrapped Likelihood Ratio Test (BLRT) by using the seed 
that resulted in the best log likelihood value specified as the starting 
value instead of random starts. Class enumeration was evaluated using a 
combination of fit statistics, including the entropy (E), BIC (Hair et al., 
2014; Schwarz, 1978), the LMR adjusted LRT, and BLRT (Lo et al., 
2001). Entropy is ranked from 0.00 to 1.00, with higher values indi
cating better class separation (Clark & Muthén, 2009). Lower BIC values 
indicate a better-fitting and more parsimonious model (Clark & Muthén, 
2009). A non-significant p value for the LMR adjusted LRT and BLRT 
indicates that the k – 1 class model provides a better fit to the data than 
the k model or any subsequent k + 1 models (Nylund et al., 2007). The 
combination of these statistics has been determined to provide a rela
tively sensitive measure of the true number of classes (Nylund et al., 
2007). Comparative model performance was also evaluated using the 
Bayesian conditional posterior probability, which quantifies the relative 
probability (p =.00–1.0) of model i compared to k models by dividing 
the exponentiated -12 BIC for model i by the sum of the exponentiated -12 

BIC for k models: PrBIC(Hi|D) =
exp[− 1

2 BIC(Hi)]
∑k− 1

j=0
exp[− 1

2 BIC(Hj)]
(Wagenmakers, 2007). 

After determining the optimal number of classes, we then proceeded 
to test factor mixture models (FMM), using the MLR estimator to handle 
the ordinal data (L. Muthén & Muthén, 2017). We began with one-factor 
one-class and one-factor two-class models (Clark et al., 2013) and the 
most restrictive and parsimonious factor mixture model (i.e., FMM-1, 
different latent means only) before progressively relaxing equality 
constraints on the factor variance–covariance matrix (i.e., FMM-2); the 
item thresholds (i.e., FMM-3), and the factor loadings (i.e., FMM-4) to 
determine the best fitting model as indicated by the log likelihoods, 
entropy, BIC, and PrBIC(Hi|D) (Clark et al., 2013).We then systematically 
increased the number of specified classes for the one-factor model until 
reaching the k number of classes for the besting fitting LCA model. 
Finally, we compared the best-fitting factor mixture model to the best 
factor model and best latent class model using the BIC to determine the 
optimal representation of the data (Clark et al., 2013). 
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2.3. Delay discounting 

In the Human Connectome Project (HCP), delay discounting was 
calculated for each individual using an extra-scanner Area Under Curve 
(AUC) approach, a model-free method that describes the delay dis
counting tendency of an individual (Green & Myerson, 2004; Myerson 
et al., 2001). Delays to reward-obtainment are fixed, but reward 
amounts are adjusted on a trial-by-trial basis based on a participant’s 
previous choice until an indifference point is reached. This represents 
the delay margin when the participant is more likely to choose a smaller 
but more immediate reward over a larger but delayed one, the theo
retical indifference between the delayed reward and the estimated 
present subjective value of said reward to produce a discount curve 
using methods such as the AUC (Borges et al., 2016; Hamilton et al., 
2015). The AUC for each participant is the total area of all trapezoids in 
his/her discounting curve (Frost & McNaughton, 2017). For more in
formation, please see the Supplementary Methods. 

2.4. Correlation between value-based decision-making network functional 
connectivity and substance use 

Minimally preprocessed functional MRI data from the Human Con
nectome Project (HCP, Smith et al., 2013) was sourced for healthy adults 
of both genders (age range = 22–30). Only subjects with all four 
repeated resting-state fMRI sessions (first and second scan sessions with 
left–right and right-left phase encoding directions), who also possessed 
complete delay discounting, cognition, socioeconomic scores (i.e., ed
ucation, income, and employment status) and mental health (i.e., 
depression, anxiety and somatic) measures, were included (n = 650). 
For a full account of the HCP neuroimaging acquisition and pre- 
preprocessing parameters, please see the Supplementary Methods. 

