Mitochondrial dynamics dysfunction and neurodevelopmental disorders: From pathological mechanisms to clinical translation

Ziqi Yang^{1, 2}, Yiran Luo¹, Zaiqi Yang¹, Zheng Liu², Meihua Li², Xiao Wu², Like Chen^{2, *}, Wenqiang Xin^{2, *}

https://doi.org/10.4103/NRR.NRR-D-24-01422

Date of submission: November 16, 2024

Date of decision: November 18, 2024

Date of acceptance: May 19, 2025

Date of web publication: June 19, 2025

From the Contents

Introduction

Search Strategy

Mitochondrial Fusion/Splitting and Neurodevelopmental Disorders

Mitochondrial Autophagy and Neurodevelopmental Disorders

Molecular Mechanisms of Mitochondrial Abnormalities and Neurodevelopmental Disorders

Mitochondria as a Therapeutic Target for Neurodevelopmental

Mitochondrial Deficits in Neuronal Cells and Neurodevelopmental

Animal Models of Neurodevelopmental Disorders

Limitations

Conclusion and Perspective

Abstract

Mitochondrial dysfunction has emerged as a critical factor in the etiology of various neurodevelopmental disorders, including autism spectrum disorders, attention-deficit/hyperactivity disorder, and Rett syndrome. Although these conditions differ in clinical presentation, they share fundamental pathological features that may stem from abnormal mitochondrial dynamics and impaired autophagic clearance, which contribute to redox imbalance and oxidative stress in neurons. This review aimed to elucidate the relationship between mitochondrial dynamics dysfunction and neurodevelopmental disorders. Mitochondria are highly dynamic organelles that undergo continuous fusion and fission to meet the substantial energy demands of neural cells. Dysregulation of these processes, as observed in certain neurodevelopmental disorders, causes accumulation of damaged mitochondria, exacerbating oxidative damage and impairing neuronal function. The phosphatase and tensin homolog-induced putative kinase 1/E3 ubiquitin-protein ligase pathway is crucial for mitophagy, the process of selectively removing malfunctioning mitochondria. Mutations in genes encoding mitochondrial fusion proteins have been identified in autism spectrum disorders, linking disruptions in the fusion-fission equilibrium to neurodevelopmental impairments. Additionally, animal models of Rett syndrome have shown pronounced defects in mitophagy, reinforcing the notion that mitochondrial quality control is indispensable for neuronal health. Clinical studies have highlighted the importance of mitochondrial disturbances in neurodevelopmental disorders. In autism spectrum disorders, elevated oxidative stress markers and mitochondrial DNA deletions indicate compromised mitochondrial function. Attention-deficit/hyperactivity disorder has also been associated with cognitive deficits linked to mitochondrial dysfunction and oxidative stress. Moreover, induced pluripotent stem cell models derived from patients with Rett syndrome have shown impaired mitochondrial dynamics and heightened vulnerability to oxidative injury, suggesting the role of defective mitochondrial homeostasis in these disorders. From a translational standpoint, multiple therapeutic approaches targeting mitochondrial pathways show promise. Interventions aimed at preserving normal fusion-fission cycles or enhancing mitophagy can reduce oxidative damage by limiting the accumulation of defective mitochondria. Pharmacological modulation of mitochondrial permeability and upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, an essential regulator of mitochondrial biogenesis, may also ameliorate cellular energy deficits. Identifying early biomarkers of mitochondrial impairment is crucial for precision medicine, since it can help clinicians tailor interventions to individual patient profiles and improve prognoses. Furthermore, integrating mitochondria-focused strategies with established therapies, such as antioxidants or behavioral interventions, may enhance treatment efficacy and yield better clinical outcomes. Leveraging these pathways could open avenues for regenerative strategies, given the influence of mitochondria on neuronal repair and plasticity. In conclusion, this review indicates mitochondrial homeostasis as a unifying therapeutic axis within neurodevelopmental pathophysiology. Disruptions in mitochondrial dynamics and autophagic clearance converge on oxidative stress, and researchers should prioritize validating these interventions in clinical settings to advance precision medicine and enhance outcomes for individuals affected by neurodevelopmental disorders. Key Words: autophagic clearance; autism spectrum disorders; cellular homeostasis; fusion and fission; mitochondrial dynamics; mitophagy; neural regeneration; neuronal energy metabolism; neurodevelopmental disorders; oxidative stress

Introduction

Neurodevelopmental disorders (NDDs) are a group of highly heritable disorders that exhibit a wide range of neurological and psychiatric symptoms from the onset of development (Thapar et al., 2017; Tanaka and Chung, 2025; Yin et al., 2025). The clinical features of NDDs mainly include autism, epilepsy, cerebral palsy, intellectual

disability, deficits in social communication and interaction, and restricted and repetitive patterns of behavior, interests, and activities (Sahin and Sur, 2015). According to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V), NDDs include autism spectrum disorder (ASD), intellectual disability, attention deficit hyperactivity disorder (ADHD) (Martinez and Peplow, 2024;

Yan et al., 2024), specific learning disabilities, communication disorders, and movement disorders (Wakefield, 2016). NDDs, which are more common in males and usually occur in childhood before puberty, account for approximately 25% of chronic pediatric disorders and are the thirdmost common form of childhood disability after visual and hearing impairments (Rutter et al.,

How to cite this article: Yang Z, Luo Y, Yang Z, Liu Z, Li M, Wu X, Chen L, Xin W (2026) Mitochondrial dynamics dysfunction and neurodevelopmental disorders: From pathological mechanisms to clinical translation. Neural Regen Res 21(0):000-000.

¹Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China; ²Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China

^{*}Correspondence to: Like Chen, MD, ndyfy02726@ncu.edu.cn; Wenqiang Xin, PhD, ndyfy10339@ncu.edu.cn. https://orcid.org/0000-0003-0231-6474 (Wenqiang Xin)

2003; Sabariego-Navarro et al., 2022; Sokolowski and Levine, 2023). NDDs have an early onset and long duration of illness and place a substantial economic burden on the families of affected children (Leigh and Du, 2015). The clinical course of NDDs differs from those of other neurological disorders in that symptoms show remission or relapse after puberty, instead presenting a stable learning and communication disorder. While NDDs are highly heterogeneous in terms of their clinical features, etiology, and treatment, the high degree of overlap between the disorders provides a supportive rationale for studying them together.

Mitochondria are semiautonomous organelles with multiple functions and are involved in a wide range of cellular processes that require the production of large amounts of adenosine triphosphate (ATP) through oxidative phosphorylation to supply energy requirements, especially in cells with high energy demands. The brain has been traditionally assumed to consume nearly 20% of the total body energy despite accounting for only 2% of the overall weight and has even higher energy requirements during development (Attwell and Laughlin, 2001). Mitochondria are doublemembrane structures with an intermembrane space separating the outer and inner mitochondrial membranes. The inner mitochondrial membrane forms vesicular structures through invaginations of cristae. To adapt to energy demands, mitochondria undergo constant and highly dynamic changes, including fusion, fission, and movement (Bertholet et al., 2016). A variety of NDDs have been proposed to be attributable to disturbances in mitochondrial fission and/or fusion mechanisms. Thus, maintaining fission and fusion homeostasis is critical for health. Another important factor in maintaining mitochondrial health is mitochondrial autophagy, which is responsible for restoration or removal of damaged or dysfunctional mitochondria. Ubiquitin molecules promote the formation of autophagosomes around mitochondria by binding to proteins on the surface of damaged mitochondria. Subsequently, these autophagosomes are delivered to lysosomes for final degradation (Yoo and Jung, 2018; Onishi et al., 2021).

A growing body of evidence suggests that dysregulated mitochondrial autophagy is closely associated with NDDs. In addition to their roles in determining the location of mitochondrial morphology and mitochondrial autophagymediated clearance, mitochondria are involved in multiple processes such as bioenergetic metabolism, inward flow of Ca2+, regulation of permeability translocation pores, and biosynthesis (Rangaraju et al., 2019). Mitochondria play key roles in various stages of neural development, and their dynamic distribution and function directly affect the formation, maturation, and maintenance of nerve cells (Farahani, 2024; Huang et al., 2024; Yan et al., 2024). In the proliferation stage of neural stem cells, mitochondria are distributed in the cytoplasm and concentrated in the active areas of division, and they generate ATP through oxidative phosphorylation to support DNA replication and cell division (Coelho et al., 2022; Na et al., 2023; Rimbert et al., 2023). Consequently, insufficient ATP results in decreased proliferation rate and premature depletion of neural stem cell pools (Saha et al., 2024; Wang et al., 2024a; Lin et al., 2025; Pervaiz et al., 2025). The balance between glycolysis and oxidative phosphorylation affects stem cell fate, and a hypoxic environment may maintain stem cell pluripotency through glycolysis (Ren et al., 2024; Moiz et al., 2025). A variety of metabolic intermediates are involved in histone acetylation and affect gene expression (Sun et al., 2025; Tang et al., 2025). Metabolic abnormalities may lead to premature differentiation or apoptosis of neural stem cells, resulting in a variety of adverse consequences (Qiu et al., 2023; Lisowski et al., 2024; Tulva et al., 2025). During nerve cell differentiation, mitochondria aggregate around the cell body to support protein synthesis (Vujovic et al., 2024; Norouzi Esfahani et al., 2025). Simultaneously, mitochondrial oxidative phosphorylation is enhanced to promote the expression of nerve cell-specific genes (Ruan et al., 2023; Matrella et al., 2024). Blockage of nerve cell differentiation can lead to a decrease in the number of nerve cells and abnormal glial cell proliferation (Wang et al., 2025a, b). Moderate levels of reactive oxygen species (ROS) can promote nerve cell differentiation (Mitra et al., 2020), but excessive ROS levels can induce oxidative damage, cause DNA damage, and increase the risk of cell death (Silva et al., 2024; Chen et al., 2025b; Zhang et al., 2025a). In addition, mitochondria can also absorb cytoplasmic calcium and regulate calciumdependent differentiation signals, thereby promoting nerve cell differentiation (Keilhoff et al., 2021; Sun et al., 2022; Whitehead et al., 2025). When nerve cells migrate, mitochondria migrate to the front of migration, near the center of microtubule tissue, providing ATP for actin and microtubules for energy supply (Bakaeva et al., 2024; Ma et al., 2024; Ribeuz et al., 2024). Delayed migration or mislocalization caused by mitochondrial dysfunction often results in abnormal cortical stratification (Khadimallah et al., 2022; Uspalenko et al., 2023). In addition, mitochondria also regulate local calcium concentration, which affects the activity of cell polar proteins. Calcium imbalance may lead to stagnation of migration (Li et al., 2024; Nadeem et al., 2024). Other studies have shown that mitochondria can respond to chemical chemokines to regulate migration pathways (Chen et al., 2024; Daga et al., 2024). During the growth and guidance of axons and dendrites, mitochondria are transported along microtubules to growth cones, enriched at branching points, supporting cytoskeleton extension and membrane transportation. Obstacles in this process may lead to misguided axons (Ibrahim et al., 2025; Marzetti et al., 2025). During this process, mitochondria generate nicotinamide adenine dinucleotide (NADH) and ATP, maintain highenergy consumption processes such as vesicle transportation in the growth cone (Pan et al., 2025; Wang et al., 2025d), and also regulate the sensitivity of guide molecules through ROS, which affects the growth direction (Nakamura et al., 2023). Mitochondrial dysfunction can lead to reduced dendritic complexity (Mishra and Thakur, 2024: Ramírez et al., 2025). During synaptic formation and pruning, mitochondria aggregate

at the presynaptic terminals and dendritic spine bases, providing ATP for synaptogenesis and the synthesis of neurotransmitters such as glutamate and synaptic proteins (Islam et al., 2024; Tripathi and Ben-Shachar, 2024). Mitochondria regulate the activity of N-methyl-D-aspartate receptors through calcium uptake, affect long-term potentiation/long-term depression, and can also regulate construction, release cytochrome c and other pro-apoptotic factors, and participate in redundant synaptic clearance (Devine et al., 2022; Wang et al., 2024d; Samanta et al., 2025). Mitochondrial disorders in this process can lead to abnormalities in synaptic density, such as hyperpruning in schizophrenia, or dopaminergic synaptic failure in neurotransmitter release disorders such as in Parkinson's disease (Hwang et al., 2024; Kambali et al., 2024; Sarnyai and Ben-Shachar, 2024; Abhilash et al., 2025). During the process of synaptic plasticity and maintenance of mature nerve cells, mitochondria are dynamically distributed near synapses and gather rapidly in response to changes in activity (Gupta et al., 2025; Pannoni et al., 2025). Mitochondria continuously supply energy for high-frequency discharge and synaptic vesicle circulation, and can also mediate antioxidant defense, clear ROS through catalase and superoxide dismutase, and protect synaptic structure (Liu et al., 2024; Almikhlafi et al., 2025; Musyaju et al., 2025). Thus, defects in mitochondrial function during these processes may cause a decline in synaptic function, leading to cognitive impairment and oxidative damage that accelerates neurodegeneration (Rezaee et al., 2025; Silvia et al., 2025a, b; Zhang et al., 2025b).

The common mechanisms of mitochondrial defects leading to neurological dysfunction can be mainly summarized as follows: First, in an energy crisis, ATP deficiency will affect the high-energy consumption process of ion pump and vesicle transportation (Mandal et al., 2025; Yousefian-Jazi et al., 2025). Second, dysregulation of calcium homeostasis can result in a decrease in the mitochondrial calcium-buffering capacity, leading to excitotoxicity or abnormal signaling (Cai et al., 2025; Chemla et al., 2025). ROS accumulation is another important reason. Oxidative damage to lipids, proteins, and DNA can often trigger apoptosis or inflammation (Li et al., 2025a, b: Spina et al., 2025). Moreover, transportation disorders and dynein or microtubule abnormalities can cause imbalances in the distribution of mitochondria (Chen et al., 2021: Vaillant-Beuchot et al., 2024; Guerra San Juan et al., 2025). Finally, epigenetic alterations such as metabolite deficiencies affect histone/DNA modifications, which in turn interfere with gene expression (Chen et al., 2023; Chodari et al., 2024). Mitochondria are involved in the entire course of neurodevelopment through spatiotemporalspecific energy metabolism, signal regulation, and structural support. Thus, mitochondrial defects can disrupt key developmental nodes and lead to widespread neurological dysfunction, highlighting the central role of mitochondria in nervous system health. Future studies should further analyze the molecular targets of mitochondria in specific developmental stages to provide a basis for intervention. NDDs often lead to impaired cognitive function, affecting cognitive and learning

were included to summarize the contributions of both cellular and molecular components to the pathogenesis of these disorders. Most of the selected studies (72% of all references) were published in or after 2018. Articles focusing solely on other aspects of NDDs without addressing

mitochondrial dysfunction or those unrelated to neurodevelopmental pathology were excluded.

abilities (Hilz et al., 2025; Moll and Krishnan, 2025). For example, people with intellectual disabilities develop deficits in intellectual and adaptive function before 18 years of age, which seriously affect their academic performance and knowledge acquisition (Diril et al., 2025). In addition, patients with ADHD often experience difficulty in learning due to inattention, impulsivity. and hyperactivity, and 60%-80% of patients experience symptoms that persist into adulthood (Wang et al., 2025c). Lack of social skills is one of the common manifestations of NDDs. For example. people with ASD show significant impairments in social interaction and communication, limiting their ability to establish and maintain interpersonal relationships. This social impairment affects peer relationships in children and adolescents, and may also persist into adulthood, causing the patients to face significant challenges in social integration (Jain et al., 2025; Zhou et al., 2025). In addition, people with NDDs may face more mental health problems during adolescence. Research shows that adolescents with NDDs such as ADHD, ASD, and obsessive-compulsive disorder are more susceptible to emotion disorders and behavioral problems during adolescence (Hao et al., 2025). For example, women with NDD in late adolescence are more likely to exhibit internalizing behaviors, such as anxiety and depression, while men may exhibit externalizing behaviors, such as aggression, in early adolescence (Kohls et al., 2025; Zaguri-Vittenberg et al., 2025). In addition, people with obsessive-compulsive disorder experience tremendous psychological stress due to obsessive-compulsive thinking and behavior after onset in childhood and adolescence (Pinciotti et al., 2024: Towner et al., 2024). In addition to their current effects on the lives of children and adolescents, NDDs can also have long-term effects on the mental health and quality of life of these individuals in adulthood. Without timely intervention, some patients may develop lifelong disabilities. For example, childhood-onset epileptic encephalopathy can lead to mental retardation and brain atrophy, which can substantially affect a patient's long-term prognosis (Specchio and Auvin, 2025; Zubal et al., 2025). The treatment and management of NDDs requires long-term investment, imposing economic and psychological burdens on families. Early diagnosis and intervention are essential to improve prognosis. However, the pathogenesis of NDDs is not yet clear, and drug treatments have been shown to

This review synthesizes the clinical, genetic, and molecular evidence, collects the data obtained using multi-omics analysis methods such as genomics, transcriptomics and proteomics, summarizes a variety of model systems, systematically explores the dynamic dysfunction of mitochondria and the role of mitochondrial autophagy in various NDDs, and reveals the key molecular mechanisms in these processes. Dynamic changes of mitochondria and mitochondrial autophagy are essential for maintaining energy metabolism of nerve cells and the stability of the intracellular environment. In nerve injury or disease states, mitochondrial dysfunction can lead to damage and death of nerve cells, and restoring mitochondrial function

have limited effects (Długosz et al., 2025; Puljko et

al., 2025).

may help promote nerve regeneration (Wang et al., 2024b; Chauhan et al., 2025). In addition, this paper further reviews the pathogenesis and potential intervention targets of NDDs from the perspective of mitochondria, and summarizes a variety of therapeutic strategies based on mitochondrial function regulation, such as regulation of mitochondrial permeability and fusion kinetics and activating peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 α). These strategies will provide new directions for the treatment of NDDs and yield potential clues for neural regeneration research.

In addition, this paper further reviews the pathogenesis of NDD and highlights potential intervention targets from the mitochondrial perspective, summarizing therapeutic strategies centered on regulating mitochondrial function. These strategies can provide new directions for treating NDDs and offer potential insights for neural regeneration research. Looking ahead, the field must strengthen the integration of basic research and clinical applications, encourage multidisciplinary collaboration, identify specific biomarkers, develop targeted therapies, and improve patient prognoses and quality of life at an early stage. Therefore, the primary purpose of this review is to present a comprehensive overview of the contributions of mitochondrial dynamics and mitophagy to NDD pathogenesis, describe relevant therapeutic strategies, and highlight avenues for future investigation.

Search Strategy

A computer-based online search of relevant databases was performed to retrieve articles exploring the relationship between mitochondrial dysfunction and neurodevelopmental disorders (NDDs) that were published up to February 20, 2025. To maximize search specificity and sensitivity, a combination of the following text words (MeSH terms) was used: "mitochondrial dysfunction," "mitochondrial dynamics," "mitochondrial fusion and fission," "mitochondrial autophagy," "mitochondrial permeability," "mitochondrial bioenergetics," "mitochondrial calcium influx," "mitochondrial oxidative phosphorylation," "mitochondrial DNA mutations," "mitochondrial transport," "neurodevelopmental disorders," "autism spectrum disorders (ASD)," "attention-deficit/hyperactivity disorder (ADHD)," "Rett syndrome," "Down syndrome," "Fragile X syndrome," "mitochondrial quality control," "PGC-1α activation," "PINK1/Parkin pathway," "neuronal energy metabolism," "neuroinflammation," "epigenetic modification," "neural regeneration," "therapeutic targets," "mitochondrial ROS production," "mitochondrial biogenesis," "mitochondrial respiratory chain," "mitochondrial dysfunction mechanisms," "neurodevelopmental pathology," "mitochondrial dysfunction treatment," "mitochondrial dysfunction animal models," "mitochondrial dysfunction clinical evidence," "mitochondrial dysfunction biomarkers," and "mitochondrial dysfunction personalized therapy. " The results were further screened by title and abstract, and only those studies exploring the mechanisms, clinical evidence, and potential therapeutic strategies related to mitochondrial dysfunction in NDDs

Mitochondrial Fusion/Splitting and Neurodevelopmental Disorders

The mechanisms of neurodevelopmental disorders triggered by different mitochondrial defects are detailed in **Table 1**.

Mitochondrial fission and neurodevelopmental disorders

Cells can contain anywhere from tens to hundreds of mitochondria in varying numbers each containing at least one mitochondrial DNA (mtDNA) genome. Since the generation of new mitochondria involves mtDNA replication, this process does not occur from scratch but must be derived from other mitochondria. Thus, mitochondrial fusion and division play important roles in restoring viability. In addition, individual mitochondria show a variety of morphologies, including spherical and tubular, and are of varying lengths. The determination of these morphologies is also controlled by the opposing processes of fusion and fission (Chan. 2020). The coordinated actions of mitochondrial fusion and fission represent a fundamental factor in maintaining mitochondrial shape, distribution, and size in response to changing conditions (Figure 1).

Mitochondrial fission involves the splitting into two smaller mitochondria mediated by multiple proteins. Dynamic protein-associated protein 1 (Drp1) is a guanosine triphosphate (GTP) hydrolase that plays a central role in mitochondrial fission (Pagliuso et al., 2018). Drp1 in the cytoplasm is recruited to the surface of the mitochondria and assembles into a helical structure, which undergoes a process of encapsulation and constriction, culminating in mitochondrial fission (Jimah and Hinshaw, 2019). Four major proteins, mitochondria fission protein 1 (Fis1), mitochondrial fission factor (Mff), mitochondrial dynamic protein 49 (MiD49), and MiD51, play recruitment roles in fission. Fis1, an anchoring protein, plays a linking role in yeast and is also expressed in mammals and is used to recruit Drp1 (Bui and Shaw, 2013). Mff, another anchoring protein, appears to play a simple role, with its expression showing a positive correlation with mitochondrial fission. When Mff is absent, it reduces the recruitment of Drp1 to the mitochondria, thereby impairing fission, whereas overexpression of Mff enhances mitochondrial fragmentation. In contrast to Mff, MiD operates in the opposite mode. Low-level MiD expression increases mitochondrial fission, and overexpression leads to mitochondrial lengthening. Both MiD and Mff independently anchor Drp1 to the mitochondrial outer membrane, but the role of the interactions between MiD and Mff in regulating fission appear to be more important. However, the exact mechanism underlying this coordinating effect is not clear (Palmer et al., 2013).

