

Integration
Maturity
Model
A business user’s guide to understanding the

different types of integration & how they

affect usability & productivity

2

Integration
M

aturity M
od

el

f a friend tells you that the food at a local restaurant is “too spicy” or that the forecast

for this weekend is going to be “cold,” unless you’re familiar with the restaurant or your

friend’s preferences for food and weather, it can be difficult if not impossible to know

exactly what she means. Granted, the cost of this uncertainty can be relatively minor. You

may wind up with an entrée that’s too bland or that burns your mouth, or you may spend the

weekend shivering or sweating a little more than you would’ve liked. But when it comes to

assembling a tech stack, this sort of ambiguity can be costly. It can lead to poor technology

decisions that leave a bad aftertaste for years and have a chilling effect on your ability to

deliver quality solutions on time and on budget.

Integration is essential, inescapable, and increasingly important to any tech stack. But not all

products integrate equally well, and the definition of “integration” can be a little fuzzy.

Uniform’s Integration Maturity Model provides a clear and simple vocabulary for

differentiating levels of integration that helps you to better evaluate products you’re

interested in and to assemble a well-orchestrated platform.

Welcome to a multi-tool world
Let’s face it: The days of the one-size-fits-all application or suite are long gone. Virtually no

one spends the entire workday within a single software environment. Marketers are used to

working with multiple tools, while developers have long since grown accustomed to operating

across multiple systems. When these tools and systems work together well, both marketers

and developers can be more productive. When they don’t, the results are inefficient,

unproductive, and frustrating. Instead of focusing on delivering the best experience for their

customers, they find themselves creating data silos that limit their capabilities and kill their

productivity. The conclusion is inescapable: for the sake of a customer’s experience, a

company’s business, and the sanity of employees, the tools we use require tighter

integration.

Some vendors are rising to the occasion
For most companies, integration is no longer just nice to have; it’s mandatory. More and more

products and services are being designed with integration, not as an afterthought, but as a

"first-class citizen.”

I

3

Integration
M

aturity M
od

el

Customers’ increased comfort with the cloud and with the SaaS (software as a service)

products that depend on it is paving the way to composability, making it more practical and

easier to adopt. SaaS assumes integration, provides robust APIs that make integration

possible, and eliminates the need, cost, inconvenience, and development time that was

associated with installing upgrades and patches. Once pricey and painstaking changes now

happen seamlessly.

Finally, the rise of decoupled architectures like Jamstack and MACH has led to a kind of

integration “perfect storm.” As an increasing number of vendors build products based on

these two architectures, more and more systems integrators are developing solutions that

rely on them.

Others are slow to come around
Given the growing necessity for integration, why is some integration so lackluster? One key

reason is because many systems weren’t designed for integration. Many vendors assumed

they’d built the better mousetrap and that they had provided all the functionality their

customers would ever need in a single, unified package. Unfortunately, the reality is that their

systems aren’t the be-all-and-end-all they originally envisioned or as “future proof” as they

claimed.

Not only that, but adding integration after the fact can be difficult and expensive. Some

vendors have considered the cost and the effort involved and concluded that it simply isn’t

worth it. As long as a suite is “good enough” to impress potential purchasers during a sales

demo, they’re content to let their customers pick up the cost and the complication of hiring

systems integrators to add any extra functions, confident that the custom code will further

increase vendor lock-in. In short, from a certain perspective, neglecting to add integration

isn’t a bug; it’s a feature. It can actually be considered a viable business strategy for retaining

customers. In addition, some suite vendors have found that they can add a flashy new user

interface that creates the impression of integration, when if you look under the hood, you’ll

find that any actual capabilities of integration have been tacked on as an awkward

afterthought.

4

Integration
M

aturity M
od

el

Taking a more granular approach to defining integration
Part of the problem lies in the reckless use of the term integrated itself. Unfortunately, calling

a tool “integrated” can be as meaningless as labeling a food “natural.” Just as many grocery

shoppers wrongly assume that “natural” means that a food is organic and doesn’t contain

artificial ingredients (the former isn’t true, and the latter isn’t necessarily true), companies

that purchase an “integrated” component may assume that they can plug it into their current

platform right out of the box.

The issue shouldn’t be whether a tool is “integrated” or not but rather whether it is “well

integrated.” The time has come to add more precision to the use of the term integration.

That’s the goal of Uniform’s Integration Maturity Model. Rather than lumping everything under

the single label of “integration” the Integration Maturity Model lays out three distinct levels of

integration, each one successively more advanced.

5

Integration
M

aturity M
od

el

Level 1. Connectivity
The base level is connectivity. This simply means that a connection can be made from one

system to another. Typically, this depends on APIs the vendor has provided that enable

developers to build connections to third-party tools. Unfortunately, this method has some

conspicuous drawbacks. Because the vendor defines the API and supplies no user interface,

adding functionality or a UI requires costly and time-consuming custom development and

increases the risk of introducing potential bugs. It not only adds to vendor lock-in, but also to

version lock-in. Upgrades, even ones for bug fixes or security patches, may not be possible

unless the custom code is updated as well.

Level 2. Integration
Next comes integration. At the integration level, users can access one system while working

within another. This is accomplished with pre-built components called connectors. Unlike

APIs, which offer only the potential for functionality, connectors provide actual functionality.

Of course, connectors only work with the systems they

support. Even if you’re lucky enough to be working with a

supported system because the connectors are pre-built,

this means you are limited to certain predefined

capabilities.

Level 3. Orchestration
Finally, the most mature of the model’s three levels of

integration is orchestration. The essence of orchestration

is extensions. An extension does just what it sounds like. It

extends a system by tapping into features already

present that allow developers to add functionality.

Although a third-party vendor may have built the

extension, it operates almost as though it were part of the

original component. As a result, the user feels as though only one system is being used. That

said, the goal isn't to hide the fact that there are multiple systems. It is to shift the focus away

from the connection between systems and on to the task at hand instead.

Difference isn’t superiority

It is important to note that while the
Integration Maturity Model categorizes the
different kinds of integrations that exist, this
does not mean that one type of integration is
inherently “better” or “worse” than another.
Each type of integration has a place in a
system, and modern systems couldn’t function
without a mix of all of them.

What is important is that you understand that
these different categories exist so that when
you are making a technology buying decision
you know what you are getting.

6

Integration
M

aturity M
od

el

The ambiguity of describing an entrée as too spicy can be resolved by the Scoville scale,

which measures the pungency of peppers. As for determining what someone means by

“cold,” we have the Fahrenheit and Celsius scales to help clear up any confusion. Now we

have the Integration Maturity Model to help us to better understand what “integration” truly

means.

This more granular approach offers numerous benefits. By distinguishing between types of

integration, it helps you to better understand exactly what you are buying, how much custom

development will be required, and how "future proof" your architecture will be. With this

model in your toolkit, you can choose the tools you need with increased confidence and

avoid decisions that put a bad taste in your mouth or leave you feeling that you’ve been left

out in the cold.

www.uniform.dev hi@uniform.dev