The VS, ECS and PS brain masks were delineated using binary masks 
that combined regions of interest (ROIs) from both the Desikan-Killiany 
(Desikan et al., 2006) and Destrieux (Destrieux et al., 2010) parcella
tions (Table S1 in the Supplementary Methods and Results). All 
anatomical labels were extracted and merged using the FMRIB Software 
Library (Smith et al., 2004, https://fsl.fmrib.ox.ac.uk/fsl/). Resting- 
state functional connectivity scans in the HCP are divided into 4 sub
sets of scans, REST1 left–right (L-R), REST 1 R-L (REST1 R-L), REST2 L- 
R, REST2 R-L. For each subset, the resting state functional magnetic 
resonance imaging (rsfMRI) signal was averaged over all voxels 
comprising each ROI (node). The Pearson correlation coefficients be
tween the regionally averaged signals for all nodes were then computed 
for each subset of scans per participant (i.e., each participants’ REST1 L- 
R scans forming one subset of n-by-n matrices, each participants’ REST1 
R-L scans forming one subset of n-by-n matrices, and so on). To identify 
functional circuits within the VS, ECS and PS associated with Substance 
Use factor score estimates using the Network-Based Statistic (Zalesky 
et al., 2010), design matrices comprised of age (in years), sex, framewise 
displacement, transformed rates of discounting, cognitive scores, so
cioeconomic measures (i.e. employment, education and income), DSM- 
IV diagnosis of mental health conditions (i.e., depression, anxiety and 
somatic symptom disorder) and Substance Use factor score estimates as 
well as their standard errors, were correlated with the connectivity 
matrices of the VS, ECS and PS. Standard errors of the factor score es
timates were included because measurement precision of the substance 
use factor was not uniform across the latent trait continuum due to the 
unipolar nature of the substance use construct (i.e., SSAGA items pro
vide measurement of the presence of substance use problems, but there 
are no items that provide measurement of the low end of the continuum, 
see Figure S1). The measurement error is proportional to the distribu
tional properties of the signal (i.e., a ‘multiplicative error-in-variable 
model’). However, this relationship is not monotonic. Thus, including 
the standard errors adjusts for this non-uniform measurement precision 
across the latent trait continuum. A composite subnetwork featuring 
edges that were common across all four subsets brain scans was 

compiled and visualized using BrainNet Viewer. This approach may help 
avoid issues of variability between visits (i.e. between REST1 and 
REST2) and hemispheric lateralization (Cao et al., 2021; Korponay & 
Koenigs, 2021; Ocklenburg & Mundorf, 2022). A family-wise error 
(FWE)-corrected p-value was calculated to identify the largest inter
connected cluster of brain regions (5000 permutations) at a threshold of 
t = 2.5, p <.01. This threshold was selected from a range of possible 
values (1.0 to 5.0), the suitability of each was tested iteratively in in
crements of 0.5. Anything higher (i.e., greater than 3.0) resulted in 
nearly all edges no longer having a measure of association higher than 
the pre-set threshold. Put another way, thresholds above 2.5 would 
remove nearly all connections, leaving a subnetwork so sparse as to have 
almost no connections between brain regions. Pairwise connections 
were then visualized with BrainNet Viewer (Xia et al., 2013). 

3. Results 

3.1. Modelling of substance use behaviour 

We found that a one-factor model, with two freely estimate error 
covariances (marijuana use with tobacco use θδ = 0.306, SE = 0.050 [95 
%CI = 0.209, 0.403], p <.001 & hallucinogens θδ = 0.489, SE = 0.065 
[95 %CI = 0.361, 0.617], p <.001) provided the best and most parsi
monious representation of the latent structure of the data using ESEM 
(χ2 (18) = 26.069, p =.098, RMSEA = 0.019 [90 %CI = 0.000, 0.035], 
CFI = 0.998, SRMR = 0.025; see Fig. 3). Frequency of use for all sub
stance classes loaded onto the common ‘Substance Use’ factor at p <.001 
and there was only one correlation residual > 0.10 suggesting that the 
association been alcohol and tobacco had been slightly underestimated 
(see Table 1). In contrast, the competing two, three-, or four-factor 
models were all misspecified resulting in error warnings and indi
cating that they did not capture the data well. The results of the LCA 
suggested that a three-class model provided the best fit compared to one- 
, two-, or four-class models (see Table 2) whereas a five-class model was 
misspecified. The results of the LCA provide an upper bound for the 
number of classes that can be expected to fit the data for the FMM. This is 
because the LCA does not take account of the dimensional structure of 
the data and thus overestimates the number of classes (i.e., it takes more 
classes to fit the data than are needed because the factor structure of the 
variables is ignored). Thus, the three-class model represented the upper 
bound of the number of classes for the FMM. 