Table 1 | Mechanisms of neurodevelopmental disorders triggered by different mitochondrial defects

Туре	Neurodevelopmental disorder	Mitochondrial defect mechanism
Mitochondrial fission	FOXP1 syndrome	Haploinsufficiency of the FOXP1 gene leading to striatal dysfunction
	Leukodystrophy	Deficiency of the enzyme DEGS1 localized in the mitochondria-associated ER
Mitochondrial fusion	Bosch-Boonstra-Schaaf optic atrophy syndrome	Mutation in the NR2F1 gene
	Leukodystrophy	Mutation in the ceramide synthase DEGS1 localized in the ER
	FOXP1 syndrome	PGC- 1α stimulates Mfn1 in response to increased mitochondrial outer membrane fusion; dysregulation triggers mitochondrial structural disruption and energy transport interruption
Mitochondrial transport	Bosch-Boonstra-Schaaf optic atrophy syndrome	Mutation in the NR2F1 gene
	Schizophrenia	Neurons exhibit altered dendritic morphology and/or maintenance
	Schizophrenia 1	Interaction between TRAK1 and Miro1, and involvement in the mitochondrial calcium uniporter complex regulating mitochondrial matrix calcium levels
	Schizophrenia and bipolar disorder	Expression of DISC1 in multiple subcellular regions
Mitochondrial autophagy	Familial autosomal recessive parkinsonism	Mutations in PINK1 and PARK2
	ADHD	Copy number variations in PARK2 with duplications and deletions
	Congenital microcephaly, brain atrophy, and growth retardation	Biallelic variants in CLEC16A
	Early-onset progressive spastic ataxia	Biallelic pathogenic variants in VPS13D
	BPAN, RLS, ID, DEE, EOEE and west syndrome	Deficiency of the WDR45 gene
	Epilepsy	Deficiency of Il1rl1 encoding ST33
	FXS	X-linked mutation or deletion in the Fmr1 gene
	ADHD and moderate ID	p. E411D mutation
	West syndrome	p. V622G mutation
	Patients with epilepsy and mild ID	p. A272V mutation
	Koolen-de Vries syndrome	Variants in the KANSL1 gene
Mitochondrial DNA mutations and encoding	Cognitive and behavioral deficits	Mice with inherited mitochondrial DNA mutations exhibit abnormal brain development and increased susceptibility
abnormalities	Bosch-Boonstra-Schaaf optic atrophy syndrome	Variants in the NR2F1 gene
	Dubowitz-like syndrome	Mutations in the NSUN2 gene
Reduced activity of	Early-onset and slowly progressive deep sensory loss and sensory ataxia	Variants in COX20
key mitochondrial bioenergetic metabolic enzymes	Symptoms similar to ASD	Inherited mitochondrial DNA mutations with non-synonymous mutations affecting oxidative phosphorylation Complex I
	Epileptic seizures and motor deficits	Mutations in FARS2 gene
	Hereditary intellectual disability	Deficiency in btb11
	RTT	Mutations in methyl-CpG binding protein 2 (MECP2) on the X chromosome
Mitochondrial Ca ²⁺ influx and mitochondrial permeability	ASD	Variants in the <i>LC25A12</i> gene

Table 1 outlines the diverse mitochondrial defects associated with various NDDs, categorizing them by type of mitochondrial dysfunction. The table covers defects in mitochondrial fission, fusion, transport, autophagy, mitochondrial DNA mutations, bioenergetic enzyme deficiencies, and calcium influx regulation. ADHD: Attention-deficit/hyperactivity disorder; ASD: autism spectrum disorder; BPAN: beta-propeller protein-associated neurodegeneration; BTB11: BTB domain-containing protein 11; CLEC16A: C-type lectin domaincontaining protein 16A; COX20: cytochrome c oxidase assembly protein 20; DEGS1: delta-5-desaturase 1; DISC1: disrupted in schizophrenia 1; DEE: developmental and epileptic encephalopathies; EOEE: early-onset epilepsy encephalopathy; FARS2: phenylalanyl-tRNA synthetase 2, mitochondrial; FOXP1: forkhead box protein P1; FXS: fragile X syndrome; ID: intellectual disability; Il1rl1: interleukin 1 receptor-like 1; KANSL1: KAT8-associated factor 1; LC25A12: solute carrier family 25 member 12; MECP2: Methyl-CpG-binding protein 2; Mfn1: mitofusin 1; NR2F1: nuclear receptor subfamily 2 group F member 1; NSUN2: Sun RNA methyltransferase family member 2; OXPHOS: oxidative phosphorylation; PARK2: Parkin: RBR E3 ubiquitin protein ligase; PINK1: PTEN-induced putative kinase 1; PGC-1 α : peroxisome proliferator-activated receptor-gamma co-activator 1 α ; RTT: Rett syndrome; RLS: restless legs syndrome; ST33: suppressor of tumorigenicity 33; TRAK1: trak protein 1; VPS13D: Vacuolar protein sorting 13D; WDR45: WD repeat-containing protein 45.

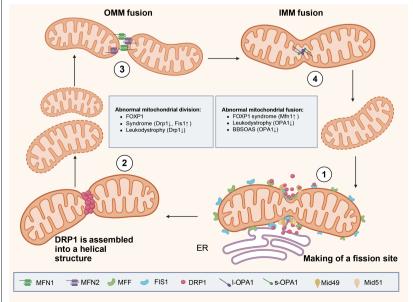


Figure 1 | The process of mitochondrial fusion and division.

At the ER contact site, the cytoplasmic GTP hydrolase dynamin-related protein 1 (Drp1) is recruited by four mitochondrial membrane proteins, Fis1, Mff, MiD49 and MiD51 (Thapar et al., 2017). Drp1, recruited to the mitochondrial surface, assembles into a helical structure that undergoes a process of wrapping and contraction, culminating in mitochondrial fission (Sahin and Sur, 2015). Mitochondria are double-membrane organelles, and fusion is divided into two steps:outer membrane fusion and inner membrane fusion. The proteases Mfn1 and Mfn2, located on the outer membrane of mitochondria, connect the outer membrane of two mitochondria to achieve outer membrane fusion. Endosomal fusion is mediated by Opa1, a member of the dynamin family. Opa1 in the endosomes is divided into the long type I-Opa1 and the short type s-Opa1, and the two proteins are interconnected to complete endosomal fusion. The mitochondrial matrix diffuses into the new mitochondria to complete the final fusion (Rutter et al., 2003). Created with BioRender. com. BBSOAS: Bardet-biedl syndrome-oculocerebrorenal syndrome of lowe-associated syndromes; DRP1: dynamin-related protein 1; ER: endoplasmic reticulum; FIS1: mitochondrial fission 1 protein; FOXO1: forkhead box protein O1; L-Opa1: long form of optic atrophy 1 protein; MFF: mitochondrial fission factor; Mfn1: mitofusin 1; Mfn2: mitofusin 2; Mid49: mitochondrial inner membrane protein Mid49; Mid51: mitochondrial inner membrane protein Mid51; OMM: outer mitochondrial membrane; IMM: inner mitochondrial membrane; S-Opa1: short form of optic atrophy 1 protein.

d WRR

Drp1 plays a central role in the fission process. although dynamin-2 has been proposed to follow the action of Drp1 for further assessment of membrane rupture (Lee et al., 2016) in mammalian cells. Mitochondrial fission begins to occur when the GTPase Drp1 is recruited from the cytoplasm to the outer mitochondrial membrane via four known proteins: Fis1. Mff. MiD49, and MiD51. Fis1 serves as an interface protein between Drp1 and mitochondria and, although not as effective as the yeast Fis1, plays a role in coordinating mitochondrial fission and autophagy (Chan, 2020). Striatal dysfunction triggered by haploinsufficiency of the forkhead box protein P1 (FOXP1) gene underlies the neurodevelopmental disorder FOXP1 syndrome, which is characterized by functional deficits in locomotion, intelligence, and language. The reduction of phosphorylated Drp1 in FOXP1 is also indicative of the occurrence of reduced mitochondrial fission. Interestingly, however, an increase in Fis1 expression is associated with mitochondrial fragmentation (Misgeld and Schwarz, 2017). In mammalian cells, fission occurs preferentially in regions in contact with the endoplasmic reticulum (ER) due to ER-associated inverted formin 2-mediated actin polymerization (Friedman et al., 2011). Actin filaments accumulate between mitochondria and inverted formin 2-rich ER membranes at the site of contraction, driving initial mitochondrial contraction, which allows Drp1-driven secondary contraction. In addition, deficiency of delta-5-desaturase 1, a mitochondria-associated ER-localizing enzyme. induces cerebral white matter dystrophy (Korobova et al., 2013). Upon starvation, as cellular cAMP levels increase, activated protein kinase A phosphorylates pro-fission Drp 1, which is retained in the cytoplasm to undergo mitochondrial fusion, thus sparing it from autophagic degradation (Gomes et al., 2011). Neural stem cells in the adult mammalian hippocampus are constantly generating new functional neurons that promote cognitive processes and emotional regulation, a process that is associated with extensive changes in mitochondrial mass, distribution, and shape. Enhancing Drp1 activity has been shown to further accelerate exercise-induced neuronal maturation (Steib et al., 2014).

Mitochondrial fusion and neurodevelopmental disorders

The dynamic processes of mitochondrial fission and fusion are essential for maintaining mitochondrial homeostasis. When these processes are in equilibrium, the normal number of mitochondria and their rational morphological structure can be preserved. For instance, when fission is inhibited, mitochondria tend to increase interconnections and extend dramatically due to unopposed fusion. This phenomenon underscores the interdependence of fission and fusion mechanisms, which together form a feedback regulatory loop to ensure mitochondrial quality and function (Chen et al., 2003).

Mitochondria are double-membrane organelles, and fusion is preceded by fusion of the outer membrane and followed by fusion of the inner membrane. In most cases, outer- and innermembrane fusion occur sequentially with a short interval. When the inner and outer membranes are fused, the mitochondrial matrix diffuses into

the new mitochondria to complete the final fusion (Chan, 2020). Three GTP hydrolysates, mitofusin (Mfn)1, Mfn2, and optic nerve atrophy 1 (Opa1), support the fusion process. The mitochondrial proteases Mfn1 and Mfn2 are located on the outer mitochondrial membrane and are associated with outer membrane fusion. Mitochondrial inner membrane fusion is mediated by Opa1, a member of the dynamin family that is required for inner membrane fusion. Cells with aberrant Opa1 expression exhibit fragmentation characteristics despite completion of outer membrane fusion (Pernas and Scorrano, 2016). In addition, independent of facilitating mitochondrial fusion, Opa1 plays an important role in maintaining cristae structures. The cristae structure in mitochondria provides aggregation sites for respiratory chain super-complexes, and in the absence of Opa1, the cristae ultrastructure is severely disrupted, which, in turn, greatly reduces energy supply capacity (Cogliati et al., 2013).

Bosch-Boonstra-Schaaf optic atrophy syndrome, triggered by mutations in the nuclear receptor subfamily 2 group f member 1 (NR2F1) gene, is a rare neurodevelopmental disorder. Loss of NR2F1 function in adult mice induces downregulation of the levels of mitochondrial fusion-related proteins Mfn2 and Opa1, which triggers mitochondrial fragmentation in newborn neurons (Bonzano et al., 2023). Cerebral white matter dystrophy is an inherited white matter disorder induced by mutations in the ER sphingolipid desaturase delta-5-desaturase 1, which impacts motor function and cognition in early childhood (Köhler et al., 2018; Pant et al., 2019). Delta-5-desaturase 1 deficiency induces defective mitochondrial kinetics of over-fusion. Drp1 levels have been shown to be significantly reduced in Delta-5-desaturase 1-deficient patients, but Mfn2 levels were not significantly altered. Decreased Opa1, however. was associated with its shift to the shorter Opa1 isoform associated with increased fission (Planas-Serra et al., 2023). In addition, dysregulation of PGC- 1α , which regulates mitochondrial biogenesis, in FOXP1 syndrome has also been shown to disrupt the balance between mitochondrial fusion and fission (Martin et al., 2014). PGC-1α stimulates Mfn1 in response to increased mitochondrial outer membrane fusion, and its dysregulation triggers mitochondrial structural disruption and disruption of energy transport; these changes induce FOXP1 syndrome, which is specifically characterized by mental retardation and language dysfunction (Wang et al., 2022b).

Axonal transport and plasticity with neurodevelopmental disorders

In many cells, mitochondria are highly mobile and cross the cytoplasm by transport along the cytoskeleton. In newborn hippocampal neurons, mitochondria near synapses that act as a stable local energy supply play an active role in the maintenance of spine and synaptic morphogenesis and plasticity, as outlined in **Figure 2**. As mentioned in the study, mutations in the NR2F1 gene lead to a rare neurodevelopmental disorder, Bosch-Boonstra-Schaaf optic atrophy syndrome. In damaged neurons, depletion of NR2F1 expression, which is associated with the number of dendritic spines, is significantly reduced (Bonzano et al., 2023). Neurite formation is important for the

formation of axons and dendrites in early neuronal development, and studies (Fung et al., 2011; Xia et al., 2024) have observed reduced neurite growth in neurons from patients with schizophrenia affecting neurodevelopment. Impaired neural network connectivity due to altered dendritic morphology growth and/or maintenance was observed in FOXP1 striatal neurons as a major cause of social and cognitive deficits, which is similar to the pathogenesis of ASD (Wang et al., 2022a).

Mitochondria move over long distances along microtubules via kinesin-1, a forward molecular motor of the kinesin family (also known as kinesin heavy chain), and dynein, a reverse molecular motor of the dynamin family (also known as the dynatin complex). Mitochondrial rho GTPase is a protein anchored to the outer membrane of the mitochondrion, and Milton acts as an adaptor between mitochondrial rho GTPase and motor function (Kang et al., 2008; Schwarz, 2013). Translocation driver proteins (TRAKs) support mitochondrial translocation in neurons. Relevant studies have reported that pathogenic TRAK1 variants cause disturbances in mitochondrial movement and distribution, leading to aberrant cellular respiration and ultimately causing fatal encephalopathies (Barel et al., 2017; Wu et al., 2021). TRAK1 interacts with mitochondrial rho GTPase 1 and acts concomitantly on the mitochondrial calcium uniporter complex that regulates mitochondrial mechanistic calcium ion concentrations and the influx of calcium into the mitochondrial matrix. However, this event is disrupted by schizophrenia 1 (DISC1) (Niescier et al., 2013). DISC1 is expressed in several subcellular compartments, including mitochondria, and is a risk factor for several neurological disorders such as schizophrenia and bipolar disorder (Ogawa et al 2014)

Mitochondrial transport is critical because of the need for high energy during neurotransmission and the buffering of calcium ions along axons to synapses. The TRAK family of articulatory proteins (TRAK1 and TRAK2) that connect mitochondria to microtubule-based motors are required for axonal and dendritic mitochondrial motility (van Spronsen et al., 2013). Cells with defective TRAKs exhibit an irregular distribution of mitochondria and altered motility of paracrine and retrograde transport, and pathogenic variants leading to aberrant splicing and low-level expression of genes are associated with severe neurodevelopmental delays, epileptic seizures, and fatal encephalopathies (Barel et al., 2017).

The proper distribution of mitochondria within axons and at synapses is essential for neuronal function. The mitochondrial anchoring protein Synaphili is recruited to the outer mitochondrial membrane, connecting it to microtubules and preventing them from moving, a process that is a mandatory mitochondrial localization step. Synphilin-1 (SNPH)-mediated regulation of mitochondrial transport and localization is essential for axon outgrowth during neuronal development and for the maintenance of the ATP levels required for synaptic activity (Wu et al., 2023). The percentage of mobile axonal mitochondria is significantly higher in SNPH genedeficient mice (Kang et al., 2008). Most of the

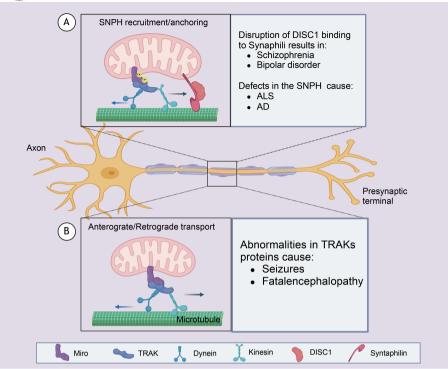


Figure 2 | Mitochondrial axonal transport and plasticity abnormalities in neurodevelopmental disorders.

In neurons, mitochondria travel long distances along microtubules driven by Kinesin-1 and the reverse dynein. Milton, also known as TRAK, acts as a linker between Miro, a protein anchored to the outer mitochondrial membrane, and the motor. (A) A high concentration of Ca²⁺ activates Miro recruitment to the anchoring protein Synaphili, thereby preventing mitochondrial motility. DISC1 can bind to Synaphili and relieve the restriction on mitochondrial movement. When DISC1 is abnormal, it leads to schizophrenia and bipolar disorder. (B) Abnormalities in connexin TRAK can induce seizures and fatal encephalopathy. Created with BioRender.com. AD: Alzheimer's disease; ALS: amyotrophic lateral sclerosis; DISC1; disrupted in schizophrenia 1; Dynein; a type of motor protein; Kinesin; a type of motor protein; Miro; mitochondrial Rho GTPase 1; SNPH: synphilin-1; Syntaphilin: a protein that interacts with synphilin-1; TRAK: trak protein family.

current studies on the effects of SNPH deletions or variants on mitochondrial mobility have focused on neurodegenerative diseases (Zhu and Sheng, 2011: Han et al., 2020), such as amyotrophic lateral sclerosis-like disorders and Alzheimer's disease, which lead to the accumulation of axons in damaged mitochondria, mainly through a prolonged stress response, and the selective release of SNPH proteins facilitates the stimulation of mitochondrial transport to the somatic cells (Lin et al., 2017). However, SNPH studies in NDDs are

Mitochondrial Autophagy and **Neurodevelopmental Disorders**

In addition to mitochondrial dynamics, which include the processes of fusion, fission, and transport, selective degradation of dysfunctional and disordered mitochondria is essential as a control mechanism to ensure the quality of healthy mitochondria.

The autophagy process involves the membranelinked proteins PARL, PINK1, and Parkin

Mutations in PTEN-induced putative kinase 1 (PINK1) and PARK2, a E3 ubiquitin ligase also known as Parkin, have been identified to contribute to familial recessive Parkinson's syndrome (Kitada et al., 1998). PINK1 is a protein kinase, and Parkin is an E3 ubiquitin ligase (Koyano et al., 2014). PINK1 phosphorylates ubiquitin on the mitochondrial outer membrane at serine

residue 65, forming phosphorylated ubiquitin with high affinity for Parkin. This drives the recruitment of Parkin on the outer mitochondrial membrane and the subsequent conformational change, thereby catalyzing ubiquitin translocation and ubiquitin chain labeling and triggering autophagic clearance of damaged mitochondria (Koyano et al., 2014; Shiba-Fukushima et al., 2014; Okatsu et al., 2015; Nguyen et al., 2016). Labeled mitochondria use ubiquitin chains as molecular signals to recruit autophagy receptors. Five receptors are involved in PINK1/Parkin mitochondrial autophagy: optic nerve phosphatase, nuclear dot protein 52, P62, and Tax 1 binding protein 1 (Chan et al., 2011; Sarraf et al., 2013). Autophagy receptors undergo phosphorylation by binding to TANKbinding kinase 1 to drive their binding to members of the autophagy-associated protein 8 family (microtubule-associated protein 1 light chain 3 [LC3] and gamma-aminobutyric acid receptorassociated protein [GABARAP]), which play roles in late autophagosome extension and sealing (Wild et al., 2011; Itakura et al., 2012). After PINK1/Parkin activation, the autophagosome initiation kinase unc-51-like autophagy-activated kinase 1 and the vesicle-associated protein autophagy-associated protein 9a enable the recruitment of pre-formed barrier membranes to the mitochondrial surface to initiate autophagosome formation (Lazarou et al., 2015). Tubulin binding factor D 15 and tubulin binding cofactor D 17 are activated and then connected to the outer mitochondrial membrane protein Fisl, which is activated by the

LC3/GABARAP interaction to achieve a regulatory role in autophagosome formation around mitochondria, with the Ras-related protein Rab-7 playing a fine-tuning role in this process. In FOXP1 syndrome, increased PINK1 and Parkin expression support autophagy of damaged mitochondria, and the expression of the microtubule-associated protein IC3A, which promotes the assembly of autophagosomes, is significantly elevated (Wang et al., 2022a).

Patients with ADHD who carry PARK2 copy number variation duplications and deletions have been diagnosed with mitochondrial dysfunction and abnormal energy metabolism. showing lower cellular ATP levels and reduced oxygen consumption rates. In addition, energy impairments in these patients may be related to the role of PARK2 dysregulation in affecting mitochondrial dynamics (Palladino et al., 2020). The E3-ubiquitin ligase C-type lectin domaincontaining protein 16A (CLEC16A) is a deleterious variant associated with severe NDDs. Four preexisting individuals in families with a double-allele CLEC16A variant showed features of congenital microcephaly, brain atrophy, and growth retardation. In a study of zebrafish embryonic brain development, deletion of CLEC16a was found to induce accumulation of damaged mitochondria and dysregulation of mitochondrial autophagy through inhibition of Parkin turnover and proteasomal degradation (Smits et al., 2023). Vacuolar protein sorting 13D (VPS13D) is a ubiquitin-binding protein that plays an important role in regulating mitochondrial autophagy. Recent studies have shown that a double-allele pathogenic variant of VPS13D is the genetic cause of early-onset progressive spastic ataxia (Seong et al., 2018; Durand et al., 2022). VPS13d mutants inhibit the onset of fusion by increasing the expression of the regulator of mitochondrial fusion, Mfn2, and regulating the mitochondrial and ER contact points and its downstream fission factor, Drp1, thereby controlling mitochondrial size and triggering autophagic clearance (Wang and Zhang, 2018; Shen et al., 2021a). Mitochondrial autophagic clearance is impaired by the loss of VPS13D. VPS13D was found to affect the mitochondrial autophagy pathway by regulating autophagy-associated protein 8a and ubiquitin localization in the mitochondrial core autophagy machinery. Furthermore, loss of VPS13d causes an autophagy defect like that of PINK1 deletion and a different autophagy manifestation than the loss of Parkin (Shen et al., 2021b).

Autophagy removes damaged mitochondria and prevents the increase in reactive oxygen species Maintenance of neuronal mass and functional stability depends on proper mitochondrial autophagic scavenging (Figure 3).

Mitochondrial dysfunction increases ROS accumulation and leads to cell death. Increased expression of ROS has been observed in patients with neuronal injury. In patients with white matter encephalopathy induced by delta-5-desaturase 1 variants, ROS production is increased in fibroblasts. Based on the reduction of nicotinamide adenine dinucleotide phosphate, an electron donor required for glutathione reductase, which regulates glutathione production, the

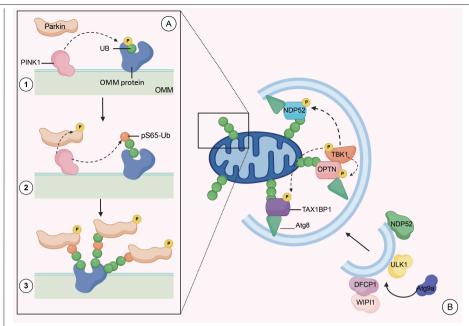


Figure 3 | The process of mitochondrial autophagy.