We then estimated FMMs (FMM-1 to FMM-4) with the unidimen
sional Substance Use factor and one- to three-class models (see Table 1). 
We also estimated these models specifying a zero-inflated class with 
factor loadings and factor variances fixed at zero, and factor means 
freely estimated and the starting values of the item thresholds set to low 
probability of endorsement. Finally, we estimated two- and three-class 
non-parametric FMMs with factor variances fixed at zero. These 
models are indicated when the distributions of the factor are non- 
normal, such as the zero-inflated distribution of clinical variables in 
non-clinical populations, including substance use in the current sample. 
Most of these models failed to converge on trustworthy estimates, 
indicating misspecified (i.e., ill-fitting) models. A two-class model with 
class varying factor variances and thresholds (FMM-3) provided a 
reasonable fit to the data, although class separation was relatively poor 
(LL = -4,328.817, E = 0.707, BIC = 10168.916). However, the one-class 
one-factor model provided a superior fit to the data (LL = 4,901.545, 
BIC = 10086.602) as revealed by the Bayes factor, which provided very 
strong evidence in favour of this model compared to the two-class FMM- 
3 (BF01 = 7.486140810132e+17). 

The latent variable distribution plot is provided in Fig 4 and indicates 
some zero-inflation in the distribution. We generated factor score esti
mates using the regression method (Grice, 2001; Muthén & Muthén, 
1998–2017.) for each participant based on the one-class, one-factor 
solution for subsequent analysis with the neuroimaging data. The in
formation function for the Substance Use latent variable is shown in 
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Figure S2. Information (I) can be converted into a standard metric of 
reliability (rxx) using the formula [rxx = 1 − (1/I) ] and is plotted in 
standardized units along the latent trait continuum (i.e., M = 0, SD = 1) 
(Toland, 2014). Not surprisingly, measurement precision was highest 
above the mean where it was approximately rxx = 0.6, peaking at + 2SD 
(rxx = 0.93), before dropping below rxx = 0.6 again at ~+3.5SD. This 
was due to the unipolar nature of the construct ‘Substance Use’ (i.e., 
there is no item content to measure the adaptive end of the continuum 
(Lucke, 2015) beyond low substance use). 

We also regressed the Substance Use factor onto sex, age, maternal 
and paternal substance use history to determine if these demographic 

variables explained variance in the substance use behaviour of partici
pants (see Figure S2). We found that males (γ = -0.249, SE = 0.033, p 
<.001) and older participants (γ = 0.065, SE = 0.033, p =.051) tended to 
have higher substance use, as did those participants whose mother (γ =
0.097, SE = 0.032, p =.002) and father (γ = 0.103, SE = 0.031, p =.001) 
had a substance use history. However, the effect sizes were very small 
(R2 ≤ 0.011), except for sex (R2 = 0.062). The brant Wald test for pro
portional odds was only significant for sex and marijuana use (χ2(4) =
15.173, p =.004), indicating that the pattern of endorsement of fre
quency of use was different between males and females. 

Note. Model figure is displayed using symbols from the McArdle- 

Fig. 3. One-factor model of substance use in the Human Connectome Project participants. χ2(18) = 26.069, p =.098, RMSEA = 0.019 [90 %CI = 0.000, 0.035], CFI 
= 0.998, SRMR = 0.025. All factor loadings, as well as the two residual correlations, were statistically significant p <.001 N = 1,200. 

Table 1 
Correlation Residuals for the Two-Factor Model of Self-Reported Compulsivity as Modeled with the WLSMV Estimator.   

1. 2. 3. 4. 5. 6. 7. 

1. Tobacco        
2. Alcohol  0.108       
3. Cocaine  − 0.019  0.054      
4. Hallucinogens  0.027  0.003  0.007     
5. Opiates  − 0.002  − 0.044  − 0.074  0.008    
6. Sedatives  0.004  − 0.005  − 0.024  − 0.03  0.038   
7. Stimulants  − 0.050  − 0.066  0.044  − 0.005  − 0.019  − 0.015  
8. Marijuana  0.000  − 0.030  0.003  0.000  0.011  − 0.003  − 0.014 

Note. Bold typeface denotes correlation residuals (ε) ≥ 0.100. 
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McDonald reticular action model (RAM) (McArdle, 1980). Observed 
(also measured or manifest) variables are represented as rectangles. The 
factor (latent variable or construct) is represented as a large ellipse. The 
double-headed, curved arrow pointing to the factor is the latent variable 
variance. Straight, single-headed arrows from the large ellipse to 
observed variables reflect factor loadings. Curved, double-headed ar
rows between rectangles are error covariances/residual correlations. 

3.2. Network-based Statistic modelling 

Significant subnetworks were observed when functional connectivity 
of regions recruited by the VS, ECS and PS as well as the insula, caudate, 
putamen and intraparietal sulcus were correlated with the design ma
trix. All subnetworks were negatively correlated with delay discounting, 
cognitive scores, employment, education and income status but posi
tively correlated with DSM-IV diagnoses of depression, anxiety and so
matic problems, as well as substance use factor score estimates and their 
standard errors. Given that this NBS analyses was performed indepen
dently on each subset of brain scans (i.e. REST1 L-R, REST1 R-L and so 
on), four separate significant subnetworks were obtained. A composite 

list was then compiled consisting entirely of connections found across all 
four subsets. This composite list of connections is represented graphi
cally in Fig. 5. 

Connections involving regions of the VS were left medial OFC to the 
left superior parietal and left anterior middle cingulate as well as the 
right ventral posterior cingulate to the right anterior middle cingulate, 
right posterior middle cingulate and bilateral insula. Connections 
involving regions of the ECS were the bilateral superior parietal cortex 
to the right posterior middle cingulate, the bilateral rostral middle 
cingulate to the right posterior middle cingulate, the right posterior 
middle cingulate to the bilateral precuneus, left rostral middle frontal to 
right precuneus, left superior parietal and right posterior middle 
cingulate to the bilateral superior frontal cortex, left superior parietal, 
right posterior middle cingulate, bilateral rostral middle frontal and 
bilateral caudal middle frontal to the right insula and right rostral 
middle frontal to left posterior middle cingulate. Connections involving 
regions of the PS were the bilateral precuneus to the left superior frontal 
cortex and right insula, as well as the left superior frontal cortex to the 
right insula. 

Table 2 
Results of Exploratory Latent Class Analysis of Substance Use in Human Connectome Participants.    

Likelihood Ratio Δ2  Lo-Mendell-Rubin 
Likelihood Ratio Test 

Bootstrapped 
Likelihood Ratio Test 2 

Bayesian Model Testing 

Classes LL 1 LR Δ2 df LR Δ2 LR Δ2 p Entropy LMR LMR p Δq 2 *ΔLL BLRT p BIC Pr (Hi | D) 

1  − 5750.660 27,087  1125.254  1.000        11664.391  <0.001 
2  − 5047.741 27,121  1137.353  1.000  0.907  1397.268 < 0.001 23  1405.836 < 0.001  10428.716  <0.001 
3  ¡4921.687 27,102  965.990  1.000  0.810  250.635 < 0.001 24  252.108 < 0.001  10346.770  >0.999 
4  − 4886.789 27,083  951.056  1.000  0.831  69.389 0.725 24  69.797 < 0.001  10447.135  <0.001 