(A) PINK1/Parkin-mediated mitochondrial ubiquitination. Ubiquitin is linked to proteins. The outer mitochondrial membrane at the S65 site and PINK1 initiates recruitment of the ubiquitin ligase Parkin by phosphorylating (indicated by dashed arrows) ubiquitin (Ub) (Sabariego-Navarro et al., 2022). Parkin's high affinity for s65-phosphorylated ubiquitin (pS65-Ub) drives a conformational change in its translocation to the outer mitochondrial membrane, from a closed structure to a stable open conformation, relieving activity inhibition (Sahin and Sur, 2015). Activated Parkin attaches ubiquitin to outer mitochondrial membrane proteins, providing more ubiquitin substrate for PINK1 phosphorylation. At the same time, the phosphorylated ubiquitin substrate activates the recruitment of more Parkin molecules. The recruited Parkin couples more ubiquitin to the outer mitochondrial membrane protein. This positive feedback loop promotes continued recruitment and amplification of signaling molecules (Battle, 2013). (B) A model of autophagosome formation during mitochondrial autophagy. The s65-phosphorylated ubiquitin chain (pS65-Ub) produced by PINK1 and Parkin binds to the receptors OPTN, NDP52, and TAX1BP1. The binding partner of OPTN, TBK1, phosphorylates Optineurin, NDP52, and TAX1BP1 by completing autophosphorylation and phosphorylating Optineurin, NDP52, and TAX1BP1 (the process of phosphorylation is indicated by dashed arrows). Phosphorylation of the three receptors promotes their pair binding to pS65-Ub. Subsequently, Optineurin and NDP52 recruit autophagy-initiating kinase 1 (ULK1) to initiate autophagosome formation on damaged mitochondria. Simultaneously, autophagy-associated protein 9a (Atg9a) and lipid kinase complex are recruited. Upon initiation, the production of phosphatidylinositol 3-phosphate during recruitment of lipid kinase complex further recruits WIPI1 and DFCP1. The initial formation of the isolation membrane prepares for the formation of autophagic vesicles. Autophagy receptors bind to microtubule-associated proteins to promote the extension of the mitochondrial barrier membrane. Eventually, damaged mitochondria are encapsulated within the autophagosomes and delivered to the lysosome for degradation. Created with BioRender.com. Atg8: Autophagy-related protein 8; Atg9a: autophagy-related protein 9a; DFCP1: double FYVE domain-containing protein 1; NDP52: nuclear dot protein 52; OMM: outer mitochondrial membrane; OPTN: optineurin; Parkin: an E3 ubiquitinprotein ligase; PINK1: PTEN-induced putative kinase 1; pS65-Ub: phosphorylated serine 65-ubiquitin; TAX1BP1: Tax1binding protein 1; TBK1: TANK-binding kinase 1; UB: ubiquitin; ULK1: Unc-51-like autophagy-activating kinase 1; WIPI1: WD repeat-containing protein interacting with phosphoinositide 1.

low reducing power in FOXP syndrome induces and thus increases the levels of ROS (Wang et al., 2022a). Complex I deficiency is the most common cause of NDDs in humans. It mainly affects mitochondrial function, causing excessive accumulation of ROS and thereby inducing neuroligin-mediated neurodevelopmental defects. Lutein reduces the generation of ROS by mutations in ubiquinone oxidoreductase Fe-S protein 1 or 4, which regulate oxidoreductase activity (Maglioni et al., 2022). The WD repeatcontaining protein 45 (WDR45) gene is located on the X chromosome and targets mitochondria and is required for selective autophagy. WDR45 deficiency leads to mitochondrial damage and oxidative stress, and variations in the gene have been associated with six different neurodegenerative disorders, namely β - propeller protein-associated neurodegeneration, Rett-like syndrome, intellectual disability, developmental and epileptic encephalopathy, early-onset epileptic encephalopathy, and West syndrome (Cong et al., 2021). To adapt to the changing

needs of the developing brain, microglia must undergo corresponding morphological and functional changes and remodeling. During this process, microglia exhibit features that promote mitochondrial activity and phagocytic activation in a protein kinase B (AKT)-dependent manner. Dysfunction of interleukin (IL)-33 and its receptor ST2 leads to impaired microglia development and impaired synaptic function. In addition, conditional deletion of Il1rl1, which encodes ST2, increases susceptibility to seizures (He et al., 2022). Fragile X syndrome is a genetic disorder characterized by a range of cognitive and behavioral deficits including mild-to-moderate mental retardation. The pathogenic mechanism of this syndrome involves the silencing of the gene encoding the fragile X mental retardation protein, a translational regulator essential for neurodevelopment, due to an X-linked mutation in the Fmr1 gene. Studies have shown altered mitochondrial respiratory capacity and high levels of ROS accumulation characterized by Fmr1 deletion in studies of fragile X syndrome patients (Vandenberg et al., 2022:

Gonzalez et al., 2025). Three novel neo-CACNA1C variants (p. E411D, p. V622G, and p. A272V) cause neurodevelopmental deficits. p. E411D variants are found in patients with ADHD and moderate intellectual disability, p. V622G variants are seen in patients with West syndrome, whereas p. A272V variants are found in patients with epilepsy and mild intellectual disability. All three variants show disturbed calcium currents and abnormal mitochondrial copy number and ATP production. These variants impair mitochondrial and lysosomal function and ultimately accelerate impaired mitochondrial autophagy (Kessi et al., 2023). Gilles de la Tourette syndrome is a complex multifactorial neurodevelopmental disorder characterized by dyskinesia and impaired vocalization. However, the underlying etiology of this disorder remains largely unknown, and the influence of multiple genes accompanied by environmental factors is now commonly recognized. Mitochondrial inner membrane peptidase subunit 2 is one of the susceptibility genes for Tourette syndrome, and a significant increase in mitochondrial oxidative stress levels has been reported in inner membrane peptidase subunit 2-deficient mouse and human cells. However, in comparison to controls. lower mitochondrial dysfunction showed weak differences (Bjerregaard et al., 2020).

In NDDs with abnormal mitochondrial autophagy, neurodegeneration is exacerbated not only by ROS accumulation but also by dysfunctional mitochondrial clearance through impaired function. Koolen-de Vries syndrome is a neurodevelopmental disorder caused by haploinsufficiency of the KAT8-associated factor 1 (KANSL1) gene. Variations in the KANSL1 gene induce dysfunction of autophagy. Thus, accumulation of damaged mitochondria in neuronal cells is the pathogenesis of Koolende Vries syndrome. Furthermore. in KANSL1deficient patients, the significantly reduced antioxidant enzyme superoxide dismutase 1 stimulates subsequent oxidative stress-mediated accumulation of autophagosomes, which further prevents autophagosome scavenging and disrupts synaptic and neuronal networks (Li et al., 2022: Linda et al., 2022).

Molecular Mechanisms of Mitochondrial Abnormalities and Neurodevelopmental Disorders

Effects of mtDNA mutations and coding abnormalities on neurodevelopmental disorders

In animal studies, mice born with inherited mtDNA mutation-deficient mice exhibit abnormal brain development and are more prone to cognitive and behavioral deficits (Yardeni et al., 2021; Wang et al., 2022a). Mutations in mtDNA led to the impaired synthesis and loss of function of proteins associated with the oxidative phosphorylation system, which leads to ATP depletion and ROS overproduction, a process that can, in turn, induce further mtDNA mutations. Variations in the NR2F1 gene in Bosch-Boonstra-Schaaf optic atrophy syndrome not only affect mitochondrial dynamics but also directly target genes important for mitochondrial DNA transcription and translation. These targeted genes include a key metabolic

nuclear gene required for respiration and a major activator of mitochondrial DNA replication, nuclear respiratory factor 1, as well as the nuclear gene regulating mitochondrial function, estrogen-related receptor alpha. These changes indirectly affect the mitochondrial DNA encoding mitochondrially encoded cytochrome c oxidase I (Bonzano et al., 2023). For normal expression of mitochondrial genes, post-expression modification is a key indispensable step. The mitochondrial genome encodes 22 tRNAs, and cvtosine-5 methylation in post-transcriptional modification is one of the key regulatory steps in mitochondrial gene expression. Mammalian NOP2/Sun RNA methyltransferase family member 2 (NSUN2) is essential to produce m50C by several mammalian mitochondrial tRNAs, and NSUN2 variants have been associated with NDDs (Van Haute et al., 2019). In several other families with NSUN2 mutations, the Dubowitz-like syndrome, which presents with exhibits mental retardation, growth retardation, microcephaly features, and a mutation in a conserved residue (p. Gly679Arg) by a pure missense variant of NSUN2, causes spasticity, ataxic gait, and developmental delayed dysmorphism in the child (Khan et al., 2012; Martinez et al., 2012). Therefore, the maintenance of mitochondrial genetic stability and the normal function of transcription and translation is crucial to prevent the development of NDDs, but the current relevant studies are not sufficient to clarify these processes.

Reduced activity of key enzymes in mitochondrial bioenergetic metabolism affects energy metabolism in neural development

The end product of glycolysis, pyruvate, enters the mitochondria and is subsequently converted to acetyl CoA and eventually enters the tricarboxylic acid (TCA) cycle. The reduced form of flavin adenine dinucleotide (FADH) and NADH produced in the TCA cycle then donate the reduction product electrons to the electron transport chain in the inner mitochondrial membrane. The electron transport chain consists of four oxidative phosphorylation complexes. The electrons shuttle to eventually form water in complex IV, also known as cytochrome c oxidase (COX). Coenzyme Q and cytochrome c are responsible for moving electrons between complexes. Reducing equivalents are used to transfer electrons through subsequent members of the electron transport chain, including complexes I-IV, to produce electrochemical gradients. This sequence of events concludes with the generation of ATP from the energy stored in the electrochemical gradient in the presence of complex V, which maintains the energy supply required for life survival (van der Bliek et al., 2017; Yan et al., 2019).

Schizophrenia is a severe complex syndrome originating from NDD. It presents with psychotic symptoms such as hallucinations and delusions with cognitive dysfunction. When comparing mitochondria in schizophrenia and control samples of NSC under reduced consumption levels of functioning, non-mitochondrial oxygen consumption, ATP production, ROS levels, and respiratory capacity levels were elevated (Zuccoli et al., 2023). The current study found that allogeneic healthy mitochondrial transplants can exert a therapeutic effect in schizophrenic rats, a finding that demonstrates the important role of mitochondria in neurodevelopment and provides new insights into the role of mitochondrial transplants in the treatment of NDDs such as schizophrenia (Ene et al., 2023). COX20 is an assembly chaperone protein involved in the mitochondrial oxidative phosphorylation complex IV. Patients with the COX20 variants are characterized by early onset and slowly progressive loss of deep sensation and sensory ataxia. With reduced COX20 protein levels. impaired mitochondrial complex IV assembly induces defective oxidative phosphorylation function, which leads to mitochondrial bioenergetic dysfunction (Dong et al., 2021). Mice with hereditary mtDNA mutations and carrying non-synonymous mutations affecting oxidative phosphorylation complex I have deficits in social interactions (inadequate social communication), repetitive behaviors, and restricted interests similar to the symptoms of ASD. In addition. mitochondrial respiratory function and ROS levels in the hippocampus are similarly affected (Yardeni et al., 2021; Wang et al., 2022b). Mutations in the gene encoding mitochondrial aminoacyltRNA synthetase have been associated with a variety of diseases. Phenylalany1l-tRNA synthetase 2. mitochondrial (dFARS2) is the Drosophila homolog of mitochondrial phenylpropanoidtRNA synthetase. dFARS2 is required for the aminoacylation of mitochondrial tRNAs, for the stability of mitochondrial proteins, and for the assembly and enzymatic activity of the oxidative phosphorylation complex. Interestingly, seizure behavior and motor deficits have been induced by simulating FARS2 mutations in Drosophila (Fan et al., 2021). Zinc finger and BTB domaincontaining protein 11 (Zbtb11) is a conserved transcription factor mutated in families with inherited intellectual disabilities and plays an important regulatory role in mitochondria. Zbtb11 plays a critical role in the activation of respiratory complex I. Genetic inactivation of Zbtb11 leads to impaired recruitment of nuclear respiratory factor 2 (NRF-2) to its target promoter, severe defects in the assembly of complex I, which triggers damage to the mitochondria, eventual cell-proliferation arrest, and death (Wilson et al., 2020). Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in methyl-Cpg-binding protein 2 (MECP2) on the X chromosome. The main symptoms include loss of language function, abnormal gait, and repetitive stereotyped movements. Significant reductions in cytochrome c oxidase subunit I levels and the levels of complexes II, III, and IV, mitochondrial respiratory chain enzyme activity, and glutathione levels have been detected in both transcript and protein level studies of brain cells from patients with RTT, suggesting that mitochondrial energy production was severely impaired in these patients (Gold et al., 2014; Müller, 2019).

Abnormal mitochondrial Ca2+ inward flow and mitochondrial permeability transfer pore regulation in neurodevelopmental disorders

In **Figure 4**, elevated Ca²⁺ prevents mitochondrial movement in neurons both in a paracrine and retrograde manner. Mitochondrial arrest is caused by microtubule detachment or by

inducing conformational changes in mitochondrial Rho GTPase 1 by preventing motor-adapter interactions (Schwarz, 2013). Mitochondrial calcium homeostasis is a tightly controlled process. Mitochondrial calcium untake 2 is a major component of the mitochondrial calcium monotransporter complex, and its purist truncation mutations are associated with severe cognitive impairment, spasticity, and NDD with white matter involvement. Patient-derived mitochondrial calcium uptake 2-deficient cells are shown to impair mitochondrial calcium homeostasis, triggering increased mitochondrial sensitivity to oxidative stress and aberrant modulation of mitochondrial endomembrane potential (Shamseldin et al., 2017). Solute carrier family 25 member 12, a susceptibility gene for ASD encoding the mitochondrial aspartate/glutamate carrier, participates in the aspartate/malatereducing nicotinamide adenine dinucleotide shuttle and is involved in physiological activation of calcium ions. Excess calcium ion levels are responsible for promoting glutamate carrier activity in the autistic brain, supporting oxidative phosphorylation and ATP production, mitochondrial metabolism, and greater oxidative stress (Palmieri et al., 2010; Napolioni et al., 2011).

Mitochondria as a Therapeutic **Target for Neurodevelopmental Disorders**

Drugs acting on mitochondria to treat NDDs are detailed in Table 2.

Regulation of mitochondrial permeability and fusion kinetics

Regulating mitochondrial permeability and fusion dynamics is an effective approach to treating NDDs. Butyrate (BT), a short-chain fatty acid primarily produced by the gut microbiome, has emerged as a promising candidate for this purpose. BT positively modulates mitochondrial function by enhancing oxidative phosphorylation and fatty acid oxidation, thereby exerting neuroprotective effects. It has been shown to increase the expression of proteins involved in mitochondrial fission (e.g., PINK1, DRP1, FIS1) and physiological stress response (e.g., UCP2, mTOR, HIF1 α , PGC1 α), as well as those associated with cognition and behavior (e.g., CREB1, CamKinase II). These findings suggest that BT can enhance mitochondrial function, particularly in the context of physiological stress and mitochondrial dysfunction.

BT is primarily administered orally, since it is absorbed both passively and actively through specific monocarboxylate transporters. It can also be delivered via intraperitoneal injection, which has been shown to be effective in animal models of neurodevelopmental disorders. In these models, BT has demonstrated therapeutic potential in improving cognitive deficits and behavioral abnormalities associated with conditions such as ASD and Parkinson's disease. For instance, BT has been shown to rescue ASD-like behaviors and brain pathology in animal models by modulating neurotransmitter gene expression and improving mitochondrial function. However, the clinical application of BT faces several challenges. High

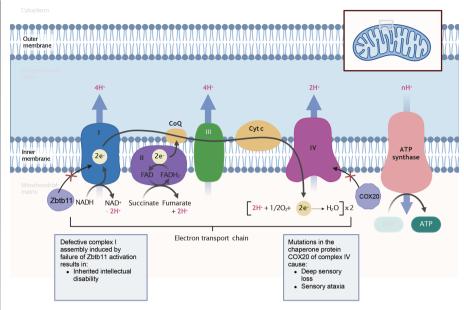


Figure 4 | Abnormal oxidative phosphorylation in neurodevelopmental disorders.

FADH and NADH produced during the TCA cycle transfer electrons from the reduction products to the electron transport chain in the inner mitochondrial membrane. Electron transport chain consists of four oxidative phosphorylation complexes (I-IV). Electrons pass through four complexes at a time and combine with oxygen at complex IV to form water. Two proteases, Coenzyme Q (CoQ) and cytochrome c are responsible for electron transfer between the complexes. Finally, the energy stored by the electrochemical gradient is used to generate ATP in the presence of complex V. The inactivation of 7btb11-induced complex Labnormalities was identified in familial intellectual disability. In addition, abnormalities in COX20, the chaperone protein of complex protein IV, induce progressive deep sensory loss and sensory ataxia. Created with BioRender.com. ADP: Adenosine Diphosphate; ATP: adenosine triphosphate; ATP synthase: adenosine triphosphate synthetase; Co.: coenzyme Q; COX20: cytochrome c oxidase assembly protein 20; Cut c: cytochrome c; FAD: flavin adenine dinucleotide; FADH₂: reduced flavin adenine dinucleotide; NAD⁺: nicotinamide adenine dinucleotide (oxidized form); NADH; nicotinamide adenine dinucleotide (reduced form); 7btb11; zinc finger and BTB domain-containing protein 11.

concentrations of BT may cause gastrointestinal discomfort, and its effects can be influenced by the microenvironment's redox state and the underlying mitochondrial function of the cells. Additionally, early postnatal exposure to BT has been linked to colitis in some studies. These potential adverse effects highlight the need for careful dosing and further investigation into the long-term safety of BT.

Despite these challenges, recent research has provided valuable insights into the therapeutic potential of BT. For example, studies have shown that BT can modulate the expression of genes involved in learning, memory, and behavior, such as cAMP response element-binding protein and CamKinase II. Thus, BT may play a role in regulating repetitive and obsessive behaviors associated with ASD. Moreover, BT has been found to improve mitochondrial function in lymphoblastoid cell lines derived from children with ASD, particularly in those with mitochondrial dysfunction. These findings indicate that BT could be a promising treatment option for children with ASD and other NDDs, although additional preclinical and clinical studies are needed to explore its practical implications. Butyrate holds significant promise for treating NDDs by regulating mitochondrial function and modulating gene expression related to cognition and behavior. While its administration through oral or injection routes has shown therapeutic potential in animal models, the potential for gastrointestinal side effects and the need for precise dosing highlight the necessity for further research. Future studies should focus on

optimizing BT's delivery methods, elucidating its long-term effects, and exploring its potential as a targeted therapy for NDDs (Rose et al., 2018).

Regulation of mitochondrial bioenergetics by activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha and others

The regulation of mitochondrial bioenergetics through the activation of PGC- 1α and other related pathways has emerged as a promising strategy for addressing mitochondrial dysfunction in NDDs. Postmortem tissues and animal models of ASD have shown an increased number of microglia and astrocytes. Recent studies have indicated that astrocytes play a crucial role in synapse formation and dendritic spine regulation, with synaptic plasticity being dependent on mitochondrial biogenesis in these cells (Blanco-Suarez et al. 2017; Koeppen et al., 2018). The key regulator of this process is the transient upregulation of PGC-1α, which orchestrates mitochondrial biogenesis. In the absence of astrocytic PGC- 1α , astrocyte proliferation is stimulated, further exacerbating neuroinflammation. Moreover, the release of insulin-like growth factor-binding protein 2 (Igfbp2), an inhibitor of insulin-like growth factor secretion, has been shown to reverse neurite growth inhibition by blocking bone morphogenetic protein (BMP) signaling in astrocytes associated with fragile X syndrome and RTT (Zehnder et al., 2021). In addition, increased release of lgfbp2 reverses the inhibitory effect of neurite growth by blocking BMP signaling in astrocytes of patients with fragile X syndrome and RTT (Caldwell et al., 2022). The sirtuin 1-specific activator resveratrol

averts developmental fluoride neurotoxicity by activating the sirtuin 1-dependent PGC-1 α / NRF1/TFAM signaling pathway, rescuing children from intellectual loss due to fluoride-induced mitochondrial dysfunction (Zhao et al., 2020). Palmitovlethanolamide (PEA) has been shown to ameliorate mitochondrial dysfunction by restoring the hippocampal brain-derived neurotrophic factor signaling pathway (Cristiano et al., 2018). In clinical studies, these compounds have been administered through various routes, including oral and intraperitoneal injection, and have shown varying efficacy and safety profiles. Resveratrol, for example, is typically administered orally and has been shown to cross the blood-brain barrier, exerting neuroprotective effects. However, its bioavailability remains a challenge, and the high doses required to achieve therapeutic effects could lead to gastrointestinal side effects. PEA, on the other hand, has been used in both animal and human studies to modulate inflammation and mitochondrial function, with fewer reported adverse effects. Its efficacy in restoring brainderived neurotrophic factor levels and improving mitochondrial function in the hippocampus highlights its potential as a therapeutic agent for NDDs. Despite these promising findings, the clinical application of these compounds requires further investigation. The long-term safety and optimal dosing strategies for resveratrol and PEA are yet to be fully established. Additionally, the heterogeneity of NDDs necessitates personalized approaches, and future studies should focus on identifying biomarkers to predict therapeutic response and minimize adverse effects. The integration of multi-omics technologies and patient-specific induced pluripotent stem cell (iPSC) models could provide valuable insights into the underlying mechanisms and facilitate the development of targeted therapies.

The activation of PGC- 1α and related pathways offers a promising avenue for enhancing mitochondrial bioenergetics and improving neurodevelopmental outcomes. While compounds such as resveratrol and PEA have shown therapeutic potential in preclinical studies, further research is needed to optimize their clinical application and address the challenges associated with bioavailability and long-term safety.