Note. ASRS-5 = The World Health Organization Adult ADHD Self-Report Screening Scale for Diagnostic and Statistical Manual of Mental Disorders – Fifth Edition 
(DSM-5). LL = log likelihood; LR = likelihood ratio. LR Δ2 df = degrees of freedom for the likelihood ratio chi-square test. LR Δ2 = Likelihood ratio chi-square test of the 
difference between the observed versus expected frequency tables for the categorical latent class indicators. LR Δ2 p = probability value for the likelihood ratio chi- 
square test. LMR = Lo-Mendell-Rubin adjusted Likelihood Ratio Test when comparing the k to k – 1 class model; LMR p = probability value for the Lo-Mendell-Rubin 
adjusted Likelihood Ratio Test. Δq = difference in the number of parameters between comparison models. 2*ΔLL = Two times the log likelihood difference between k 
and k – 1 models for the bootstrapped likelihood ratio test. BLRT p = probability value for the bootstrapped likelihood ratio test. BIC = Bayesian Information Criterion; 
Pr (Hi | D) = Bayesian conditional posterior probability of k model compared to all other estimated models. N = 1,200. 
Five class model failed to converge on trustworthy estimates. 
Bold typeface denotes preferred model based on converging evidence across fit statistics. 

1 Best loglikelihood values initially obtained using 160 and 32, then replicated using 320 and 64, random starting value perturbations and final stage optimizations. 
2 8 and 4 starting values and final stage optimizations for the k-1 model and 320 and 64 starting values and final stage optimizations for the k model. 

Fig. 4. Latent variance distribution plot for the ‘Substance Use’ factor. N = 1,200. The × axis is defined in standardized units, with a mean of zero and standard 
deviation of one. The metric of the y axis is the number of participants in the sample with that value of the latent variable. 
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4. Discussion 

The aim of our study was to identify neuroimaging susceptibility 
biomarkers of SUDs in young adults from the Human Connectome 
Project (HCP). Rather than being taxonomic in structure, the continuity 
hypothesis suggests that there is a continuum of substance use extending 
from normal to problematic use in the population (Borsboom et al., 
2016). This continuity has previously been demonstrated for alcohol use 
(Krueger et al., 2004). However, it also possible that latent classes are 
embedded within the continuum of substance use problems suggesting 
that hybrid models that combine dimensional and categorical mea
surement may better fit the data (B. Muthén, 2006). Here we used factor 
mixture modelling, a hybrid modelling approach that combines factor 
analysis and latent class analysis, which is well-suited to characterizing 
the latent structure of psychiatric phenomena, such as substance use 
behaviour (Clark et al., 2013; Miettunen et al., 2016). We hypothesized 
that a single continuum of substance use frequency and severity with a 
distinct zero-inflated latent class would best characterize the substance 
use behaviour in our sample of young adults from the HCP. 

Our hypothesis of a single substance use continuum that combined 
frequency of use across all substance classes was supported. Each of the 
substances loaded moderately (alcohol and tobacco) to strongly (mari
juana, hallucinogens, sedatives, opiates, stimulants, cocaine) on a uni
dimensional factor, suggesting that a single continuum adequately 
captures and describes covariation of substance use across all classes 
within the sample. In contrast, hybrid models with two or more latent 
classes, including a zero-inflated class characterizing a proportion of 
individuals with low frequency of use across all substance classes, failed 
to provide a good fit to the data. Thus, despite evidence of some zero- 
inflation in the continuum of substance use behaviour, a hybrid model 
with a distinct class of individuals with low scores did not provide a good 
fit to the data as compared to a model with a single continuous 
dimension. These findings indicated that young adults from the HCP 
could be rank-ordered along a single continuum of substance use fre
quency and severity. Furthermore, findings indicated that factor score 
estimates generated from this continuum could be analyzed with func
tional connectivity data to examine brain-behaviour associations and 
identify the functional neural substrates of substance use behaviour. 
Such dimensional analyses are better situated to detect meaningful 
brain-behaviour associations compared to categorical distinctions and 
speak to the utility of a dimensional enhancement approach to 
researching SUDs (Cuthbert, 2014). 

4.1. Functional connectivity within and between the VS, ECS, and PS is 
associated with substance use behaviour 

We found that connections between the VS, ECS and PS were posi
tively correlated with substance use factor score estimates, as well as 
incidence of depression, anxiety, and somatic problems, but was nega
tively correlated with delay discounting (i.e., choice impulsivity). These 
findings agree with our previously stated hypotheses and can be inter
preted in the context of reward-based valuation and decision making (i. 
e., sensation seeking), which represents a predisposing factor for SUDs 
(Verdejo-Garcia & Albein-Urios, 2021). Sensation-seeking utilizes a 
goal-directed approach system (J. A. Gray, 1990) geared towards 
satisfying the need for rewarding experiences (Zuckerman, 1994). This 
behaviour is a part of the impulsivity construct (Miranda-Olivos et al., 
2022) and may motivate substance use (including poly-substance use) 
(Chakroun et al., 2004; Woicik et al., 2009). Regions of the ECS (and PS) 
could provide goal-directed value signals to the medial OFC (VS), aiding 
decision-making in pursuit of addictive substances. Even among non- 
dependent drug users, functional activation (Filbey & Dunlop, 2014) 
and connectivity have been reported previously (Ersche et al., 2020). 
Both studies highlight the impact of regions such as the precuneus, su
perior frontal cortex (both PS), posterior parietal and lateral prefrontal 
cortex (ECS) in preventing a non-dependent drug user from becoming 
dependent. Connections between the VS and PS may contribute to the 
development of interoceptive thoughts revolving around the pleasurable 
sensations experienced during drug use, but the numerous connections 
with ECS regions could help to restrict the impact of these thoughts and 
the potential transition to dependence. 

It has been theorized that a delicate balance may exist between 
valuation- and control-based regions of the brain that regulate impulsive 
behaviours, and that disruption of this balance may underpin the 
development of addictive behaviours (Xie et al., 2014; T. Zhai et al., 
2015). More recent studies indicate that regions of the ECS (the lateral 
prefrontal cortex in the context of the current study) and PS (the supe
rior frontal cortex, once again in the context of this study) are implicated 
in top-down inhibitory control (Ersche et al., 2020). Here, we observed a 
positive correlation between substance use factor score estimates and 
connections between regions of the VS, ECS and PS among poly-drug 
users. We thus infer that although these participants may favour 
mixing-and-matching various substances to heighten their consumptive 
experiences (connections between the VS and ECS, PS), they may not 
have developed full-on dependency owing to the protective effects of 
connections within and between the ECS (particularly the lateral pre
frontal cortex) and PS (particularly the superior frontal cortex). The 
potential role of both the lateral prefrontal and superior frontal cortices 
in potentially staving off dependency may be further emphasised via the 

Fig. 5. Composite connections found in each of the four significant (p < 0.05) subnetworks identified by the NBS from subsets of HCP resting state brain scans (i.e., 
REST 1 L-R, REST1 R-L, REST2 L-R, REST2 R-L). All subnetworks were negatively correlated with delay discounting, cognitive scores, employment, education, and 
income status but positively correlated with DSM-IV diagnoses of depression, anxiety, and somatic problems as well as substance use factor score estimates and their 
standard errors. (A) Functional connections within the ECS are positively correlated with Substance Use factor score estimates; (B) VS functional connections with 
regions of the ECS and PS were positively correlated with Substance Use factor score estimates; (C) ECS functional connections with regions of the PS were positively 
correlated with Substance Use factor score estimates. 

K. Loganathan and J. Tiego                                                                                                                                                                                                                  



NeuroImage: Clinical 38 (2023) 103424

10

concomitant negative correlation between participants’ delay dis
counting scores and network connectivity. The more impulsive one be
comes, the stronger the connections within and between the ECS and PS, 
a possible countermeasure to preserve the balance between the value of 
poly-drug use and top-down cognitive control. 

The lateral prefrontal, posterior cingulate and posterior parietal 
cortices emerged as hubs within the ECS (Fig. 5). The lateral prefrontal 
cortex orients attention and subserves approach behaviour towards re
wards, disregarding the consequences of risky behaviour during 
sensation-seeking (Cservenka et al., 2013; Davidson et al., 2004). Left 
lateral prefrontal cortex activation is associated with both impulsivity 
and sensation-seeking (Chase et al., 2017) by encoding stimulus- 
outcome associations (Boorman et al., 2016), preparatory attention 
(van Schouwenburg et al., 2010; Wallis et al., 2015; Woolgar et al., 
2015), optimistic bias (Garrett et al., 2014), and free-choice (Cho et al., 
2016). The posterior parietal cortex is associated with decision-making 
and is a reliable predictor of risk-taking (Gilaie-Dotan et al., 2014) and 
risk preference (Teti Mayer et al., 2021), while the posterior cingulate 
cortex is thought to encode the neuroeconomic value of the subject (in 
this case, the drug of choice) (Brosch et al., 2013). Connections from the 
posterior parietal cortex extend to the medial orbitofrontal cortex and 
superior frontal cortex, while the right posterior middle cingulate is 
connected to the superior frontal cortex and precuneus (Fig. 5B). These 
findings suggest that impulsive sensation-seekers willingly engage in 
goal-directed poly-drug use (risky behaviour), with the optimistic view 
that they will once again experience the same pleasurable sensations as 
before by consuming their preferred substance(s). 