Correction of mitochondrial oxidative phosphorylation chain enzyme defects

Correction of mitochondrial oxidative phosphorylation, streptokinase defects, and oxidative stress can serve as new therapeutic targets in NDD. The role of mitochondrial oxidative phosphorylation system dysfunction and the resulting oxidative stress in the pathogenesis of a variety of NDDs is supported by evidence. Thus, targeting the alleviation of oxidative stress and energy deficits and thereby ameliorating the associated clinical phenotypes is considered to be an attractive therapeutic strategy. One promising approach for fragile X syndrome is pharmacological treatment with alpha-tocopherol, an antioxidant/free radical scavenger, which ameliorates the behavioral and learning deficits in patients with the syndrome (Osakada et al., 2003). In the treatment of RTT, exogenous compensatory omega-3 polyunsaturated fatty acid administration based on the regulation of oxidative

Table 2 | Drugs acting on mitochondria to treat NDDs

Mechanism of action	Clinical syndrome	Drug	Administration method	Efficacy	Side effect
Proteins related to neurokinesis and fusion (Drp1, FIS1)	ASD	ВТ	Oral	Improve certain symptoms (e.g., social behavior, anxiety, and repetitive behaviors) in ASD patients	Gastrointestinal reactions
Regulation of mitochondrial bioenergy production by activating PGC-1 $\boldsymbol{\alpha}$	Fragile X syndrome, RTT	lgfbp2	Viral vector, intracerebral injection, or nasal administration	Igfbp2 gene therapy can improve social behavior, cognitive function, and anxiety in FXS mice. Currently in early clinical trial stages with limited large-scale clinical data.	Immune reactions
	Intellectual loss of children with mitochondrial dysfunction caused by fluoride	RSV	Oral	Low absorption rate, and lack of clinical trials	Gastrointestinal reactions
	ASD	PEA	Oral, liquid	Improve social interaction and anxiety in ASD patients but have limited effects on repetitive behaviors	Gastrointestinal reactions and central nervous system side effects
Correction of mitochondrial oxidative phosphorylation chain enzyme defect	Fragile X syndrome	Alpha tocopherol	Oral	Improve behavioral symptoms (e.g., anxiety and social impairment)	Gastrointestinal reactions, vitamin E overdose, and increased bleeding risk
	RTT	Omega-3 polyunsaturated fatty acids	Oral	Improve motor function and behavior	Gastrointestinal reactions and increased bleeding risk
	ASD	Methylene blue and N-acetylcysteine	Oral, intravenous injection	Reduce levels of oxidative stress markers and improve cognitive function	Gastrointestinal reactions and skin reactions
	DS	Coenzyme Q (10), acetyl L-carnitine, α -lipoic acid and ascorbic acid		Reduce levels of oxidative stress markers (e.g., malondialdehyde MDA), improve cell function, and help improve cognitive function and behavioral symptoms	Gastrointestinal reactions, central nervous system side effects, skin allergies, and increased risk of kidney stones
	ASD	APT	Oral, intravenous injection	Improves anxiety, social impairment, and repetitive behaviors	Gastrointestinal reactions, central nervous system side effects, and immune system effects
	ADHD	МРН	Oral, transdermal patch	Significantly improve inattention, distractibility, and task completion ability in ADHD patients, regulate neurotransmitter levels, and reduce impulsive behavior and hyperactivity	allergies, cardiovascular side
	RTT	5-HT7R	Oral, intravenous injection, transdermal patch	Improve social behavior and anxiety in RTT models	Gastrointestinal reactions, central nervous system side effects, skin allergies, and cardiovascular side effects
	RTT	Bacterial protein CNF1	Viral vector, intracerebral injection, or nasal administration	Significantly reduce oxidative stress markers (e.g., MDA) and inflammatory cytokines (e.g., TNF-a, IL-6) in RTT models	Immune reactions and local tissue damage
Antioxidant and targeted activation of mitochondrial autophagy pathway	Koolen-de Vries syndrome	13-cis retinoic acid	Oral, topical administration	Improve cognitive function and behavioral symptoms in neurodevelopmental disorder models	, 0
	ASD and schizophrenia	New acyl carnitine ester	Oral, intravenous injection, transdermal administration	Improve hallucinations, delusions, and cognitive impairments	Skin side effects, gastrointestinal discomfort, and central nervous system side effects
	DS	Plant polyphenols	Oral	Significantly improve attention, learning ability, and social behavior in DS patients	Gastrointestinal discomfort
Targeted promotion of mitochondrial biosynthesis	Cerebral palsy	Resveratrol	Oral	Low absorption rate and lack of clinical trials	Gastrointestinal reactions

Table 2 provides a comprehensive overview of various drugs targeting mitochondrial dysfunction in NDDs. These drugs are categorized based on their mechanisms of action, including regulation of mitochondrial dynamics (e.g., fusion and fission), activation of mitochondrial biogenesis through PGC-1α, correction of oxidative phosphorylation defects, and targeted activation of mitochondrial autophagy. Each entry includes the clinical syndrome targeted, the specific drug, its administration method, efficacy, and potential side effects.

5-HT7R: 5-hydroxytryptamine receptor 7; ADHD: attention-deficit/hyperactivity disorder; ASD: autism spectrum disorder; ATP: adenosine triphosphate; BT: baclofen; CNF1: cytotoxic necrotizing factor 1; DS: down syndrome; FIS1: mitochondrial fission 1 protein; FXS: fragile X syndrome; Igfbp2: insulin-like growth factor-binding protein 2; IL-6: interleukin-6; MDA: malondialdehyde; MPH: methylphenidate; NDDs: neurodevelopmental disorders; PEA: palmitoylethanolamide; PGC-1α: peroxisome proliferator-activated receptor-gamma co-activator 1α; RTT: Rett syndrome; RSV: resveratrol; TNF-α: tumor necrosis factor-alpha.

stress has been shown to reverse some of the pathophysiological features. Augmentation of ROS production and oxidative stress can exacerbate the severity of the condition in autism and Down syndrome. Methylene blue and N-acetylcysteine have been proposed to be effective for autism treatment. Their therapeutic mechanisms involve neuroprotection by bypassing complex I/III to cytochrome c, increasing ATP production, and decreasing ROS production (Ghanizadeh et al., 2013). Mitochondria-targeting nutrients used to

alleviate oxidative stress and exerting a positive effect on mitochondrial function are widely used in the treatment of Down syndrome, such as coenzyme Q (Onishi et al., 2021), acetyl l-carnitine, alpha-lipoic acid, and ascorbic acid (Valenti et al., 2014). Methylphenidate, a central nervous system stimulant, is widely used in the treatment of ADHD. Methylphenidate ameliorates impairment of enzyme activity in the Krebs cycle and electron transport chain, increasing ATP and Na levels as well as K-ATPase activity, thereby maintaining

brain energy homeostasis (Foschiera et al., 2022). Brain serotonin receptor seven can be targeted for the treatment of RTT by repairing the oxidative phosphorylation disorders caused by damage to the mitochondrial respiratory chain (Valenti et al., 2017). The bacterial protein cytotoxic necrotizing factor 1 has been used to treat RTT in mice. Reactivation of the respiratory chain complex and prevention of hydrogen oxide overproduction in the brain were observed in the brains of RTT mice treated with cytotoxic necrotizing factor 1 (De

WRR Notice Reserved

Filippis et al., 2015). However, these studies mostly focused on the regulation of damaged protein complexes in the respiratory chain and the carriers involved in transport of electrons while ignoring the clearance of the generated ROS. Scavenging ROS in cells can be further explored to reduce cell damage in future studies. Clinically, these therapeutic agents are administered through various routes, including oral and intravenous delivery. While they show promise in preclinical models, their long-term safety and efficacy in humans require further investigation. For example, N-acetylcysteine is generally well-tolerated but may cause gastrointestinal side effects at high doses. Similarly, coenzyme Q10 has shown benefits in mitochondrial disorders but requires optimization of dosing and delivery methods to enhance bioavailability.

Overall, correcting mitochondrial oxidative phosphorylation chain enzyme defects represents a multifaceted approach to addressing mitochondrial dysfunction in NDDs. Future research should focus on optimizing therapeutic strategies, exploring combination therapies, and conducting larger clinical trials to establish the safety and efficacy of these interventions in diverse patient populations.

Targeted activation of the mitochondrial autophagy pathway

In Koolen-de Vries syndrome, where mitochondrial clearance is impaired due to abnormal autophagy. the Food and Drug Administration-approved drug 13-cis retinoic acid has shown promise in rescuing mitochondrial activity. This drug facilitates the fusion of autophagosomes with lysosomes. thereby alleviating the accumulation of damaged mitochondria and ROS in neurons and cardiac tissues. This ultimately leads to the therapeutic reversal of neurobehavioral abnormalities in KANSL1 heterozygous mice (Li et al., 2022; Linda et al., 2022). The drug is administered orally and has demonstrated significant efficacy in restoring autophagic flux and improving mitochondrial health. However, its clinical application requires careful consideration due to the potential teratogenic side effects observed in other contexts. Future studies should explore safer analogs or related compounds, such as all-trans RA or 9-cis RA, which may offer similar therapeutic benefits with fewer adverse effects. In the treatment of ASD and schizophrenia, acylcarnitine has emerged as a potential neuroprotective agent. Acylcarnitine functions as an antioxidant and a major regulator of the mitochondrial autophagy pathway, exerting beneficial effects on mitochondrial dynamics and overall neuronal health. Acylcarnitine is typically administered orally and has shown promising results in preclinical models, although its longterm safety and efficacy in humans remain to be determined through larger clinical trials (Moos et al., 2016). Antipurinergic treatment has also been explored for its potential to restore the activity of aberrant protein complexes in the mitochondrial respiratory chain. This treatment rescues fragile X protein expression in the brain, leading to the alleviation of social interaction deficits and behavioral limitations seen in ASD, APT is generally administered through intravenous or intraperitoneal injection in animal models, but its translation to clinical practice will require further

investigation into dosing, delivery methods, and potential side effects (Naviaux et al., 2013). Plant polyphenols have also garnered attention for their ability to ameliorate energy deficits in Down syndrome by modulating key metabolic pathways, including acetyl coenzyme A/NADPH, lipid oxidation, and homocysteine metabolism. These compounds are effective in scavenging mitochondrial ROS and initiating antioxidant programs to maintain mitochondrial homeostasis. Polyphenols are typically administered orally and have shown minimal adverse effects in preclinical studies. However, their bioavailability and long-term impact on human health need to be further evaluated in clinical trials (Vacca et al., 2016).

These therapeutic approaches targeting mitochondrial dysfunction and oxidative stress hold substantial promise for improving outcomes in NDDs. However, their clinical application requires careful consideration of dosing, delivery methods, and potential adverse effects. Future research should focus on optimizing these treatments, exploring combination therapies, and conducting larger clinical trials to establish their safety and efficacy in diverse patient populations.

Animal Models of Neurodevelopmental Disorders

NDDs are a group of diseases that develop during a child's development and have a lifelong impact on children's health. They include intellectual disabilities, communication disorders, ASD, ADHD, tic disorders, specific learning disabilities, and other NDDs (Bonetti et al., 2024). A variety of animal models have been developed for these diseases.

Animal models of autism

ASD is a group of behavioral-defined NDDs characterized by three core symptom areas: impairments in social interaction, communication abnormalities, and restricted and repetitive behavior patterns (Mamun et al., 2025). The growing number of cases of ASD and the high costs of treatment and care have made this disease a major public health problem. The etiology of ASD is unknown, and multiple factors such as genetic vulnerability and environmental factors may contribute to the autism phenotype. Different preclinical research models, including chemically induced models, genetically engineered models, and spontaneous models, have been developed to study behavioral phenotypes and underlying pathophysiology of ASD and develop new therapies for ASD. A variety of animal models have been constructed. These models can be roughly divided into three categories: genetic animal models, environmental factor-induced animal models, and idiopathic animal models. The most commonly used autism models include six commonly used genetic models (Ube3a, Pten, Nlgn3, Shank3, MECP2, and Fmr1 mutant or knockout mice) and three chemically induced models (valproic acid [VPA], lipopolysaccharide [LPS], and polyinosine). Many mouse models with mutations in genes at risk for ASD have been developed and shown to have altered behaviors associated with ASDs (Assimopoulos et al., 2022; Panzenhagen et al., 2022).

The prevalence of neurodevelopmental disorders was 6-10 times higher in children with a history of prenatal VPA exposure, with ASD being the most common manifestation of neurodevelopmental disorders at 6 years of age in children with prenatal VPA exposure (Bromley et al., 2013). In animal experiments, rats or mice exposed to VPA prenatally are classic animal models for ASD research and are widely used in studies to explore potential therapeutic drugs for ASD. Studies have shown that the social ability, social preferences, repetitive behavior, and exploratory behavior of mice exposed to VPA prenatally are generally impaired (Silva et al., 2025). In terms of molecular mechanism, the researchers conducted a preliminary investigation on the molecular mechanisms of VPA in embryonic development and early induction of ASD, and found that VPA exposure regulates some signaling pathways, such as histone hyperacetylation, the wingless/ integrated signaling pathway, the extracellular signal-regulated kinase-p21 signaling pathway. and 1-amino, butyric acid levels in the brain, thereby affecting brain development and neural networks maturation, ultimately leading to ASDlike behavioral phenotypes in offspring (Fang et al.,

BTBR mice were originally bred by Dunn of Columbia University using mice carrying the shorttailed gene and mice carrying the cluster gene mutation, resulting in continuous inbreeding (Varghese et al., 2017). The abnormal behavior of BTBR mice is mainly caused by the three core solo glycoside polymorphisms of the Kmo gene encoding kynurenine 3-monooxygenase. BTBR mice can adequately simulate the core symptoms of clinical ASD patients, so they are widely used in studies on the pathological mechanisms underlying ASD and the screening of drug candidates. BTBR mice show obvious social dysfunction such as low social motivation and lack of social ability in the three-box social ability experiment. In the direct social interaction experiment, BTBR mice showed significantly reduced exploratory social behaviors such as sniffing and following. In the Ultrasonic Vocalization test, the BTBR mice emitted unusually high-frequency, highamplitude ultrasound vocalizations when they left the female mouse's cage. The researchers believed that this behavior is similar to the loud crying of children with ASD when they are forced to be separated from their mothers. In contrast, the number of ultrasonic waves emitted by adult BTBR mice when confronted with the smell of unfamiliar mice decreased, which is similar to the language communication impairment of human ASD patients. In addition, the study also showed that BTBR mice exhibited increased repetitive behaviors, such as solitary living, digging, grooming, and beading (Bridi et al., 2025). The anatomical features of BTBR mice are also consistent with those of ASD patients. For example, in BTBR mice, the organic lesions of the central nervous system are mainly concentrated in the dysplasia of the cortex, corpus callosum, and hippocampus. The most significant neuroanatomical features are 100% loss of the corpus callosum and severe reduction in hippocampal associations. These features are similar to the clinical manifestations of ASD patients (Chen et al., 2025c).

Studies on the maternal immune activation (MIA) model originated from a large-scale epidemiological investigation of the pathogenic factors of ASD. Infection during pregnancy, especially in the first three months, is closely related to the risk of ASD in offspring. In animal experiments, MIA models can be successfully constructed by exposing pregnant female mice or rats to factors such as polyinosinic-polycytidylic acid (Poly I:C), LPS, simulated viruses, and bacteria. These factors activate the immune system by inducing maternal immune responses (Santoni and Pistis, 2024). In the Ultrasonic Vocalization test, the ultrasonic vocal frequency of MIA offspring mice decreased in the face of different social stimuli, indicating the presence of language communication disorders in the MIA offspring mice. In the three-compartment social-ability test. the social preference of MIA offspring mice was significantly reduced, indicating the presence of social communication disorders in MIA offspring mice. In the beading and grooming experiments, MIA offspring mice showed greater repeated stereotyped behaviors. These results suggest that the offspring mice of the poly I:C immune activation model exhibited very similar behavioral characteristics to those of ASD patients, such as social communication disorders, grooming, repetition, nesting and stereotyped behaviors (Naviaux et al., 2014).

Animal models of schizophrenia

Schizophrenia is a highly destructive and complex psychiatric disease that is accompanied by various positive and negative symptoms and cognitive impairment all of which place a heavy burden on society. This disease involves complex interactions between genetic and environmental factors during neurodevelopment; as a result, elucidation of the etiology of schizophrenia and the development of treatment approaches remains quite challenging. Therefore, the establishment of appropriate animal models can help people understand the neurobiological basis of schizophrenia caused by various pathogenic factors and provide clues and theoretical basis for finding new treatment methods. At present, the main modeling methods include neurodevelopmental models, druginduced models, and genetic mouse models.

For the establishment of neurodevelopmental models, the most widely used methods include prenatal injection of methylazoxymethanol, postweaning social isolation, "pregnancy infection model," and the second-strike hypothesis. Methylazoxymethanol is an anti-mitotic agent that methylates DNA and specifically acts on the proliferation of neuroblasts without affecting glial cells. Injection of methylazoxymethanol at different stages of pregnancy can cause different neurodevelopmental abnormalities, and administration on the 17th day of gestation in rats is a common method for constructing animal models of schizophrenia. In the brain of the offspring, structural changes include reduced medial prefrontal volume, increased lateral and third ventricles, a decrease in intermediate nerve cell markers in marginal and cortical areas, and an increase in dopamine nerve cell activity in the ventral tegmental area. Behavioral phenotypes include increased motor response to the dopamine pathway agonist amphetamine, decreased social activity, deficits in sensorimotor gating, memory impairment, and increased anxiety (Takahashi et al., 2019; Sonnenschein and Grace, 2020).

Post-weaning social isolation is based on the fact that rodents display a well-defined social structure and hierarchy in the population, and deprivation of this trait can have important effects on their neurodevelopment. Therefore, social isolation of young mice from weaning can lead to a range of behavioral deficits in adulthood, including increased levels of spontaneous movement, responsiveness to novelty, augmentation, sensorimotor gating disorders, cognitive impairment, and increased anxiety and aggression, which are very similar to the core symptoms of schizophrenia (Desbonnet et al., 2022: McGrath and Briand, 2022). Antipsychotic drugs such as haloperidol, olanzapine, and risperidone are known to reverse the increase in spontaneous movement caused by social isolation. Thus, the social isolation-induced schizophrenia model after weaning has a high predictive validity, and it can be used to test the efficacy of drugs to reverse positive symptoms of schizophrenia. At the same time, the model also has good structural validity. The model animals showed reduced frontal lobe volume, dendritic spine density, and reductions in hippocampal and parvalbuminpositive intermediate nerve cells. These histological abnormalities can also be observed in patients with schizophrenia (Hamieh et al., 2021; Moghadam et al., 2021).

Another model-building strategy is the use of polyinosine polycytidine to induce MIA in pregnant rodents. MIA has been suggested to induce longterm immune changes in the brains of rodent and primate offspring, which may underlie epigenetic changes that mediate behavioral and brain structural changes in animals similar to the pathological changes in schizophrenia (Vlasova et al., 2021; Xu et al., 2024). Animal models of drug-induced schizophrenia are widely used, and the principle of model construction is based on the hyperactivity of dopaminergic pathways projected to marginal regions in etiology (Białoń and Wąsik, 2022), and the reduced function of N-methyl-d-aspartate receptors in glutamate receptors (Nakazawa and Sapkota, 2020). Thus, drugs commonly used in animal models are dopamine pathway agonists (e.g., amphetamines, apomorphine) and non-competitive N-methyl-D-aspartate receptor antagonists (e.g., phencyclohexidine, ketamine, diazocycline, and pyrifoxine). Among them, amphetamine-induced psychiatric symptoms include hypermovement, spatial working memory impairment, sensorimotor gating deficits, and potential inhibitory deficits (Arroyo-García et al., 2021; Pedrazzi et al., 2024). Genetic factors have been the focus of research in the etiology of schizophrenia, and are the basis for many mouse models of schizophrenia. Many candidate genes are associated with an increased risk of schizophrenia, and most of them are associated with nerve cell plasticity, glutaminergic or dopaminergic neurotransmitters, and synaptogenesis (Ly et al., 2024), Identifying candidate genes is the first step in building a complex animal model of schizophrenia. The etiopathology of schizophrenia is likely to involve more than one gene, including complex

gene-environment interactions and gene-gene interactions. The schizophrenia defect 1 gene (disrupted-in-schizophrenia 1, DISC1) primarily encodes the synaptic protein DISC1, which is expressed early in development. Genetic analysis showed that the DISC1 gene is considered to be a highly associated genetic factor in schizophrenia in humans (Rittenhouse et al., 2021), DISC1induced and/or partial loss of function in mice resulted in deficits in recognizing memory, social, and anxious behaviors, as well as sensorimotor gating abnormalities, which are typical behavioral symptoms of schizophrenia (Park et al., 2025). 22q11.2 deletion syndrome is a genetic syndrome caused by the deletion of the 22q11. 2 chromosome. A large amount of genetic evidence suggests that the deletion of 22q11.2 is related to schizophrenia in humans (Rummell et al., 2023). Mutations in the cell adhesion molecule neuregulin-1 and its receptor erythroblastic leukemia viral oncogene homolog 4 also increase the risk of schizophrenia (Rodríguez-Prieto et al., 2024).

Animal models of attention deficit hyperactivity disorder

ADHD is a common neurodevelopmental disorder in childhood. The global incidence rate of ADHD is approximately 7.2%, and about 50% of the patients' symptoms will persist into adulthood. The typical clinical manifestations of ADHD are hyperactivity, impulsivity, and inattention. Moreover, individuals with ADHD often show conduct disorder, tic disorder, learning disorder, speech and language developmental disorders, and oppositional defiant disorder. In basic research on ADHD, animal models are important to meet the requirements of rapid invasive operation and strict hypothesis testing, the primary conditions for disease research. The existing ADHD models include genetic models, environmental induction models, and neurodevelopmental disorder models. Genetic models mainly target genes associated with the risk of developing ADHD. The dopamine transporter in the presynaptic membrane is primarily involved in reuptake of dopamine from the synaptic gap into the presynaptic membrane vesicles for storage, control of extracellular dopamine levels, and intracellular dopamine storage. It is also the main substance that terminates the action of dopamine (Suzuki et al., 2024). Dopamine transporter-knockout mice showed clinical symptoms and behavioral manifestations consistent with ADHD, with good face validity. In the dopamine transporterknockout mouse model, the dopamine released in the synaptic space could not be cleared in time and spread outside of the cell, which severely reduced the utilization and storage of dopamine, resulting in a nearly 13-fold decrease in the content of dopamine in the striatum (Mallien et al., 2022). Spontaneously hypertensive rats exhibit typical clinical symptoms of ADHD such as spontaneous hyperactivity, impulsivity, and learning cognitive impairment, and are currently the most widely used animal model of ADHD (Sable et al., 2025). However, their use is associated with some controversy. Hypertension is a confounding factor, since the symptoms of ADHD patients do not include hypertension. Although spontaneously hypertensive rats do not show hypertension

WRR Nation Reserved

before 10 weeks of age, the testing schedule is delayed. In addition, high blood pressure can lead to dysfunction, brain damage, and cognitive impairment. During the experimental process, the interference of high blood on the experimental results is unavoidable (Santisteban et al., 2023; Tchekalarova et al., 2024). Synapse-associated protein 25 is a type of SNARE protein located in the plasma membrane cytoplasmic surface binding protein receptor. SNARE proteins are a large family of transmembrane proteins located on the membrane vesicle, which can initiate vesicle fusion, participate in the activation and fusion process of protein and membrane transport regulation and non-regulatory vesicle exocytosis activity, and regulate transmitter release (Cheng et al., 2025). Mice with the synapse-associated protein 25 semi-dominant mutation deletion exhibited neurodevelopmental delays in the delayed reinforcement task, and behavioral deficits, including hyperactivity, impulsivity, and inhibition, were impaired, but did not exhibit attention deficits that did not fully satisfy the face validity of animal models of ADHD (Regan et al.,

A previous study has shown that maternal stress during pregnancy, hypoxia during childbirth, and exposure to alcohol, nicotine, and methamphetamine during prenatal or developmental periods can significantly increase the probability of ADHD in offspring (Ochozková et al., 2021). Environmental induction models mainly include prenatal alcohol exposure (Alger et al., 2021), prenatal nicotine exposure (Jang et al., 2020), prenatal methamphetamine exposure (Čechová et al., 2023), and developmental pyrethroid pesticide deltamethrin exposure (Curtis et al., 2024). Animals exposed to alcohol before birth exhibited ADHD symptoms such as attention deficit, hyperactivity, and impulsivity from infancy. In addition, perinatal alcohol exposure also led to visual-spatial deficits, another manifestation of ADHD. Animals exposed to alcohol prenatally also exhibited attention deficits and learning disabilities in the Morris Water Maze, spiral arm maze, and T-maze, demonstrating good face validity. Consistent with the findings for patients with ADHD, the fetal alcohol animal model showed fewer nerve cells in multiple areas of the brain, including the prefrontal cortex cerebellar cortex and other regions. ADHD is characterized by low dopaminergic activity in several brain regions, such as midbrain limbic, midbrain cortex, and substantia nigra striatum. Studies have shown that the fetal alcohol animal models also show low dopamine function, indicating that this model has good structural validity (Ju et al., 2020: Sharma et al., 2021). Prenatal exposure to nicotine, including maternal active and passive smoking, can lead to a significant increase in the risk of developing ADHD in children after birth, as manifested by impaired reading ability, language impairment, and impaired memory. Studies have shown that prenatal exposure to nicotine in animals can cause hyperactivity, impulsivity, and attention and memory impairments in offspring, in addition to non-ADHD manifestations such as growth retardation, poor adaptability, and anxiety. Rats exposed to nicotine during pregnancy showed memory deficits in the spiral arm maze, impaired memory and impulsivity in the Five-Choice Serial Reaction Time Task, showing face validity, but also showing symptoms that are not part of ADHD. Children and adolescents exposed to nicotine during pregnancy experienced reductions in the volume of the cerebellum, frontal lobe, and lateral ventricle systems, and reductions in the volume of the corpus callosum and cerebellum were also observed in children with ADHD, indicating an intrinsic connection between the two (Contreras et al., 2022; Zhou et al., 2024).