Interestingly, connections were observed between the insula and 
regions of the VS, ECS and PS. The insula is believed to be involved in 
attention orientation towards rewards (Anderson et al., 2016; Farrant & 
Uddin, 2015), being sensitive towards cues signalling preferred rewards 
(Goudriaan et al., 2010; Kober et al., 2016; Limbrick-Oldfield et al., 
2013). Increased functional connectivity was observed between the 
insula and the ventral cingulate cortex (VS), as well as regions of the ECS 
(i.e., bilateral rostral and caudal middle frontal cortex, bilateral poste
rior middle cingulate cortex and left superior parietal cortex), as well as 
the PS (i.e., bilateral precuneus and left superior frontal cortex). These 
results suggest that drug users may have a fixation towards thoughts of 
drugs as the reward of choice (VS - posterior cingulate cortex), fuelled in 
part by memories of previous use and those outcomes (PS). This 
increased connectivity was negatively correlated with delay discounting 
scores (i.e., steeper discounting or a preference for risker choices), 
particularly reflected by connections between the insula and the pre
frontal cortex. These results further suggests the influence of reward- 
related attentional bias on value-based decision-making, possibly mak
ing it more challenging to accept delayed rewards in the face of faster 
returns (Clewett et al., 2014). Nevertheless, connections involving ECS 
regions may balance poly-substance pursuit (and the perceived benefits 
of its consumption), thereby stalling or even preventing dependence. 

Our findings can be interpreted from two perspectives. First, the 
relationship between delay discounting and functional connectivity 
among substance users. As mentioned earlier, Owens et al. (2019) per
formed a systematic review of the literature surrounding functional and 
structural connectivity among substance users and its relationship with 
delay discounting. Our results concur with some of the studies high
lighted by Owens et al. For example, Camchong et al. (2011) reported 
increased connectivity between the anterior cingulate cortex and the 
dorsolateral prefrontal cortex among cocaine dependents. Clewett et al. 
(2014) also reported similar findings among smokers, involving the 
dorsolateral prefrontal and posterior parietal cortices correlated (Cle
wett et al., 2014). Contreras-Rodriguez et al. (2015) observed increased 
connectivity between the ventral striatum (site of the nucleus accum
bens) and the anterior cingulate cortex. All three studies showed positive 
correlation with delay discounting, in contrast to our findings. While 
regions like the dorsolateral prefrontal and posterior parietal cortices 
appear to act as hubs in our study, we utilized data for use patterns 

across eight different substances. As observed by Morris et al (2022) the 
presence of multiple substances, combined with increased use severity 
can cause changes in connectivity correlates. It may also reflect the 
increased value attributed to taking combinations of substances as a 
means of achieving pleasure or pain relief. Individuals may crave for 
their drug(s) of choice, and may be willing to accept smaller doses if it 
can be procured more quickly (Loganathan & Ho, 2021). They may also 
view mixing-and-matching addictive substances as a quick and easy way 
to reach their desired state, instead of utilizing non-substance related 
means. 

The second perspective revolves around utilization of our findings. 
Research indicates that while most studies focus on chronic, severe 
substance abuse (i.e. addiction), a majority of the population experi
ences mild-to-moderate symptoms of substance use disorder and ac
count for more substance-use harms compared to those with severe 
SUDs (Asken et al., 2007; McLellan et al., 2022). Recently, McLellan et al 
(2022) shone the spotlight on ‘preaddiction’, a term describing the state 
of mild-to-moderate substance use disorders that could pre-date addic
tion. They also highlight a lack of objective assessments to detect in
dividuals in a preaddiction state (McLellan et al., 2022). We would like 
to propose the continuum reported here, along with the functional hubs 
and edges correlated with both factor score estimates of substance use 
behaviour and delay discounting scores, as a possible neurobiological 
assessment to be used with individuals in the preaddiction state. We 
further propose that our models be used in tandem with existing diag
nostic criteria as contained within the DSM-5 (Asken et al., 2007) when 
assessing patients with substance use disorder. 

The results of our study are tempered by methodological limitations. 
First, it is possible for mixture and hybrid modelling to yield solutions 
that are idiosyncratic to specific samples (Borsboom et al., 2016). Thus, 
it will be important to replicate the findings of a continuous, unidi
mensional spectrum of substance use frequency and severity in other 
samples and determine if the same neurobiological substrates are un
covered. Unfortunately, we did not have an independent sample with 
which to replicate our results. The one-factor, one-class solution we 
converged on may reflect the non-clinical characteristics of the sample, 
in which only a small subset of participants reported use of illicit psy
choactive substances, including hallucinogens, cocaine, stimulants, and 
opiates. It is possible that a sample with more varied substance use 
profiles would yield a multiple class solution. Furthermore, the Semi- 
Structured Assessment for the Genetics of Alcoholism (SSAGA) does 
not measure frequency of use across all substance classes with the same 
level of granularity and precision (Bucholz et al., 1994). For example, 
alcohol dependency is measured using SSAGA Alcohol DSM4 De
pendency Diagnosis with two categories (i.e., 1 for no, 5 for yes); to
bacco dependency via the SSAGA FTND Score (Fagerstrom FTND test for 
nicotine dependence) with seven categories (0 – 3, not dependent; 4 – 6, 
dependent); lifetime use of cocaine, stimulants, opiates, and sedatives 
with three categories (i.e., 0, never used; 1, 3 – 5 occasions and 5, more 
than 6 occasions); lifetime use of hallucinogens with four categories (i.e. 
0, never used; 1, 1 – 2 occasions, 2, 6–10 occasions and 5, more than 10 
occasion); lifetime marijuana use with six categories (i.e., 0, never used; 
1, 1 – 5 occasions; 2, 6 – 10 occasions; 3, 11 – 25 occasions; 3, 26 – 50 
occasions; 3, 51 – 100 occasions; 4, 101 – 999 occasions; 5, more than 
1000 occasions). This may have introduced constraints on the latent 
structure of the substance use continuum, as well as the number of latent 
classes that could be identified. It will be important in future studies to 
use a consistent scale for measuring frequency and severity of use across 
substance classes, as well as to replicate the findings in an independent 
sample for purposes of external validation. Measurement of substance 
use frequency; severity and its neurobiological correlates were cross- 
sectional rather than longitudinal. Thus, we are unable to determine 
whether the properties of network connectivity of the VS, PS, and ECS 
reflect an underlying vulnerability to substance use or are the conse
quences of substance use (Ersche et al., 2010). Future work could 
measure functional connectivity within and between these networks in 
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youth and determine whether network properties predict individual 
differences in substance use behaviour longitudinally. Lastly, the period 
when the SSAGA Assessment was conducted in relation to brain scan 
collection could have introduced some variance in the relationship be
tween substance use and functional connectivity, since use measures 
may be correlated with time of year (e.g., weekend, holiday season, 
etc.). 

5. Conclusions 

In summary, we provide evidence of susceptibility biomarkers that 
index a continuum of substance use frequency/severity that has impli
cations for identification of those at risk for SUDS. Furthermore, func
tional connectivity of decision-making systems was positively correlated 
with substance use severity and negatively correlated with delay dis
counting. The orbitofrontal, dorsolateral prefrontal, and posterior pa
rietal cortices emerged as hubs connecting other regions of the VS, ECS 
and PS, possibly signalling increased valuation of multiple substance as 
the reward of choice. These findings could be used in combination with 
other clinical findings to identify individuals currently in a preaddiction 
state and at risk of transitioning into addiction. Prospective longitudinal 
studies that predict transition to SUDs based on the functional connec
tivity profiles identified in this study as susceptibility biomarkers would 
be needed to confirm our findings. 
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