Methamphetamine (METH) is a psychostimulant whose mechanism of action is a sharp increase in serotonin and dopamine levels, causing damage to nerve cells and leading to long-term damage to dopaminergic and serotonergic axonal end points in the hippocampus, striatum, and prefrontal cortex. Prenatal exposure to METH causes hyperactivity symptoms in rats and learning and memory impairments associated with the hippocampal glutamate system. It also impairs the recognition and memory of rats, as well as their ability to concentrate. The object localization test assesses spatial memory and spatial discrimination. The object localization test assesses spatial, memory, and spatial discrimination. Studies have shown that rats exposed to METH prenatally exhibited hyperactivity in the object localization test but no impulsive symptoms and limited facial validity. Prenatal exposure to METH can lead to changes in brain morphology and brain metabolism, increase the basal level of dopamine in the nucleus accumbens of rats, and have limited structural validity. Owing to damage to the dopaminergic end point, the effects of psychostimulants are very limited and cannot reflect their predictive validity (Ochozková et al., 2019, 2021). Childhood exposure to pyrethroids is closely associated with the onset of ADHD. Studies have shown that mice exposed to the pyrethroid pesticide deltamethrin during development exhibit ADHD clinical symptoms such as hyperactivity, impulsivity, and inattention, as well as memory deficits and good facial validity in the Y-maze. From the perspective of the mechanism of influence, these behavioral changes are caused by disruption of the dopamine system, including increased levels of dopamine transporters in the brain, reduced levels of dopamine in synapses, and increased levels of D1 dopamine receptors, which is consistent with the reduction in dopamine levels in ADHD patients, with structural validity. ADHDlike symptoms in mice exposed to deltamethrin can be controlled by methylphenidate hydrochloride, which reflects its predictive validity. The mouse model exposed to deltamethrin during development can better meet the three validities of the ADHD animal model, but it is still uncertain which period of development and what dose and method of administration can harvest better model mice. The corresponding modeling method is worth further exploration (Vester et al., 2020; Xi et al., 2022).

In addition to genetic and environmental influences, abnormalities in brain structure and function are also important factors in the pathogenesis of ADHD. Models of neurodevelopmental disorders include cerebellar growth retardation models, neonatal hypoxia rat models, maternal stress mouse models, neonatal 6-hydroxydopamine-impaired rat models, and

neonatal caries animal models of X-ray radiation. Cerebellar volume is significantly reduced in children with ADHD, and cerebellar growth retardation plays an important role in ADHD. Various drugs have been used to treat cerebellar damage, such as methoxymethanol on the 4th day after birth, which causes hyperactivity and subsequent conversion to mild hyperactivity, but amphetamine treatment aggravates hyperactivity in rats and lacks predictive validity. On postnatal day 7, rats treated with dexamethasone presented a significant decrease in cerebellar volume and mild hyperactivity in open-field experiments, but the findings were not validated. Although ADHD patients show a decrease in cerebellar volume, there is still much uncertainty about which drug to use to induce (de la Peña et al., 2018; Rahi and Kumar, 2021). Neonatal hypoxia has been implicated in many neurodevelopmental disorders, including ADHD. Studies have shown that neonatal hypoxic rats exhibit ADHD-like behaviors such as learning, memory impairment and hyperactivity. In the rat brain, the content of dopamine in the striatum decreases, which is consistent with the pathological state of children with ADHD, reflecting structural validity. The hyperactivity of neonatal hypoxic rats can be alleviated by the psychostimulant amphetamine, reflecting its predictive validity. Although the neonatal hypoxic rat model has a certain surface area, structure and predictive validity, it does not show all the core symptoms of ADHD. The surface validity did not fully match. The duration and degree of hypoxia during modeling need further consideration (Hamdy et al., 2020; Miguel et al., 2022). Maternal stress-induced mice presented symptoms similar to those of ADHD mice. When adult mice are under stress during pregnancy, their offspring exhibit hyperactivity but not impulsivity or inattentiveness, with limited facial validity. After the mother mouse was stressed, the offspring mice presented reduced striatal dopamine transporter activity and reduced utilization of dopamine transmitters in adulthood, with structural validity. When dopamine antagonists were used, the hyperactivity symptoms in the mice were relieved, indicating that the hyperactivity symptoms in the mice were correlated with dopamine. However, these model mice only exhibited hyperactivity, and other core symptoms of ADHD were not involved. As a model of ADHD, its structural validity and predictive validity are lacking (Bielas et al., 2014; Bronson and Bale, 2014). Neonatal 6-hydroxydopamineimpaired rats are considered potent ADHD model rats because of the selective chemical damage to dopaminergic nerve cells in 5-day-old rats. The rats exhibited hyperactivity and inattention but did not demonstrate impulsivity due to hyperactivity or learning impairment. They exhibited partial face validity in spatial discrimination tests. The rats exhibited hyperactivity and learning impairment along with a decrease in dopamine in the striatum, prefrontal lobe, cortex, septum, midbrain, and amygdala. In rats with 6-hydroxytryptamine lesions, D4 receptor levels are increased in the caudate nucleus, and D4 receptor polymorphisms are closely related to ADHD. In addition, serotonin increased in the rat brain striatum. Dopamine transporter inhibitors did not affect hyperactivity in rats, but D4 receptor antagonists and inhibitors of serotonin transporters significantly reduced

hyperactivity, indicating that the increase in serotonin in the striatum was closely related to hyperactivity in rats, with structural validity. The hyperactivity and inattention of neonatal 6-hydroxydopamine-damaged rats could be improved by methylphenidate hydrochloride and amphetamine, and the predictive validity was consistent. The hyperactive performance of a rat model with 6-hydroxytryptamine-dopamine impairment shows partial surface validity but is not comprehensive, and structural validity is also limited (Kantak, 2022; Carreón-Trujillo and Corona, 2024). X-ray irradiation of newborn caries leads to behavioral deficits, including learning and memory deficits. Studies have shown that rats exposed to X-rays after birth exhibit significant hyperactive and impulsive behavior. The reduced number of nerve cells in the hippocampus of the rat brain in this model is thought to be the cause of symptoms and amphetamine can reduce the behavioral and memory deficits caused by X-ray irradiation in rats. However, many practical problems and other controversies have resulted in the reliability of this model being questioned, so it has not been widely used (Hanbury et al., 2016; Selemon and Begovic,

Mitochondrial Deficits in Neuronal Cells and Neurodevelopmental Disorders

The brain is a complex organ that contains not only nerve cells but also a variety of nonnerve cells, such as glial cells (including astrocytes, microglia, and oligodendrocytes), vascular-associated endothelial cells, and pericytes (Bernier et al., 2025). These nonnerve cells play important roles in maintaining brain homeostasis, supporting nerve cell function, and coordinating the formation of neural circuits during development (Chen et al., 2025d; Tamatta et al., 2025). However, studies of NDDs tend to focus on mitochondrial dysfunction in nerve cells, ignoring the potential effects of mitochondrial defects in nonnerve cells (7ehnder et al., 2021; Abhilash et al., 2025). Indeed, mitochondrial dysfunction in nonnerve cells may also have profound effects on neurodevelopment.

Effects of mitochondrial dysfunction in nonnerve cells on neurodevelopment Astrocytes

Astrocytes are among the ost abundant types of glial cells in the brain, and they play a key role in maintaining the integrity of the bloodbrain barrier, providing metabolic support, and regulating synaptic transmission (Rawani et al., 2024; Soylu et al., 2025). Mitochondrial dysfunction may result in impaired energy metabolism in astrocytes, which in turn affects their support for nerve cells. For example, astrocytes support the survival and function of nerve cells by releasing neurotrophic factors, and mitochondrial dysfunction may impair this support (Dave and Pillai, 2022; Wang et al., 2023). In addition, mitochondrial dysfunction in astrocytes may also trigger oxidative stress and inflammatory responses, further disrupting the neurodevelopmental microenvironment (Feng et al., 2024; Mazzantini et al., 2025).

Microglia

Microglia are the brain's immune cells responsible for clearing cellular debris and pathogens and are involved in synaptic pruning (Shu et al., 2025; Zhao et al., 2025). Mitochondrial dysfunction may lead to the activation of microglia, triggering neuroinflammation (Ayyubova and Madhu, 2025; Karayel et al., 2025). Chronic inflammation disrupts the neurodevelopmental microenvironment, affecting nerve cell differentiation and synaptic formation (Gu et al., 2025; Liu and Zhang, 2025). In addition, mitochondrial dysfunction in microglia may further exacerbate nerve cell damage by releasing inflammatory mediators (D'Egidio et al., 2024; Ghosh and Pearse, 2024; Chen et al., 2025a).

Endothelial cells and pericytes

Cerebrovascular endothelial cells and pericytes are crucial for maintaining blood-brain barrier function and regulating cerebral blood flow (Hoover et al., 2025; Negri et al., 2025). Mitochondrial dysfunction may result in impaired energy metabolism in these cells, which in turn weakens their barrier function (Gil et al., 2025; Wang et al., 2025e). For example, mitochondrial dysfunction in endothelial cells may lead to vascular leakage, increasing the permeability of the blood-brain barrier, which in turn triggers an inflammatory response (Payne et al., 2023; Hu et al., 2024). In addition, mitochondrial dysfunction in pericytes may affect their support of blood vessels, leading to abnormal regulation of cerebral blood flow (van Hameren et al., 2023; Morton et al., 2025).

Oligodendrocytes

Oligodendrocytes are responsible for the formation and maintenance of myelin sheaths and are essential for the rapid transmission of nerve impulses (Bazzi et al., 2025; Ziar et al., 2025). Mitochondrial dysfunction can lead to abnormal myelination, which in turn affects the normal function of nerve cells. For example, mitochondrial dysfunction in oligodendrocytes can lead to the degeneration of myelin sheaths, affecting the conduction efficiency of nerve cells (Alvarez-Sanchez and Dunn, 2023; López-Muguruza and Matute, 2023).

Effects of nonnerve cell mitochondrial dysfunction on neurodevelopmental disorders

Mitochondrial dysfunction in nonnerve cells can affect neurodevelopmental disorders through a variety of mechanisms. For example, mitochondrial dysfunction in astrocytes and microglia may trigger oxidative stress and inflammatory responses that disrupt the neurodevelopmental microenvironment (Romagnolo et al., 2024; Toro-Urrego et al., 2024; Wang et al., 2024c). In addition, mitochondrial dysfunction in endothelial and pericyte cells may lead to impaired bloodbrain barrier function, increasing the risk of damage to nerve cells (Odeh et al., 2024). Mitochondrial dysfunction in oligodendrocytes may lead to abnormal myelination and affect the transmission of nerve impulses (Cossu et al., 2024: Tsitsikov et al., 2024).

Research progress and future directions

In recent years, research on the role of

mitochondrial dysfunction in NDDs has gradually increased, with a particular focus on the molecular mechanisms and therapeutic strategies involved. However, most of the current research has focused on neuronal cells, whereas investigations of mitochondrial dysfunction in nonneuronal cells are relatively limited. Nonneuronal cells, such as glial cells and endothelial cells, play crucial roles in brain development and function, and their mitochondrial dysfunction may contribute significantly to the pathogenesis of NDDs. For example, glial cells are involved in synaptic support, neurotransmitter metabolism, and immune regulation, and their mitochondrial dysfunction can exacerbate neuronal damage through neuroinflammation and impaired synaptic function. Therefore, future research needs to further explore the specific mechanisms of nonneuronal cell mitochondrial dysfunction in NDDs and its interaction with neuronal dvsfunction.

Moreover, developing therapeutic strategies targeting mitochondrial dysfunction is an important direction for future research. Mitochondrial dysfunction in NDDs is often characterized by impaired mitochondrial dynamics, oxidative stress, and defective mitophagy. Several potential therapeutic approaches have been identified, including the use of antioxidants, mitochondrial biogenesis stimulators, and modulators of mitochondrial dynamics. For example, natural polyphenolic compounds such as resveratrol and curcumin have been shown to induce mitochondrial biogenesis and alleviate oxidative stress. Additionally, targeting the PGC-1α pathway, which regulates mitochondrial biogenesis, and the NRF2-antioxidant response element pathway, which enhances cellular antioxidant defenses, has shown promise in preclinical studies. However, translating these findings into effective clinical treatments remains challenging owing to the complexity of mitochondrial dysfunction and the heterogeneity of NDDs.

In summary, while significant progress has been made in understanding the role of mitochondrial dysfunction in NDDs, future research should also focus on exploring the mechanisms in nonneuronal cells and developing targeted therapeutic strategies. A multidisciplinary approach, combining molecular biology, pharmacology, and clinical research, is needed to better understand the underlying pathophysiology and improve outcomes for patients with NDDs.

Limitations

This review has several limitations. Papers and articles published up to February 20, 2025, and written in English were included, which may have led to publication bias. Other studies or groups that could contribute insights into mitochondrial dynamics dysfunction in NDD may have been excluded from this review. In addition, the conclusions regarding mechanisms drawn from some of the selected studies may originate from animal models rather than humans, such as in the discussion of certain drugs that are still in the exploratory phase. However, these findings still hold significant value in guiding our understanding of the mechanisms involved.

Conclusion and Perspective

An increasing number of NDDs have been found to be associated with mitochondrial dysfunction. In recent years, new mitochondria-related proteins or other mutations that induce mitochondrial dysfunction have been identified in a variety of NDDs, providing evidence in support of a better understanding of the mechanisms by which mitochondrial dysfunction affects NDD. This paper reviews the role of mitochondrial proteins in mitochondrial bioenergetics, biokinetics, mitochondrial autophagy, and the mitochondrial genome in the pathogenesis of NDD, with a strong emphasis on neurodevelopmental deficits involved in mitochondrial fusion/fission cycle cycling and aberrant autophagic clearance following mitochondrial dysfunction and damage. Thus, improving mitochondrial dysfunction, particularly by modulating the mitochondrial dynamics-related proteome, is a promising therapeutic approach for the treatment of various NDDs.

In addition to describing the mechanisms by which diseases are induced by mitochondrial disorders. we have summarized the molecularly targeted drugs currently used for each mechanism and the diseases they treat. However, many challenges remain. Although an increasing number of pathogenic mechanisms have been identified and are contributing to diagnosis, the precise molecular mechanisms linking mitochondria to the pathogenesis of NDD remain to be elucidated. In addition, mitochondrial mechanisms may differ between different types of NDDs, and further in-depth studies are needed to develop highly specific mitochondrion-targeted NDD therapeutics. To our knowledge, the pathogenesis of neurodevelopmental disorders is still in the exploratory phase. Mitochondrial dysfunction, a pathological change that spans the entire life cycle, has been proven to be highly correlated with NDDs in multiple processes. However, pathological changes in mitochondria often lack disease specificity, and NDD lesions frequently occur early in life. Therefore, clarifying the pathogenesis of NDDs and exploring more disease-specific early indicators are particularly important for the early diagnosis and treatment of NDDs. We anticipate that the discovery of early interventions that can effectively combat mitochondrial dysfunction will promote neuroregeneration and, to the greatest extent possible, alleviate patients' symptoms and improve adverse prognoses. This is highly important for patients with NDDs, their families, and society as a whole.

Mitochondrial dysfunction plays a significant role in the pathogenesis of neurodevelopmental disorders. By delving into the mechanisms of mitochondrial bioenergetics, biodynamics, autophagy, and the mitochondrial genome, we can lay a theoretical foundation for the development of new therapeutic strategies. Future research needs to further elucidate the precise molecular mechanisms linking mitochondrial dysfunction to neurodevelopmental disorders and explore new therapeutic targets for neural regeneration. Additionally, the pharmacological and technical evaluation of mitochondrial therapies remains challenging. As the field of mitochondrial

pharmacology continues to evolve, improving our understanding of mitochondrial dysfunction in neurodevelopmental disorders is crucial for developing new preventive and therapeutic strategies. The treatment strategies for NDDs need to consider the heterogeneity of the diseases and individual differences. Future research should integrate multiomics technologies to analyze the pathological mechanisms of different NDD patients in detail and develop personalized treatment plans. For example, by establishing patient-specific iPSC models, disease progression can be better simulated, and effective therapeutic targets can be screened.

In summary, research on restoring mitochondrial function and promoting neuroregeneration offers new directions for the treatment of NDDs. Through interdisciplinary research and clinical translation, more effective therapeutic approaches are expected to be developed for patients with NDDs.

Author contributions: Conceptualization: YL; resources: YL, ZY, and WX; writing—original draft preparation: ZY and YL; writing—review and editing: ZY, YL, WX, and LC; figure preparation: YL and ZY; supervision: WX, ZL, ML, XW and LC. All authors have read and agreed to the published version of the manuscript.

Conflicts of interest: The author declares no conflict of interest.

Data availability statement: Not applicable.
Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

References

- Abhilash PL, Bharti U, Rashmi SK, Philip M, Raju TR, Kutty BM, Sagar BKC, Alladi PA (2025) Aging and MPTP sensitivity depend on molecular and ultrastructural signatures of astroglia and microglia in mice substantia nigra. Cell Mol Neurobiol 45:13.
- Alger JR, O'Neill J, O'Connor MJ, Kalender G, Ly R, Ng A, Dillon A, Narr KL, Loo SK, Levitt JG (2021) Neuroimaging of supraventricular frontal white matter in children with familial attention-deficit hyperactivity disorder and attention-deficit hyperactivity disorder due to prenatal alcohol exposure. Neurotox Res 39:1054-1075
- Almikhlafi MA, Abdallah NA, Kumar A, Sharma T, Khan Z, Fadil HA, Althagfan S, Aljohani AKB, Almadani SA, Miski SF, Saeedi T, Alharbi RS, Al-Harthe AM, Alsubhi MH, Wanas H, Aldhafiri A, Mehan S, Elbadawy HM (2025) Exploring azithromycin's neuroprotective role in traumatic brain injury: Insights into cognitive and motor recovery and neuroinflammatory modulation. Pharmaceuticals 18:115.
- Alvarez-Sanchez N, Dunn SE (2023) Potential biological contributers to the sex difference in multiple sclerosis progression. Front Immunol 14:1175874.
- American Psychiatric Association DSM-5 Task Force (2013)
 Diagnostic and statistical manual of mental disorders:
 DSM-5, 5th ed. American Psychiatric Association,
 Arlington, VA, USA.

- Arroyo-García LE, Tendilla-Beltrán H, Vázquez-Roque RA, Jurado-Tapia EE, Díaz A, Aguilar-Alonso P, Brambila E, Monjaraz E, De La Cruz F, Rodríguez-Moreno A, Flores G (2021) Amphetamine sensitization alters hippocampal neuronal morphology and memory and learning behaviors. Mol Psychiatry 26:4784-4794.
- Assimopoulos S, Hammill C, Fernandes DJ, Spencer
 Noakes TL, Zhou Y, Nutter LMJ, Ellegood J, Anagnostou
 E, Sled JG, Lerch JP (2022) Genetic mouse models of
 autism spectrum disorder present subtle heterogenous
 cardiac abnormalities. Autism Res 15:1189-1208.
- Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133-1145.
- Ayyubova G, Madhu LN (2025) Microglial NLRP3 inflammasomes in Alzheimer's disease pathogenesis: From interaction with autophagy/mitophagy to therapeutics. Mol Neurobiol doi:10.1007/s12035-025-04758-z.
- Bakaeva Z, Goncharov M, Frolov F, Krasilnikova I, Sorokina E, Zgodova A, Smolyarchuk E, Zavadskiy S, Andreeva L, Myasoedov N, Fisenko A, Savostyanov K (2024) Regulatory peptide Pro-Gly-Pro accelerates neuroregeneration of primary neuroglial culture after mechanical injury in scratch test. Int J Mol Sci 25:10886.
- Barel O, et al. (2017) Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy. Brain 140:568-581.
- Bazzi SA, Maguire C, Mayfield RD, Melamed E
 (2025) Alcohol induces concentration-dependent
 transcriptomic changes in oligodendrocytes. Addict
 Biol 30:e70012.
- Bernier LP, Hefendehl JK, Scott RW, Tung LW, Lewis
 CA, Soliman H, Simm S, Dissing-Olesen L, Hofmann
 J, Guo D, DeMeglio M, Rossi FM, Underhill TM,
 MacVicar BA (2025) Brain pericytes and perivascular
 fibroblasts are stromal progenitors with dual functions
 in cerebrovascular regeneration after stroke. Nat
 Neurosci 28:517-535.
- Bertholet AM, Delerue T, Millet AM, Moulis MF, David C,
 Daloyau M, Arnauné-Pelloquin L, Davezac N, Mils V,
 Miquel MC, Rojo M, Belenguer P (2016) Mitochondrial
 fusion/fission dynamics in neurodegeneration and
 neuronal plasticity. Neurobiol Dis 90:3-19.
- Białoń M, Wąsik A (2022) Advantages and limitations of animal schizophrenia models. Int J Mol Sci 23:5968.
- Bielas H, Arck P, Bruenahl CA, Walitza S, Grünblatt E (2014)
 Prenatal stress increases the striatal and hippocampal
 expression of correlating c-FOS and serotonin
 transporters in murine offspring. Int J Dev Neurosci
 38:30-35
- Bjerregaard VA, Schönewolf-Greulich B, Juel Rasmussen L, Desler C, Tümer Z (2020) Mitochondrial function in Gilles de la Tourette syndrome patients with and without intragenic IMMP2L deletions. Front Neurol
- Blanco-Suárez E, Caldwell ALM, Allen NJ (2017) Role of astrocyte–synapse interactions in CNS disorders. J Physiol 595:1903-1916.
- Bonetti M, Borsani E, Bonomini F (2024) The use of nutraceutical and pharmacological strategies in murine models of autism spectrum disorder. Cells 13:2036.
- Bonzano S, Dallorto E, Molineris I, Michelon F, Crisci I, Gambarotta G, Neri F, Oliviero S, Beckervordersandforth R, Lie DC, Peretto P, Bovetti S, Studer M, Marchis SD (2023) NR2F1 shapes mitochondria in the mouse brain, providing new insights into Bosch-Boonstra-Schaaf optic atrophy syndrome. Dis Model Mech 16:dmm049854.

- Bridi MCD, Luo N, Kim G, Menarchek BJ, Lee RA, Rodriguez B, Severin D, Moreno C, Contreras A, Wesselborg C, O'Ferrall C. Patel R. Bertrand S. Kannan S. Kirkwood A (2025) Daily oscillation of the excitation/inhibition ratio is disrupted in two mouse models of autism, iScience 28.111494
- Bromley RL, et al. (2013) The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs. J Neurol Neurosurg Psvchiatry 84:637-643.
- Bronson SL, Bale TL (2014) Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal anti-inflammatory treatment. Endocrinology 155-2635-2646
- Bui HT. Shaw JM (2013) Dynamin assembly strategies and adaptor proteins in mitochondrial fission. Curr Biol 23-R891-899
- Cai H, Hou F, Wang Y, Wu L, Wang Z, Wu M, Wang X, Hölscher C (2025) Mitochondrial calcium uniporter knockdown improves the viability of HT22 hippocampal neurons in Alzheimer's disease. Eur J Pharmacol 991.177347
- Caldwell ALM, Sancho L, Deng J, Bosworth A, Miglietta A, Diedrich JK, Shokhirev MN, Allen NJ (2022) Aberrant astrocyte protein secretion contributes to altered neuronal development in multiple models of neurodevelopmental disorders. Nat Neurosci 25:1163-
- Carreón-Trujillo S, Corona JC (2024) No effects of decanoic acid on locomotor activity and antioxidant defences in an experimental animal model of attention-deficit/ hyperactivity disorder, J Integr Neurosci 23:39.
- Čechová B, Mihalčíková L, Vaculin Š, Šandera Š, Šlamberová R (2023) Levels of BDNF and NGF in adolescent rat hippocampus neonatally exposed to methamphetamine along with environmental alterations Physiol Res 70:S559-571
- Chan DC (2020) Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol Mech Dis 15:235-259
- Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RLJ, Hess S, Chan DC (2011) Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 20:1726-1737.
- Chauhan S, Smith DR, Shariati-Ievari S, Srivastava A, Dhingra S, Aliani M, Fernyhough P (2025) Muscarinic acetylcholine type 1 receptor antagonism activates TRPM3 to augment mitochondrial function and drive axonal repair in adult sensory neurons. Mol Metab 92:102083.
- Chemla A, Arena G, Sacripanti G, Barmpa K, Zagare A, Garcia P, Gorgogietas V, Antony P, Ohnmacht J, Baron A, Jung J, Lind-Holm Mogensen F, Michelucci A, Marzesco A-M. Buttini M. Schmidt T. Grünewald A. Schwamborn JC. Krüger R. Saraiva C (2025) Parkinson's disease mutant Miro1 causes mitochondrial dysfunction and dopaminergic neuron loss, Brain doi: 10.1093/brain/ awaf051
- Chen H. Detmer SA. Fwald AJ. Griffin FF. Fraser SF. Chan. DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189-200.
- Chen H, Chang X, Zhou J, Zhang G, Cheng J, Zhang Z, Xing J. Yan C. Liu 7 (2025a) Anti-neuroinflammatory and neuroprotective effects of T-006 on Alzheimer's disease models by modulating TLR4-mediated MyD88/NF-κB signaling. CNS Neurol Disord Drug Targets 24:382-396.
- Chen H, Wang W, Yang Y, Zhang B, Li Z, Chen L, Tu Q, Zhang T. Lin D. Yi H. Xia H. Lu Y (2025b) A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury. Biomaterials 316:122995.

- Chen L, He X, Wang H, Fang J, Zhang Z, Zhu X, Qi Z, Guo Y, Liu R, Li D (2023) Dendrobium officinale polysaccharide prevents neuronal apontosis via TET2-dependent DNA demethylation in high-fat diet-induced diabetic mice. Int J Biol Macromol 233:123288.
- Chen M, Shi J, Liu T, Liu J, Liu Y, Li J, Luo Y, Luo J, Li X, Gong H, Fan X (2025c) Astragaloside IV ameliorates autismlike behaviors in BTBR mice by modulating Camk2n2dependent OXPHOS and neurotransmission in the mPEC. J Adv Res doi:10.1016/j.jare.2025.01.030.
- Chen TS, Kuo WW, Huang CY (2024) Autologous transplantation of green tea enigallocatechin-3-gallate pretreated adipose-derived stem cells increases cardiac regenerative capability through C-X-C motif chemokine receptor 4 expression in the treatment of rats with diabetic cardiomyopathy. Exp Anim 73:246-
- Chen W, Mao T, Ma R, Xiong Y, Han R, Wang L (2025d) The role of astrocyte metabolic reprogramming in ischemic stroke (review). Int J Mol Med 55:49.
- Chen YC. Huang HR. Hsu CH. Ou CY (2021) CRMP/UNC-33 organizes microtubule bundles for KIF5-mediated mitochondrial distribution to axon, PLoS Genet
- Cheng Q, Fan Y, Zhang P, Liu H, Han J, Yu Q, Wang X, Wu S, Lu Z (2025) Biomarkers of synaptic degeneration in Alzheimer's disease. Ageing Res Rev 104:102642.
- Chodari L, Sehati F, Hafazeh L, Nikbakhtzadeh M, Ataei S, Ranjbaran M, Ashabi G, Hosseindoost S (2024) Inhibition of histone methyltransferase promotes cognition and mitochondrial function in vascular dementia model, Behav Brain Res 473:115194.
- Coelho P, Fão L, Mota S, Rego AC (2022) Mitochondrial function and dynamics in neural stem cells and neurogenesis:Implications for neurodegenerative diseases. Ageing Res Rev 80:101667.
- Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC. Perales-Clemente F. Salviati L. Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155:160-171.
- Cong Y, So V, Tijssen MAJ, Verbeek DS, Reggiori F, Mauthe M (2021) WDR45, one gene associated with multiple neurodevelopmental disorders. Autophagy 17:3908-3923.
- Contreras D. Piña R. Carvallo C. Godov F. Ugarte G. Zeise M. Rozas C, Morales B (2022) Methylphenidate restores behavioral and neuroplasticity impairments in the prenatal nicotine exposure mouse model of ADHD: Evidence for involvement of AMPA receptor subunit composition and synaptic spine morphology in the hippocampus. Int J Mol Sci 23:7099.
- Cossu D, Tomizawa Y, Noda S, Momotani E, Sakanishi T, Okada H, Yokoyama K, Sechi LA, Hattori N (2024) Impact of Epstein-Barr virus nuclear antigen 1 on neuroinflammation in PARK2 knockout mice. Int J Mol Sci 25:10697.
- Cristiano C, Pirozzi C, Coretti L, Cavaliere G, Lama A, Russo R. Lembo F. Mollica MP. Meli R. Calignano A. Mattace Raso G (2018) Palmitovlethanolamide counteracts autistic-like behaviours in BTBR T+tf/J mice: Contribution of central and peripheral mechanisms. Brain Behav Immun 74:166-175.
- Curtis MA, Saferin N, Nguyen JH, Imami AS, Ryan WG. Neifer KL, Miller GW, Burkett JP (2024) Developmental pyrethroid exposure in mouse leads to disrupted brain metabolism in adulthood. Neuro Toxicology 103:87-95.
- Daga KR, Larev AM, Morfin MG, Chen K, Bitarafan S. Carpenter JM, Hynds HM, Hines KM, Wood LB, Marklein RA (2024) Microglia morphological response to mesenchymal stromal cell extracellular vesicles demonstrates EV therapeutic potential for modulating neuroinflammation, J Biol Eng 18:58.

- Dave A, Pillai PP (2022) Docosahexaenoic acid increased MeCP2 mediated mitochondrial respiratory complexes II and III enzyme activities in cortical astrocytes. J Biochem Mol Toxicol 36:e23002.
- De Filippis B, Valenti D, De Bari L, De Rasmo D, Musto M Fabbri A Ricceri L Fiorentini C Laviola G Vacca RA (2015) Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome; protective effect of CNF1. Free Radic Biol Med 83:167-177.
- D'Egidio F, Castelli V, d'Angelo M, Ammannito F, Quintiliani M. Cimini A (2024) Brain incoming call from glia during neuroinflammation: Roles of extracellular vesicles. Neurobiol Dis 201:106663.
- De La Peña JB. Dela Peña IJ. Custodio RJ. Botanas CJ. Kim HJ, Cheong JH (2017) Exploring the validity of proposed transgenic animal models of attention-deficit hyperactivity disorder (ADHD), Mol Neurobiol 55:3739-
- Desbonnet L, Konkoth A, Laighneach A, McKernan D, Holleran L, McDonald C, Morris DW, Donohoe G, Kelly J (2022) Dual hit mouse model to examine the long-term effects of maternal immune activation and post-weaning social isolation on schizophrenia endophenotypes. Behav Brain Res 430:113930.
- Devine MJ. Szulc BR. Howden JH. López-Doménech G. Ruiz A, Kittler JT (2022) Mitochondrial Ca2+ uniporter haploinsufficiency enhances long-term potentiation at hippocampal mossy fibre synapses. J Cell Sci 135:ics259823.
- Diril E, Menek B, Emir A, Tarakci D, Tarakci E (2025) The effect of a video-based game exercise program on motor skills, proprioception, and cognitive functions in individuals with intellectual disabilities. Occup Ther Int 2025:8410494.
- Długosz A, Wróblewski M, Błaszak B, Szulc J (2025) The role of nutrition, oxidative stress, and trace elements in the pathophysiology of autism spectrum disorders.
- Dong HL, Ma Y, Yu H, Wei O, Li JO, Liu GL, Li HE, Chen L. Chen DF, Bai G, Wu ZY (2021) Bi-allelic loss of function variants in COX20 gene cause autosomal recessive sensory neuronopathy. Brain 144:2457-2470.
- Durand CM, Angelini C, Michaud V, Delleci C, Coupry I, Goizet C, Trimouille A (2022) Whole-exome sequencing confirms implication of VPS13D as a potential cause of progressive spastic ataxia. BMC Neurol 22:53.
- Ene HM, Karry R, Farfara D, Ben-Shachar D (2023) Mitochondria play an essential role in the trajectory of adolescent neurodevelopment and behavior in adulthood: evidence from a schizophrenia rat model. Mol Psychiatry 28:1170-1181.
- Fan W, Jin X, Xu M, Xi Y, Lu W, Yang X, Guan M-X, Ge W (2021) FARS2 deficiency in Drosophila reveals the developmental delay and seizure manifested by aberrant mitochondrial tRNA metabolism. Nucleic Acids Res 49:13108-13121.
- Fang J, Kang SG, Huang K, Tong T (2025) Integrating 16S rRNA gene sequencing and metabolomics analysis to reveal the mechanism of L-proline in preventing autism-like behavior in mice. Nutrients 17:247.
- Farahani RM (2025) Neural differentiation in perspective: Mitochondria as early programmers. Front Neurosci 18:1529855.
- Feng S, Gong Y, Xia L, Lang Y, Shen Y, Li H, Feng W, Chen F, Chen Y (2024) Calcium hexacyanoferrate (III) nanocatalyst enables redox homeostasis for autism spectrum disorder treatment. Adv Mater 36:2405655.
- Foschiera LN Schmitz F Wyse ATS (2022) Evidence of methylphenidate effect on mitochondria, redox homeostasis, and inflammatory aspects: insights from animal studies. Prog Neuropsychopharmacol Biol Psychiatry 116:110518.

- Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334:358-362.
- Fung SJ, Sivagnanasundaram S, Weickert CS (2011) Lack of change in markers of presynaptic terminal abundance alongside subtle reductions in markers of presynaptic terminal plasticity in prefrontal cortex of schizophrenia patients. Biol Psychiatry 69:71-79.
- Ghanizadeh A, Berk M, Farrashbandi H, Alavi Shoushtari A, Villagonzalo KA (2013) Targeting the mitochondrial electron transport chain in autism, a systematic review and synthesis of a novel therapeutic approach. Mitochondrion 13:515-519.
- Ghosh M, Pearse DD (2024) The yin and yang of microgliaderived extracellular vesicles in CNS injury and diseases. Cells 13:1834.
- Gil J, Kim D, Choi S, Bae ON (2025) Cadmium-induced iron dysregulation contributes to functional impairment in brain endothelial cells via the ferroptosis pathway. Toxicol Appl Pharmacol 495:117233.
- Gold WA, Williamson SL, Kaur S, Hargreaves IP, Land JM, Pelka GJ, Tam PPL, Christodoulou J (2014) Mitochondrial dysfunction in the skeletal muscle of a mouse model of Rett syndrome (RTT): implications for the disease phenotype. Mitochondrion 15:10-17.
- Gomes LC, Benedetto GD, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13:589-598.
- Gonzalez D, Jonak C, Bernabucci M, Molinaro G, Collins K, Assad S, Gibson J, Binder D, Huber K (2025)
 Enhanced CB1 receptor function in GABAergic neurons mediates hyperexcitability and impaired sensory-driven synchrony of cortical circuits in fragile X syndrome model mice. bioRxiv [Preprint] doi: 10.1101/2025.01.02.630932.
- Gu W, Wu M, Zhang R, Liu P, Jiao Y, Rong H (2025) Sufentanil enhances the cortical neurogenesis of rats with traumatic brain injury via PI3K/AKT signal pathway. Sci Rep 15:3986.
- Guerra San Juan I, Brunner JW, Eggan K, Toonen RF,
 Verhage M (2025) KIF5A regulates axonal repair and
 time-dependent axonal transport of SFPQ granules and
 mitochondria in human motor neurons. Neurobiol Dis
 204:106759
- Gupta S, Kishore A, Rishi V, Aggarwal A (2025)

 Mitochondria and its epigenetic dynamics: insight into synaptic regulation and synaptopathies. Funct Integr Genomics 25:26.
- Hamdy N, Eide S, Sun HS, Feng ZP (2020) Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp Neurol 334:113457.
- Hamieh AM, Babin D, Sablé E, Hernier AM, Castagné V (2021) Neonatal phencyclidine and social isolation in the rat:Effects of clozapine on locomotor activity, social recognition, prepulse inhibition, and executive functions deficits. Psychopharmacology (Berl) 238:517-528.
- Han Q, Xie Y, Ordaz JD, Huh AJ, Huang N, Wu W, Liu N, Chamberlain KA, Sheng ZH, Xu XM (2020) Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab 31:623-641.e8.
- Hanbury DB, Peiffer AM, Dugan G, Andrews RN, Cline JM (2016) Long-term cognitive functioning in single-dose total-body gamma-irradiated rhesus monkeys (Macaca mulatta). Radiat Res 186:447-454.
- Hao Y, Banker S, Trayvick J, Barkley S, Peters AW, Thinakaran A, McLaughlin C, Gu X, Schiller D, Foss-Feig J (2025) Understanding depression in autism: The role of subjective perception and anterior cingulate cortex volume. Mol Autism 16:9.

- He D, Xu H, Zhang H, Tang R, Lan Y, Xing R, Li S, Christian E, Hou Y, Lorello P, Caldarone B, Ding J, Nguyen L, Dionne D, Thakore P, Schnell A, Huh JR, Rozenblatt-Rosen O, Regev A, Kuchroo VK (2022) Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity 55:159-173.e9.
- Hilz EN, Schnurer C, Bhamidipati S, Deka J, Thompson LM, Gore AC (2025) Cognitive effects of early life exposure to PCBs in rats: Sex-specific behavioral, hormonal and neuromolecular mechanisms involving the brain dopamine system. Horm Behav 169:105697.
- Hoover EM, Schneider CA, Crouzet C, Lima TS, Velez DXF, Tran CJ, Agalliu D, Gandhi SP, Choi B, Lodoen MB (2025) Infection with Toxoplasma gondii triggers coagulation at the blood-brain barrier and a reduction in cerebral blood flow. J Neuroinflammation 22:3.
- Hu Y, Zhang F, Ikonomovic M, Yang T (2024) The role of NRF2 in cerebrovascular protection:Implications for vascular cognitive impairment and dementia (VCID). Int J Mol Sci 25:3833.
- Huang Z, Li F, Zheng X, Zheng J, Dong Y, Ding Z, Gou H, Yao M, Liu J (2024) Catalpol promotes hippocampal neurogenesis and synaptogenesis in rats after multiple cerebral infarctions by mitochondrial regulation: involvement of the shh signaling pathway. Front Pharmacol 15:1461279.
- Hwang JS, Kim SG, George NP, Kwon M, Jang YE, Lee SS, Lee G (2024) Biological function analysis of microRNAs and proteins in the cerebrospinal fluid of patients with Parkinson's disease. Int J Mol Sci 25:13260.
- Ibrahim DR, Schwarz K, Suiwal S, Maragkou S, Schmitz F (2025) Early synapse-specific alterations of photoreceptor mitochondria in the EAE mouse model of multiple sclerosis. Cells 14:206.
- Islam MA, Sultana OF, Bandari M, Kshirsagar S, Manna PR, Reddy PH (2024) MicroRNA-455–3P as a peripheral biomarker and therapeutic target for mild cognitive impairment and Alzheimer's disease. Ageing Res Rev 100:102459.
- Itakura E, Kishi-Itakura C, Koyama-Honda I, Mizushima N (2012) Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci 125:1488-1499.
- Jain D, Multani KS, Dodiya A, Benani U, Iyer A (2025) Adaptive behavior and its differences between children with autism spectrum disorder and social communication disorder. Autism doi: 10.1177/13623613251317787.
- Jang M, Jung T, Kim W, Kim I, Jeong Y, Noh J (2020)
 Determining nicotine-related behavior changes in juvenile female rats through long-term maternal nicotine exposure. Behav Pharmacol 31:34-44.
- Jimah JR, Hinshaw JE (2019) Structural insights into the mechanism of dynamin superfamily proteins. Trends Cell Biol 29:257-273.
- Ju IG, Lee MY, Jeon SH, Huh E, Kim JH, Lee JK, Lee CH, Oh MS (2020) GC-TOF-MS-based metabolomic analysis and evaluation of the effects of HX106, a nutraceutical, on ADHD-like symptoms in prenatal alcohol exposed mice. Nutrients 12:3027.
- Kambali M, Li Y, Unichenko P, Feria Pliego JA, Yadav R,
 Liu J, McGuinness P, Cobb JG, Wang M, Nagarajan R,
 Lyu J, Vongsouthi V, Jackson CJ, Engin E, Coyle JT, Shin
 J, Hodgson NW, Hensch TK, Talkowski ME, Homanics
 GE, Bolshakov VY, Henneberger C, Rudolph U (2025)
 An increased copy number of glycine decarboxylase
 (GLDC) associated with psychosis reduces extracellular
 glycine and impairs NMDA receptor function. Mol
 Psychiatry 30:927-942.

- Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132:137-148.
- Kantak KM (2022) Rodent models of attention-deficit hyperactivity disorder: an updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav 216:173378.
- Karayel O, Soung A, Gurung H, Schubert AF, Klaeger S, Kschonsak M, Al-Maraghi A, Bhat AA, Alshabeeb Akil AS, Dugger DL, Webster JD, French DM, Anand D, Soni N, Fakhro KA, Rose CM, Harris SF, Ndoja A, Newton K, Dixit VM (2025) Impairment of DET1 causes neurological defects and lethality in mice and humans. Proc Natl Acad Sci 122:e2422631122.
- Keilhoff G, Pinkernelle J, Fansa H (2021) The ryanodine receptor stabilizer S107 fails to support motor neuronal neuritogenesis in vitro. Tissue Cell 73:101625.
- Kessi M, Chen B, Pan L, Yang L, Yang L, Peng J, He F, Yin F (2023) Disruption of mitochondrial and lysosomal functions by human CACNA1C variants expressed in HEK 293 and CHO cells. Front Mol Neurosci 16:1209760
- Khadimallah I, Jenni R, Cabungcal J-H, Cleusix M, Fournier M, Beard E, Klauser P, Knebel J-F, Murray MM, Retsa C, Siciliano M, Spencer KM, Steullet P, Cuenod M, Conus P, Do KQ (2022) Mitochondrial, exosomal miR137-COX6A2 and gamma synchrony as biomarkers of parvalbumin interneurons, psychopathology, and neurocognition in schizophrenia. Mol Psychiatry 27:1192-1204.
- Khan MA, Rafiq MA, Noor A, Hussain S, Flores JV, Rupp V, Vincent AK, Malli R, Ali G, Khan FS, Ishak GE, Doherty D, Weksberg R, Ayub M, Windpassinger C, Ibrahim S, Frye M, Ansar M, Vincent JB (2012) Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet 90:856-863.
- Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the Parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605-608.
- Koeppen J, Nguyen AQ, Nikolakopoulou AM, Garcia M, Hanna S, Woodruff S, Figueroa Z, Obenaus A, Ethell IM (2018) Functional consequences of synapse remodeling following astrocyte-specific regulation of Ephrin-B1 in the adult hippocampus. J Neurosci 38:5710-5726.
- Köhler W, Curiel J, Vanderver A (2018) Adulthood leukodystrophies. Nat Rev Neurol 14:94-105.
- Kohls G, Elster EM, Tino P, Fairchild G, Stadler C,
 Popma A, Freitag CM, De Brito SA, Konrad K, Pauli
 R (2025) Machine learning reveals sex differences
 in distinguishing between conduct-disordered and
 neurotypical youth based on emotion processing
 dysfunction. BMC Psychiatry 25:105.
- Korobova F, Ramabhadran V, Higgs HN (2013) An actindependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339:464-467.
- Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe J-F, Saeki Y, Tanaka K, Matsuda N (2014) Ubiquitin is phosphorylated by PINK1 to activate Parkin. Nature 510:162-166.
- Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309-314.
- Lee JE, Westrate LM, Wu H, Page C, Voeltz GK (2016)

 Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540:139-143.

- Leigh JP, Du J (2015) Brief report: Forecasting the economic burden of autism in 2015 and 2025 in the United States, J Autism Dev Disord 45:4135-4139.
- Li L. Kan W. Zhang Y. Wang T. Yang F. Ji T. Wang G. Du J (2024) Quantitative proteomics combined independent PRM analysis reveals the mitochondrial and synaptic mechanism underlying norisoboldine's antidepressant effects. Transl Psychiatry 14:400.
- Li P, Liu J, Wang R, Cao F, Li J, Wang H (2025a) Myricetin mitigated sevoflurane-induced cognitive dysfunction in aged mice through inhibiting histone deacetylase 2/nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signalling-mediated ferroptosis and mitochondrial dysfunction. Mol Neurobiol doi: 10.1007/s12035-025-04703-0.
- Li T. et al. (2022) Kansl1 haploinsufficiency impairs autophagosome-lysosome fusion and links autophagic dysfunction with Koolen-de Vries syndrome in mice. Nat Commun 13:931.
- Li T, Wang W, Liu W, Sun M, Wang Q, Li Z, Hao J, Yu Y (2025b) Macrophage membrane coated functionalized nanoparticles for targeted drug delivery and neural function repair in cerebral ischemia-reperfusion injury. Int J Pharm 672:125329.
- Lin L, Li J, Yu Z, He J, Li Y, Jiang J, Xia Y (2025) NRF2 activator tertiary butylhydroguinone enhances neural stem cell differentiation and implantation in Alzheimer's disease by boosting mitochondrial function. Brain Res 1849:149341.
- Lin MY, Cheng XT, Xie Y, Cai Q, Sheng ZH (2017) Removing dysfunctional mitochondria from axons independent of mitophagy under pathophysiological conditions. Autophagy 13:1792-1794
- Linda K. Lewerissa Fl. Verhoven AHA. Gabriele M. Frega M. Klein Gunnewiek TM, Devilee L, Ulferts E, Hommersom M, Oudakker A, Schoenmaker C, Van Bokhoven H, Schubert D. Testa G. Koolen DA. De Vries BBA. Nadif Kasri N (2022) Imbalanced autophagy causes synaptic deficits in a human model for neurodevelopmental disorders. Autophagy 18:423-442.
- Lisowski P, et al. (2024) Mutant huntingtin impairs neurodevelopment in human brain organoids through CHCHD2-mediated neurometabolic failure. Nat Commun 15:7027.
- Liu T. Zhang L (2025) GDF11 mitigates neuropathic pain via regulation of microglial polarization and neuroinflammation through TGF-βR1/SMAD2/NFκΒ pathway in male mice. J Neuroimmune Pharmacol
- Liu Y, Yang H, Gan S, He L, Zeng R, Xiao T, Wu L (2024) A novel mutation of DNA2 regulates neuronal cell membrane potential and epileptogenesis. Cell Death Discov 10:259.
- López-Muguruza E, Matute C (2023) Alterations of oligodendrocyte and myelin energy metabolism in multiple sclerosis. Int J Mol Sci 24:12912.
- Lv Y, Wen L, Hu WJ, Deng C, Ren HW, Bao YN, Su BW, Gao P, Man ZY, Luo YY, Li CJ, Xiang ZX, Wang B, Luan ZL (2023) Schizophrenia in the genetic era: A review from development history, clinical features and genomic research approaches to insights of susceptibility genes. Metab Brain Dis 39:147-171.
- Ma D, Lin KY, Suresh D, Lin J, Gujar MR, Aung HY, Tan YS, Gao Y, Vincent AS, Chen T, Wang H (2024) Arl2 GTPase associates with the centrosomal protein Cdk5rap2 to regulate cortical development via microtubule organization. PLoS Biol 22:e3002751.
- Maglioni S, Schiavi A, Melcher M, Brinkmann V, Luo Z, Laromaine A, Raimundo N, Meyer JN, Distelmaier F, Ventura N (2022) Neuroligin-mediated neurodevelopmental defects are induced by mitochondrial dysfunction and prevented by lutein in C. elegans. Nat Commun 13:2620.

- Mallien AS Becker L Pfeiffer N Terraneo E Hahn M Middelman A, Palme R, Creutzberg KC, Begni V, Riva MA, Leo D. Potschka H. Fumagalli F. Homberg JR, Gass P (2022) Dopamine transporter knockout rats show impaired wellbeing in a multimodal severity assessment approach. Front Behav Neurosci 16.924603
- Mamun AA, Geng P, Wang S, Shao C, Xiao J (2025) IUPHAR review: targeted therapies of signaling pathways based on the gut microbiome in autism spectrum disorders: mechanistic and therapeutic applications. Pharmacol Res 211:107559.
- Mandal N, Das A, Datta R (2025) Unravelling a mechanistic link between mitophagy defect, mitochondrial malfunction, and apoptotic neurodegeneration in mucopolysaccharidosis VII. Neurobiol Dis 206:106825.
- Martin OJ, Lai L, Soundarapandian MM, Leone TC, Zorzano A. Keller MP. Attie AD. Muoio DM. Kelly DP (2014) A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res 114:626-636.
- Martinez B, Peplow PV (2024) MicroRNAs as potential biomarkers for diagnosis of attention deficit hyperactivity disorder. Neural Regen Res 19:557-562.
- Martinez FJ. Lee JH. Lee JE. Blanco S. Nickerson E. Gabriel S, Frye M, Al-Gazali L, Gleeson JG (2012) Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet 49.380-385
- Marzetti E, Di Lorenzo R, Calvani R, Pesce V, Landi F, Coelho-Júnior HJ, Picca A (2025) From cell architecture to mitochondrial signaling: role of intermediate filaments in health, aging, and disease. Int J Mol Sci 26:1100.
- Matrella ML, Valletti A, Gigante I, De Rasmo D, Signorile A, Russo S, Lobasso S, Lobraico D, Dibattista M, Pacelli C, Cocco T (2024) High OXPHOS efficiency in RA-FUdrdifferentiated SH-SY5Y cells: involvement of cAMP signalling and respiratory supercomplexes. Sci Rep 14:7411.
- Mazzantini C, Curti L, Lana D, Masi A, Giovannini MG, Magni G, Pellegrini-Giampietro DE, Landucci E (2025) Prolonged incubation with Δ9-tetrahydrocannabinol but not with cannabidiol induces synaptic alterations and mitochondrial impairment in immature and mature rat organotypic hippocampal slices. Biomed Pharmacother 183:117797.
- McGrath AG, Briand LA (2022) Post-weaning social isolation causes sex-specific alterations to dendritic spine density in subregions of the prefrontal cortex and nucleus accumbens of adult mice. Brain Res. 1777:147755
- Miguel PM, Bronauth LP, Deniz BF, Confortim HD, De Oliveira BC, Dalle Molle R, Silveira PP, Pereira LO (2022) Neonatal hypoxia-ischemia induces dysregulated feeding patterns and ethanol consumption that are alleviated by methylphenidate administration in rats. Exp Neurol 353:114071.
- Misgeld T, Schwarz TL (2017) Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron 96:651-666
- Mishra E, Thakur MK (2024) Tat-Beclin-1 ameliorates memory by improving neuronal cytoarchitecture and mitigating mitochondrial dysfunction in scopolamineinduced amnesic male mice. ACS Pharmacol Transl Sci 7:3462-3475.
- Mitra S. Kaushik N. Moon IS. Choi EH. Kaushik NK (2020) Utility of reactive species generation in plasma medicine for neuronal development. Biomedicines 8.348
- Moghadam AA, Vose LR, Miry O, Zhang XL, Stanton PK (2021) Pairing of neonatal phencyclidine exposure and acute adolescent stress in male rats as a novel developmental model of schizophrenia. Behav Brain Res 409:113308.

- Moiz B Walls M Alnizar Vargas V Addenalli A Weber C Li A, Sriram G, Clyne AM (2025) Instationary metabolic flux analysis reveals that NPC1 inhibition increases glycolysis and decreases mitochondrial metabolism in brain microvascular endothelial cells. Neurobiol Dis 204:106769
- Moll K, Krishnan S (2025) Editorial: Parenting as an influence on the course of neurodevelopmental conditions - still a taboo topic? J Child Psychol Psychiatry 66:275-278
- Moos WH, Maneta F, Pinkert CA, Irwin MH, Hoffman MF. Faller DV, Steliou K (2016) Epigenetic treatment of neuropsychiatric disorders: autism and schizophrenia. Drug Dev Res 77:53-72.
- Morton L, Garza AP, Debska-Vielhaber G, Villafuerte LE, Henneicke S. Arndt P. Meuth SG. Schreiber S. Dunay IR. (2025) Pericytes and extracellular vesicle interactions in neurovascular adaptation to chronic arterial hypertension. J Am Heart Assoc 14:e038457.
- Müller M (2019) Disturbed redox homeostasis and oxidative stress; potential players in the developmental regression in Rett syndrome. Neurosci Biobehav Rev
- Musyaju S, Modi HR, Shear DA, Scultetus AH, Pandya JD (2025) Time course of mitochondrial antioxidant markers in a preclinical model of severe penetrating traumatic brain injury. Int J Mol Sci 26:906.
- Na SB, Seo BJ, Hong TK, Oh SY, Hong YJ, Song JH, Uhm SJ, Hong K, Do JT (2023) Altered mitochondrial function and accelerated aging phenotype in neural stem cells derived from Dnm1l knockout embryonic stem cells. Int I Mol Sci 24:14291
- Nadeem I, Han Z, Xiaoliang H, Adzraku SY, Kambey PA, Kanwore K, Peipei M, Adekunle AO, Adu-Amankwaah J, Ayanlaja AA, Zheng Y, Dianshuai G, Liu X, Song Y (2024) Doublecortin regulates the mitochondrial-dependent apoptosis in glioma via Rho-A/Net-1/p38-MAPK signaling. Mol Med 30:272
- Nakamura DS, Gothié JM, Kornfeld SF, Kothary R, Kennedy TE (2023) Expression and subcellular localization of mitochondrial docking protein, syntaphilin, in oligodendrocytes and CNS myelin sheath. Glia 71:2343-2355.
- Nakazawa K, Sapkota K (2020) The origin of NMDA receptor hypofunction in schizophrenia, Pharmacol Ther 205:107426.
- Napolioni V, Persico AM, Porcelli V, Palmieri L (2011) The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol Neurobiol 44:83-92.
- Naviaux JC, Schuchbauer MA, Li K, Wang L, Risbrough VB. Powell SB, Naviaux RK (2014) Reversal of autism-like behaviors and metabolism in adult mice with singledose antipurinergic therapy. Transl Psychiatry 4:e400.
- Naviaux RK, Zolkipli Z, Wang L, Nakayama T, Naviaux JC, Le TP. Schuchbauer MA. Rogac M. Tang O. Dugan II. Powell SB (2013) Antipurinergic therapy corrects the autism-like features in the poly (IC) mouse model. PLoS One 8:e57380.
- Negri S, Reyff Z, Troyano-Rodriguez E, Milan M, Ihuoma J, Tavakol S, Shi H, Patai R, Jiang R, Mohon J, Boma-Iyaye J, Ungvari Z, Csiszar A, Yabluchanskiy A, Moccia F, Tarantini S (2025) Endothelial colony-forming cells (ECFCs) in cerebrovascular aging:Focus on the pathogenesis of vascular cognitive impairment and dementia (VCID), and treatment prospects. Ageing Res Rev 104:102672.
- Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26:733-744.

- Niescier RF, Chang KT, Min K-T (2013) Miro, MCU, and calcium:Bridging our understanding of mitochondrial movement in axons. Front Cell Neurosci 7:148.
- Norouzi Esfahani E, Knedlik T, Shin SH, Magalhães Rebelo AP, De Mario A, Vianello C, Persano L, Rampazzo E, Edomi P, Bean C, Brunetti D, Scorrano L, Greco S, Gerdol M, Giacomello M (2025) Remodeling of mitochondria—endoplasmic reticulum contact sites accompanies LUHMES differentiation. Biomolecules 15:126.
- Ochozková A, Mihalčíková L, Yamamotová A, Šlamberová R (2019) ADHD symptoms induced by prenatal methamphetamine exposure. Physiol Res 68:S347-352.
- Ochozková A, Mihalčíková L, Yamamotová A, Šlamberová R (2021) Can prenatal methamphetamine exposure be considered a good animal model for ADHD? Physiol Res 70:S431-440.
- Odeh M, Sajrawi C, Majcher A, Zubedat S, Shaulov L, Radzishevsky A, Mizrahi L, Chung WK, Avital A, Hornemann T, Liebl DJ, Radzishevsky I, Wolosker H (2024) A new type of blood–brain barrier aminoacidopathy underlies metabolic microcephaly associated with SLC1A4 mutations. Brain 147:3874-3889.
- Ogawa F, Malavasi ELV, Crummie DK, Eykelenboom JE, Soares DC, Mackie S, Porteous DJ, Millar JK (2014) DISC1 complexes with TRAK1 and Miro1 to modulate anterograde axonal mitochondrial trafficking. Hum Mol Genet 23:906-919.
- Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, Matsuda N (2015) Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol 209:111-128.
- Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K (2021) Molecular mechanisms and physiological functions of mitophagy. EMBO J 40:e104705.
- Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A (2003) Neuroprotective effects of α-tocopherol on oxidative stress in rat striatal cultures. Eur J Pharmacol 465:15-22.
- Pagliuso A, Cossart P, Stavru F (2018) The ever-growing complexity of the mitochondrial fission machinery. Cell Mol Life Sci 75:355-374.
- Palladino VS, Chiocchetti AG, Frank L, Haslinger D, McNeill R, Radtke F, Till A, Haupt S, Brüstle O, Günther K, Edenhofer F, Hoffmann P, Reif A, Kittel-Schneider S (2020) Energy metabolism disturbances in cell models of PARK2 CNV carriers with ADHD. J Clin Med 9:4092.
- Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT (2013) Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J Biol Chem 288:27584-27593.
- Palmieri L, et al. (2010) Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry 15:38-52.
- Pan ZN, Zhang HL, Zhang KH, Ju JQ, Liu JC, Sun SC (2025) Insufficient MIRO1 contributes to declined oocyte quality during reproductive aging. Sci China Life Sci 68:764-776.
- Pannoni KE, Fischer QS, Tarannum R, Cawley ML, Alsalman MM, Acosta N, Ezigbo C, Gil DV, Campbell LA, Farris S (2025) MCU expression in hippocampal CA2 neurons modulates dendritic mitochondrial morphology and synaptic plasticity. Sci Rep 15:4540.
- Pant DC, et al. (2019) Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. J Clin Invest 129:1240-1256.
- Panzenhagen AC, Cavalcanti A, Stein DJ, De Castro LL,
 Vasconcelos M, Abreu MB, Almeida RF, Bertoglio LJ,
 Herrmann AP (2022) Behavioral manifestations in
 rodent models of autism spectrum disorder: protocol
 for a systematic review and network meta-analysis.
 Syst Rev 11:150.

- Park J, Shimbo H, Tamura S, Tomoda T, Hikida T, Okado H, Hirai S (2025) Impact of feeding age on cognitive impairment in mice with disrupted-in-schizophrenia 1 (Disc1) mutation under a high sucrose diet. Behav Brain Res 476:115291.
- Payne CT, Tabassum S, Wu S, Hu H, Gusdon AM, Choi HA, Ren XS (2023) Role of microRNA-34a in blood—brain barrier permeability and mitochondrial function in ischemic stroke. Front Cell Neurosci 17:1278334.
- Pedrazzi JFC, Silva-Amaral D, Issy AC, Gomes FV, Crippa JA, Guimarães FS, Del Bel E (2024) Cannabidiol attenuates prepulse inhibition disruption by facilitating TRPV1 and 5-HT1A receptor-mediated neurotransmission. Pharmacol Biochem Behav 245:173879.
- Pernas L, Scorrano L (2016) Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78:505-531.
- Pervaiz I, Mehta Y, Al-Ahmad AJ (2025) Glucose transporter 1 deficiency impairs glucose metabolism and barrier induction in human induced pluripotent stem cell-derived astrocytes. J Cell Physiol 240:e31523.
- Pinciotti CM, Cusack CE, Rodriguez-Seijas C, Lorenzo-Luaces L, Dyk ISV, Galupo MP (2024) Potential harm in the psychological treatment of sexual and gender minority youth. Res Child Adolesc Psychopathol doi: 10.1007/s10802-024-01268-9.
- Planas-Serra L, Launay N, Goicoechea L, Heron B, Jou C, Juliá-Palacios N, Ruiz M, Fourcade S, Casasnovas C, De La Torre C, Gelot A, Marsal M, Loza-Alvarez P, García-Cazorla À, Fatemi A, Ferrer I, Portero-Otin M, Area-Gómez E, Pujol A (2023) Sphingolipid desaturase DEGS1 is essential for mitochondria-associated membrane integrity. J Clin Invest 133:e162957.
- Puljko B, Štracak M, Kalanj-Bognar S, Todorić Laidlaw I, Mlinac-Jerkovic K (2025) Gangliosides and cholesterol: dual regulators of neuronal membrane framework in autism spectrum disorder. Int J Mol Sci 26:1322.
- Qiu Y, Wang H, Fan M, Pan H, Guan J, Jiang Y, Jia Z, Wu K, Zhou H, Zhuang Q, Lei Z, Ding X, Cai H, Dong Y, Yan L, Lin A, Fu Y, Zhang D, Yan Q, Wang Q (2023) Impaired AIF-CHCHD4 interaction and mitochondrial calcium overload contribute to auditory neuropathy spectrum disorder in patient-iPSC-derived neurons with AIFM1 variant. Cell Death Dis 14:375.
- Rahi V, Kumar P (2021) Animal models of attention-deficit hyperactivity disorder (ADHD). Int J Dev Neurosci 81:107-124.
- Ramírez OA, Hellwig A, Zhang Z, Bading H (2025)

 Pharmacological targeting of the NMDAR/TRPM4
 death signaling complex with a TwinF interface
 inhibitor prevents excitotoxicity-associated dendritic
 blebbing and organelle damage. Cells 14:195.
- Rangaraju V, Lewis TL, Hirabayashi Y, Bergami M, Motori E, Cartoni R, Kwon SK, Courchet J (2019) Pleiotropic mitochondria: The influence of mitochondria on neuronal development and disease. J Neurosci 39:8200-8208
- Rawani NS, Chan AW, Todd KG, Baker GB, Dursun SM (2024) The role of neuroglia in the development and progression of schizophrenia. Biomolecules 15:10.
- Regan SL, Williams MT, Vorhees CV (2022) Review of rodent models of attention deficit hyperactivity disorder. Neurosci Biobehav Rev 132:621-637.
- Ren X, Huang S, Xu J, Xue Q, Xu T, Shi D, Ma S, Li X (2024) BRG1 improves reprogramming efficiency by enhancing glycolytic metabolism. Cell Mol Life Sci 81:482.
- Rezaee N, Hone E, Sohrabi H, Abdulraheem R, Johnson SK, Gunzburg S, Martins RN, Fernando WMADB (2025) Investigating the impact of sorghum on tau protein phosphorylation and mitochondrial dysfunction modulation in Alzheimer's disease: an in vitro study. Nutrients 17:516.

- Ribeuz HL, et al. (2024) Role of KCNK3 dysfunction in dasatinib-associated pulmonary arterial hypertension and endothelial cell dysfunction. Am J Respir Cell Mol Biol 71:95-109
- Rimbert S, Moreira JB, Xapelli S, Lévi S (2023)

 Role of purines in brain development, from
 neuronal proliferation to synaptic refinement.
 Neuropharmacology 237:109640.
- Rittenhouse AR, Ortiz-Miranda S, Jurczyk A (2021)

 Mutations in DISC1 alter IP3R and voltage-gated Ca2+
 channel functioning, implications for major mental
 illness. Neuronal Signal 5:NS20180122.
- Rodríguez-Prieto Á, Mateos-White I, Aníbal-Martínez M, Navarro-González C, Gil-Sanz C, Domínguez-Canterla Y, González-Manteiga A, Del Buey Furió V, López-Bendito G, Fazzari P (2024) Nrg1 intracellular signaling regulates the development of interhemispheric callosal axons in mice. Life Sci Alliance 7:e202302250.
- Romagnolo A, Dematteis G, Scheper M, Luinenburg MJ,
 Mühlebner A, Van Hecke W, Manfredi M, De Giorgis
 V, Reano S, Filigheddu N, Bortolotto V, Tapella L, Anink
 JJ, François L, Dedeurwaerdere S, Mills JD, Genazzani
 AA, Lim D, Aronica E (2024) Astroglial calcium signaling
 and homeostasis in tuberous sclerosis complex. Acta
 Neuropathol (Berl) 147:48.
- Rose S, Bennuri SC, Davis JE, Wynne R, Slattery JC, Tippett M, Delhey L, Melnyk S, Kahler SG, MacFabe DF, Frye RE (2018) Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl Psychiatry 8:42.
- Ruan Y, Cheng J, Dai J, Ma Z, Luo S, Yan R, Wang L, Zhou J, Yu B, Tong X, Shen H, Zhou L, Yuan TF, Han Q (2023) Chronic stress hinders sensory axon regeneration via impairing mitochondrial cristae and OXPHOS. Sci Adv 9:eadh0183.
- Rummell BP, Bikas S, Babl SS, Gogos JA, Sigurdsson T (2023) Altered corollary discharge signaling in the auditory cortex of a mouse model of schizophrenia predisposition. Nat Commun 14:7388.
- Rutter M, Caspi A, Moffitt TE (2003) Using sex differences in psychopathology to study causal mechanisms: unifying issues and research strategies. J Child Psychol Psychiatry 44:1092-1115.
- Sabariego-Navarro M, Fernández-Blanco Á, Sierra C, Dierssen M (2022) Neurodevelopmental disorders: 2022 update. Free Neuropathol 3:3-8.
- Sable HJK, Paige NB, Nalan PA, Pace RL, Hicks CB, Regan SL, Williams MT, Vorhees CV, Lester DB (2025) Phasic dopamine release in two different rat models of attention-deficit/hyperactivity disorder: spontaneously hypertensive rats (SHR) versus Lphn3 knockout rats. Neuroscience 567:150-162.
- Saha D, Animireddy S, Bartholomew B (2024) The SWI/ SNF ATP-dependent chromatin remodeling complex in cell lineage priming and early development. Biochem Soc Trans 52:603-616.
- Sahin M, Sur M (2015) Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science 350:aah3897
- Samanta S, Akhter F, Xue R, Sosunov AA, Wu L, Chen D, Arancio O, Yan SF, Yan SS (2025) Synaptic mitochondria glycation contributes to mitochondrial stress and cognitive dysfunction. Brain 148:262-275.
- Santisteban MM, Iadecola C, Carnevale D (2023) Hypertension, neurovascular dysfunction, and cognitive impairment. Hypertension 80:22-34.
- Santoni M, Pistis M (2024) Maternal immune activation and the endocannabinoid system: focus on two-hit models of schizophrenia. Biol Psychiatry doi: 10.1016/i.biopsych.2024.11.015.
- Sarnyai Z, Ben-Shachar D (2024) Schizophrenia, a disease of impaired dynamic metabolic flexibility: a new mechanistic framework. Psychiatry Res 342:116220.

- Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496:372-376.
- Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5:a011304.
- Selemon LD, Begovic A (2020) Reduced midbrain dopamine neuron number in the adult nonhuman primate brain after fetal radiation exposure. Neuroscience 442:193-201.
- Seong E. Insolera R. Dulovic M. Kamsteeg E. Trinh J. Brüggemann N. Sandford E. Li S. Ozel AB. Li JZ. Jewett T. Kievit AJA, Münchau A. Shakkottai V. Klein C. Collins CA, Lohmann K, Van De Warrenburg BP, Burmeister M (2018) Mutations in VPS13D lead to a new recessive ataxia with spasticity and mitochondrial defects. Ann Neurol 83:1075-1088.
- Shamseldin HE, Alasmari A, Salih MA, Samman MM, Mian SA, Alshidi T, Ibrahim N, Hashem M, Faqeih E, Al-Mohanna F, Alkuraya FS (2017) A null mutation in MICU2 causes abnormal mitochondrial calcium homeostasis and a severe neurodevelopmental disorder, Brain 140:2806-2813.
- Sharma N, Dhiman N, Golani LK, Sharma B (2021) Papaverine ameliorates prenatal alcohol-induced experimental attention deficit hyperactivity disorder by regulating neuronal function, inflammation, and oxidative stress. Int J Dev Neurosci 81:71-81.
- Shen JL, Fortier TM, Wang R, Baehrecke FH (2021a) Vps13D functions in a Pink1-dependent and Parkin-independent mitophagy pathway. J Cell Biol 220:e202104073.
- Shen JL, Fortier TM, Zhao YG, Wang R, Burmeister M, Baehrecke EH (2021b) Vmp1, Vps13D, and Marf/ Mfn2 function in a conserved pathway to regulate mitochondria and ER contact in development and disease. Curr Biol 31:3028-3039.e7.
- Shiba-Fukushima K, Arano T, Matsumoto G, Inoshita T. Yoshida S. Ishihama Y. Rvu KY. Nukina N. Hattori N, Imai Y (2014) Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering, PLoS Genet 10:e1004861.
- Shu Y, Zhou W, Zhang W, Lu L, Gao Y, Yu Y, Shan C, Tong D, Zhang X, Shi W, Liu G (2025) Exposure to malathion impairs learning and memory of zebrafish by disrupting cholinergic signal transmission, undermining synaptic plasticity, and aggravating neuronal apoptosis. J Hazard Mater 488:137391.
- Silva AG, Rostirola JVC, Speri FD, Pina JG, Kitahara MV, Longato GB, Sciani JM (2024) Tubastrine, an antioxidant molecule from Tubastraea tagusensis sun coral, in the reversion of oxidative stress and neuron's death induced by $A\beta_{\scriptscriptstyle{42}}.$ J Cell Mol Med 28:e70165.
- Silvia P, Preziuso A, Tiziano S, Cerqueni G, Terenzi V, Lariccia V, Magi S (2025a) Unveiling the potential neuroprotective effect of bioactive compounds from plants with sedative and mood-modulating properties:Innovative approaches for the prevention of Alzheimer's and Parkinson's diseases. Curr Neuropharmacol doi: 10.2174/011570159X345397241 210103538
- Silva MFOD, Santos-Magnabosco AR, Farias CKDS, Torres SMD, Alves AJ, Cadena PG, Silva Júnior VAD (2025b) Nanoemulsions with cannabidiol reduced autisticlike behaviors and reversed decreased hippocampus viable cells and cerebral cortex neuronal death in a prenatal valproic acid rat model. An Acad Bras Ciênc.
- Smits DJ, Dekker J, Schot R, Tabarki B, Alhashem A, Demmers JAA. Dekkers DHW. Romito A. Van Der Spek PJ. Van Ham TJ. Bertoli-Avella AM. Mancini GMS (2023) CLEC16A interacts with retromer and TRIM27, and its loss impairs endosomal trafficking and neurodevelopment. Hum Genet 142:379-397.

- Sokolowski HM, Levine B (2023) Common neural substrates of diverse neurodevelopmental disorders. Brain 146:438-447
- Sonnenschein SF, Grace AA (2020) Insights on current and novel antipsychotic mechanisms from the MAM model of schizophrenia, Neuropharmacology 163:107632.
- Soylu KO, Yemisci M, Karatas H (2025) The link between spreading depolarization and innate immunity in the central nervous system. J Headache Pain 26:25.
- Specchio N, Auvin S (2025) To what extent does status epilepticus contribute to brain damage in the developmental and epileptic encephalopathies. Epilepsy Behav 164:110271.
- Spina E, Ferrari RR, Pellegrini E, Colombo M, Poloni TE, Guaita A. Davin A (2025) Mitochondrial alterations. oxidative stress, and therapeutic implications in Alzheimer's disease: a narrative review. Cells 14:229.
- Steib K, Schäffner I, Jagasia R, Ebert B, Lie DC (2014) Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci 34:6624-6633.
- Sun J, Hua C, Zhang J, Ding N, Liu Y, Liu M, Tao H, Dong J, Zhao X, Li X (2025) Decreased energy production and Ca2+ homeostasis imbalance induce myocardial hypertrophy in PDHA1-deficient human pluripotent stem cell-derived cardiomyocytes. Life Sci 364:123439.
- Sun X, Dong S, Kato H, Kong J, Ito Y, Hirofuji Y, Sato H, Kato TA, Sakai Y, Ohga S, Fukumoto S, Masuda K (2022) Mitochondrial calcium-triggered oxidative stress and developmental defects in donaminergic neurons differentiated from deciduous teeth-derived dental pulp stem cells with MFF insufficiency. Antioxidants 11:1361.
- Suzuki N, Hiraide S, Shikanai H, Isshiki T, Yamaguchi T, Izumi T, Iizuka K (2024) Impaired monoamine neural system in the mPFC of SHRSP/ezo as an animal model of attention-deficit/hyperactivity disorder. J Pharmacol Sci 154:61-71.
- Takahashi K. Nakagawasai O. Sakuma W. Nemoto W. Odaira T, Lin JR, Onogi H, Srivastava LK, Tan-No K (2019) Prenatal treatment with methylazoxymethanol acetate as a neurodevelopmental disruption model of schizophrenia in mice. Neuropharmacology 150:1-14.
- Tamatta R, Pai V, Jaiswal C, Singh I, Singh AK (2025) Neuroinflammaging and the immune landscape: The role of autophagy and senescence in aging brain. Biogerontology 26:52.
- Tanaka T. Chung HI (2025) Exploiting fly models to investigate rare human neurological disorders. Neural Regen Res 20:21-28.
- Tang Q, Fan G, Peng X, Sun X, Kong X, Zhang L, Zhang C, Liu Y, Yang J, Yu K, Miao C, Yao Z, Li L, Zhang ZS, Wang Q (2025) Gut bacterial L-lysine alters metabolism and histone methylation to drive dendritic cell tolerance. Cell Rep 44:115125
- Tchekalarova J, Ivanova P, Krushovlieva D (2024) Agerelated effects of AT1 receptor antagonist losartan on cognitive decline in spontaneously hypertensive rats. Int I Mol Sci 25:7340
- Thapar A. Cooper M. Rutter M (2017) Neurodevelopmental disorders. Lancet Psychiatry 4:339-346.
- Toro-Urrego N, Luaces JP, Kobiec T, Udovin L, Bordet S, Otero-Losada M. Capani F (2024) Raloxifene protects oxygen-glucose-deprived astrocyte cells used to mimic hypoxic-ischemic brain injury. Int J Mol Sci 25:12121.
- Towner E, Thomas K, Tomova L, Blakemore S-J (2024) Increased threat learning after social isolation in human adolescents. R Soc Open Sci 11:240101.
- Tripathi K. Ben-Shachar D (2024) Mitochondria in the central nervous system in health and disease: the puzzle of the therapeutic potential of mitochondrial transplantation. Cells 13:410.

- Tsitsikov EN, Phan KP, Liu Y, Tsytsykova AV, Paterno R, Sherry DM, Johnson AC, Dunn IF (2024) Spontaneous mutation in 2310061I04Rik results in reduced expression of mitochondrial genes and impaired brain myelination, PLoS One 19:e0290487.
- Tulva K, Pirajev A, Zeb A, Aksoy AE, Bello A, Lee B, Guðjónsson BF, Helgadottir SB, Jagomäe T, García-Llorca A. Evsteinsson T. Jürgenson M. Plaas M. Vasar F. Kaasik A. Hickey MA (2025) Farly trigeminal and sensory impairment and lysosomal dysfunction in accurate models of Wolfram syndrome. Exp Neurol 385.115099
- Uspalenko NI, Mosentsov AA, Khmil NV, Pavlik II. Belosludtseva NV, Khunderyakova NV, Shigaeva MI, Medvedeva VP, Malkov AE, Kitchigina VF, Mironova GD (2023) Uridine as a regulator of functional and ultrastructural changes in the brain of rats in a model of 6-OHDA-induced Parkinson's disease. Int J Mol Sci.
- Vacca RA, Valenti D, Caccamese S, Daglia M, Braidy N, Nabavi SM (2016) Plant polyphenols as natural drugs for the management of Down syndrome and related disorders. Neurosci Biobehav Rev 71:865-877.
- Vaillant-Beuchot L, Eysert F, Duval B, Kinoshita PF, Pardossi-Piquard R. Bauer C. Eddarkaoui S. Buée L. Checler F. Chami M (2024) The amyloid precursor protein and its derived fragments concomitantly contribute to the alterations of mitochondrial transport machinery in Alzheimer's disease. Cell Death Dis 15:367.
- Valenti D. De Bari I. De Filippis B. Henrion-Caude A. Vacca RA (2014) Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: an overview of down syndrome, autism, Fragile X, and Rett syndrome. Neurosci Biobehay Rev 46:202-217.
- Valenti D, De Bari L, Vigli D, Lacivita E, Leopoldo M, Laviola G, Vacca RA, De Filippis B (2017) Stimulation of the brain serotonin receptor 7 rescues mitochondrial dysfunction in female mice from two models of Rett syndrome, Neuropharmacology 121:79-88.
- Van Der Bliek AM, Sedensky MM, Morgan PG (2017) Cell biology of the mitochondrion. Genetics 207:843-871.
- Van Hameren G. Muradov J. Minarik A. Aboghazleh R. Orr S. Cort S. Andrews K. McKenna C. Pham NT. MacLean MA, Friedman A (2023) Mitochondrial dysfunction underlies impaired neurovascular coupling following traumatic brain injury. Neurobiol Dis 186:106269.
- Vandenberg GG, Thotakura A, Scott AI (2022) Mitochondrial bioenergetics of astrocytes in Fragile X syndrome: new perspectives on culture conditions and sex effects. Am J Physiol Cell Physiol 322:C125-135.
- Van Haute L. Lee SY, McCann BJ, Powell CA, Bansal D. Vasiliauskaitė L, Garone C, Shin S, Kim JS, Frye M, Gleeson JG, Miska EA, Rhee HW, Minczuk M (2019) NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs. Nucleic Acids Res 47:8720-8733.
- van Spronsen M. Mikhavlova M. Lipka J. Schlager MA. van den Heuvel DJ, Kuijpers M, Wulf PS, Keijzer N, Demmers J, Kapitein LC, Jaarsma D, Gerritsen HC, Akhmanova A, Hoogenraad CC (2013) TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77:485-502.
- Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, Harony-Nicolas H, De Rubeis S, Drapeau E, Buxbaum JD, Hof PR (2017) Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol (Berl) 134:537-566.
- Vester AI, Hermetz K, Burt A, Everson T, Marsit CJ, Caudle WM (2020) Combined neurodevelopmental exposure to deltamethrin and corticosterone is associated with Nr3c1 hypermethylation in the midbrain of male mice. Neurotoxicol Teratol 80:106887.

- Vlasova RM, Iosif AM, Ryan AM, Funk LH, Murai T, Chen S, Lesh TA, Rowland DJ, Bennett J, Hogrefe CE, Maddock RJ, Gandal MJ, Geschwind DH, Schumann CM, Van De Water J, McAllister AK, Carter CS, Styner MA, Amaral DG, Bauman MD (2021) Maternal immune activation during pregnancy alters postnatal brain growth and cognitive development in nonhuman primate offspring. J Neurosci 41:9971-9987.
- Vujovic F, Simonian M, Hughes WE, Shepherd CE, Hunter N, Farahani RM (2024) Mitochondria facilitate neuronal differentiation by metabolising nuclear-encoded RNA. Cell Commun Signal 22:450.
- Wakefield JC (2016) Diagnostic issues and controversies in DSM-5: return of the false positives problem. Annu Rev Clin Psychol 12:105-132.
- Wang B, Yang Z, Zhang K, Wang L, Song Y, Li Q, Sun M (2025a) Embryonic BPF exposure induces neurodevelopmental and neurobehavioral toxicity by affecting neural stem cell proliferation in Drosophila. Environ Pollut 369:125
- Wang F, Li Y, Tang D, Yang B, Tian T, Tian M, Meng N, Xie W, Zhang C, He Z, Zhu X, Ming D, Liu Y (2023) Exploration of the SIRT1-mediated BDNF—TrkB signaling pathway in the mechanism of brain damage and learning and memory effects of fluorosis. Front Public Health 11:1247294.
- Wang J, Fröhlich H, Torres FB, Silva RL, Poschet G, Agarwal A, Rappold GA (2022a) Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome. Proc Natl Acad Sci U S A 119:e2112852119.
- Wang J, Zhao M, Wang M, Fu D, Kang L, Xu Y, Shen L, Jin S, Wang L, Liu J (2024a) Human neural stem cellderived artificial organelles to improve oxidative phosphorylation. Nat Commun 15:7855.
- Wang L, Cao J, Chen H, Ma Y, Zhang Y, Su X, Jing Y, Wang Y (2024b) Transcription factor EB overexpression through glial fibrillary acidic protein promoter disrupts neuronal lamination by dysregulating neurogenesis during embryonic development. Dev Neurosci 47:40-
- Wang M, Yu J, Kim HD, Cruz AB (2025b) Neural correlates of executive function and attention in children with ADHD: an ALE meta-analysis of task-based functional connectivity studies. Psychiatry Res 345:116338.
- Wang Q, Wang X, Shang Z, Zhao L (2024c) Mechanism and prospects of mitochondrial transplantation for spinal cord injury treatment. Stem Cell Res Ther 15:457.
- Wang S, Zou M, Zhu Z, Wang Z, Li K, Ruan J, Zhao B, Pan C, Lan X, Zhang S, Foulkes NS, Zhao H (2024d) Oseltamivir phosphate (Tamiflu) alters neurobehavior of zebrafish larvae by inducing mitochondrial dysfunction. Sci Total Environ 955:177077.
- Wang T, Li X, Yu H, Zhang H, Xie Z, Gong Q (2025c)
 Inhibition of mitochondrial energy production leads
 to reorganization of the plant endomembrane system.
 Plant Physiol 197:kiaf033.
- Wang W, Zhao Z, Zhang Z, Wu Z, Zhang Y, Wang K, Dai M, Mao C, Wan M (2025d) Delivery of small interfering RNA by hydrogen sulfide-releasing nanomotor for the treatment of Parkinson's disease. J Controlled Release 377:648-660.
- Wang X, Yang J, Zhang X, Cai J, Zhang J, Cai C, Zhuo Y, Fang S, Xu X, Wang H, Liu P, Zhou S, Wang W, Hu Y, Fang J (2024e) An endophenotype network strategy uncovers YangXue QingNao Wan suppresses $A\beta$ deposition, improves mitochondrial dysfunction and glucose metabolism. Phytomedicine 135:156158.
- Wang Y, Guo X, Hong X, Wang G, Pearson C, Zuckerman B, Clark AG, O'Brien KO, Wang X, Gu Z (2022b) Association of mitochondrial DNA content, heteroplasmies, and inter-generational transmission with autism. Nat Commun 13:3790.

- Wang Z, Zhang H (2018) Mitophagy:Vps13D couples mitochondrial fission and autophagic clearance. Curr Biol 28(2):R66-68.
- Whitehead M, Harvey JP, Sladen PE, Becchi G, Singh K, Sun YJ, Burgoyne T, Duchen MR, Yu-Wai-Man P, Cheetham ME (2025) Disruption of mitochondrial homeostasis and permeability transition pore opening in OPA1 iPSC-derived retinal ganglion cells. Acta Neuropathol
- Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dötsch V, Bumann D, Dikic I (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228-233.
- Wilson BC, Boehme L, Annibali A, Hodgkinson A, Carroll TS, Oakey RJ, Seitan VC (2020) Intellectual disability-associated factor Zbtb11 cooperates with NRF-2/GABP to control mitochondrial function. Nat Commun 11:5469
- Wu H, Liu Y, Li H, Du C, Li K, Dong S, Meng Q, Zhang H (2021) TRAK1-mediated abnormality of mitochondrial fission increases seizure susceptibility in temporal lobe epilepsy. Mol Neurobiol 58:1237-1247.
- Wu QY, Liu HL, Wang HY, Hu KB, Liao P, Li S, Long ZY, Lu XM, Wang YT (2023) Syntaphilin mediates axonal growth and synaptic changes through regulation of mitochondrial transport: a potential pharmacological target for neurodegenerative diseases. J Drug Target 31:685-692.
- Xi C, Yang Z, Yu Y, Li S, He J, El-Aziz TMA, Zhao F, Cao Z (2022) Influence of perinatal deltamethrin exposure at distinct developmental stages on motor activity, learning, and memory. Ecotoxicol Environ Saf 236:113460.
- Xia C, Alliey-Rodriguez N, Tamminga CA, Keshavan MS, Pearlson GD, Keedy SK, Clementz B, McDowell JE, Parker D, Lencer R, Kristian Hill S, Bishop JR, Ivleva EI, Wen C, Dai R, Chen C, Liu C, Gershon ES (2024) Genetic analysis of psychosis biotypes: shared ancestry-adjusted polygenic risk and unique genomic associations. medRxiv [Preprint] doi: 10.1101/2024.12.05.24318404.
- Xu J, Zhao R, Yan M, Zhou M, Liu H, Wang X, Lu C, Li Q, Mo Y, Zhang P, Ju X, Zeng X (2024) Sex-specific behavioral and molecular responses to maternal lipopolysaccharide-induced immune activation in a murine model: implications for neurodevelopmental disorders. Int J Mol Sci 25:9885.
- Yan C, Duanmu X, Zeng L, Liu B, Song Z (2019)

 Mitochondrial DNA: distribution, mutations, and elimination. Cells 8:379.
- Yan HH, He JJ, Fu C, Chen JH, Tang AH (2024) ATAD1 regulates neuronal development and synapse formation through tuning mitochondrial function. Int J Mol Sci 26:44.
- Yan J, Zhou J, Zhao JP, Zhang QF, Zhou MC, Wang YL (2024) Visual analysis of high-definition transcranial direct current stimulation research. Zhongguo Zuzhi Gongcheng Yanjiu 28:5110-5115.
- Yardeni T, Cristancho AG, McCoy AJ, Schaefer PM,
 McManus MJ, Marsh ED, Wallace DC (2021) An mtDNA
 mutant mouse demonstrates that mitochondrial
 deficiency can result in autism endophenotypes. Proc
 Natl Acad Sci U S A 118:e2021429118.
- Yin L, Xu Y, Mu J, Leng Y, Ma L, Zheng Y, Li R, Wang Y, Li P, Zhu H, Wang D, Li J (2025) CNKSR2 interactome analysis indicates its association with the centrosome/microtubule system. Neural Regen Res 20:2420-2432.
- Yoo SM, Jung YK (2018) A molecular approach to mitophagy and mitochondrial dynamics. Mol Cells 41:18-26

- Yousefian-Jazi A, Kim S, Chu J, Choi SH, Nguyen PTT, Park U, Kim M, Hwang H, Lee K, Kim Y, Hyeon SJ, Rhim H, Ryu HL, Lim G, Stein TD, Lim K, Ryu H, Lee J (2025)

 Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice. Mol Neurodegener 20:16.
- Zaguri-Vittenberg S, Gellis M, Hilman HH, Tal-Saban M (2025) Health-related quality of life and participation in adolescents: the role of ADHD, and co-occurrence of DCD. Res Dev Disabil 158:104938.
- Zehnder T, Petrelli F, Romanos J, De Oliveira Figueiredo EC, Lewis TL, Déglon N, Polleux F, Santello M, Bezzi P (2021) Mitochondrial biogenesis in developing astrocytes regulates astrocyte maturation and synapse formation. Cell Rep 35:108952.
- Zhang Q, Zheng J, Li L, Yeh JM, Xie X, Zhao Y, Li C, Hou G, Yan H (2025a) Bioinspired conductive oriented nanofiber felt with efficient ROS clearance and anti-inflammation for inducing M2 macrophage polarization and accelerating spinal cord injury repair. Bioact Mater 46:173-194.
- Zhang Y, Zhang X, Zhou J, Li Y, Kai T, Zhang L (2025b)
 Lycium ruthenicum Murray exosome-like nanovesicles
 alleviated Alzheimer's disease—like symptoms induced
 by Aβ protein in transgenic Caenorhabditis elegans
 through the DAF-16 pathway. Int J Biol Macromol
 304:140758.
- Zhao Q, Tian Z, Zhou G, Niu Q, Chen J, Li P, Dong L, Xia T, Zhang S, Wang A (2020) SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of resveratrol against neurodevelopment damage by fluoride. Theranostics 10:4822-4838.
- Zhao Q, Zeng C, Luo F, Xian Z, Wen H, Tu X, Yang R, Sun Y, Zheng X, Xu J, Wang H (2025) PDE4 inhibition alleviates HMGB1/C1q/C3-mediated excessive phagocytic pruning of synapses by microglia and depressive-like behaviors in mice. Brain Behav Immun 126:126-143.
- Zhou M, Qiu W, Ohashi N, Sun L, Wronski ML, Kouyama-Suzuki E, Shirai Y, Yanagawa T, Mori T, Tabuchi K (2024) Deep-learning-based analysis reveals a social behavior deficit in mice exposed prenatally to nicotine. Cells
- Zhou Z, Zhao X, Yang Q, Zhou T, Feng Y, Chen Y, Chen Z, Deng C (2025) A randomized controlled trial of the efficacy of music therapy on the social skills of children with autism spectrum disorder. Res Dev Disabil 158:104942.
- Zhu YB, Sheng ZH (2011) Increased axonal mitochondrial mobility does not slow amyotrophic lateral sclerosis (ALS)-like disease in mutant SOD1 mice. J Biol Chem 286:23432-23440.
- Ziar R, Tesar PJ, Clayton BLL (2025) Astrocyte and oligodendrocyte pathology in Alzheimer's disease. Neurotherapeutics doi: 10.1016/j.neurot.2025. e00540.
- Zubal R, Velicky Buecheler M, Sone D, Postma T, De Tisi J, Caciagli L, Winston GP, Sidhu MK, Long L, Xiao B, Mcevoy AW, Miserocchi A, Vos SB, Baumann CR, Duncan JS, Koepp MJ, Galovic M (2025) Brain hypertrophy in patients with mesial temporal lobe epilepsy with hippocampal sclerosis and its clinical correlates. Neurology 104:e210182.
- Zuccoli GS, Nascimento JM, Moraes-Vieira PM, Rehen SK, Martins-de-Souza D (2023) Mitochondrial, cell cycle control, and neuritogenesis alterations in an iPSCbased neurodevelopmental model for schizophrenia. Eur Arch Psychiatry Clin Neurosci 273:1649-1664.

C-Editor: Zhao M; S-Editors: Wang J, Li CH; L-Editor: Song LP; T-Editor: Jia Y