
Runtime
code	generation	techniques

in	real	life	scenarios

Raffaele	Rialdi
Senior	Software	Architect

Microsoft	MVP

@raffaeler
https://github.com/raffaeler
http://iamraf.net

Abstract

• The	runtime	code	generation	is	a	powerful	practice	that	many	developers	
are	still	reluctant	to	use.	A	typical,	useful	and	simple	point	to	start	
exploring	the	Expression	Trees	library	is	building	a	predicate	(filter)	or	a	
math	calculation.	But	Expression	Trees	is	not	the	only	library	available.	
• More	recently	the	.NET	world	gained	the	ability	to	generate	code	using	the	
compiler	itself	via	APIs	exposed	by	the	Roslyn/CodeAnalisys libraries	which	
allows,	among	many	other	things,	parsing,	visiting	and	generating	the	
source	code.
• During	the	session	we	will	analyze	practical	use-cases,	sometimes	
improving	dramatically	the	performance	of	the	app	which	will	bring	to	the	
final	dilemma	of	debugging	the	generated	code,	a	task	that	is	fundamental	
in	real-life	projects.

Who	am	I?

• Raffaele	Rialdi,	Senior	Software	Architect	in	Vevy Europe	– Italy
@raffaeler also	known	as	"Raf"

• Consultant	in	many	industries
Manufacturing,	racing,	healthcare,	financial,	…

• Speaker	and	Trainer	around	the	globe	(development	and	security)
Italy,	Romania,	Bulgaria,	Russia	(CodeFest @	Novosibirsk),	USA,	…

• And	proud	member	of	the	great	Microsoft	MVP	family	since	2003

Writing	code,	that	will	generate	the	code
at	the	right	time
• Why avoiding	Reflection	(in	hot	paths)?
• Slow	because	of	reading	ECMA-335	metadata	and	building	Reflection	artifacts
• The	code	that	can't	make	speculations	is	harder,	slower	and	power	consuming

• When should	we	generate	the	code?
• As	soon as	we	have	the	information	to	reduce	the	code	complexity

• What I	possibly	don't	know	at	compile	time?
• Linq predicates,	formulas,	Types	loaded	from	plugins,	transformation	functions	
(projections),	user	choices,	interop	code,	DTOs,	data	modeled	via	DSL,	…

Why	generating	code	at	runtime?

• After	all,	we	have	reflection	…	BUT
• Reflection	is	slow	because	of	the	need	to	read	and	interpret	the	metadata
• Reflection	objects	are	not	automatically	cached
• Creating	a	generic	algorithm	is	hard,	slower	and	consume	CPU/power

• We	can	write	the	code,	which	will	write	the	code at	the	right	time
• At	a	certain	point	at	runtime,	we	will	have	enough	info
to	reduce	the	algorithm	complexity

• What	I	possibly	still	don't	know	at	compile	time?
• Linq filters/predicates,	computational	formulas,	Types	loaded	from	a	plugin,	data	
transformation	function	(projections),	user	choices,	interop	code,	DTOs,	data	
modeled	via	DSL,	…

Code	"Introspection"

• It	is	a	precious	feature	available	in	.NET	as	well	as	in	Java
• C++	ISO	committee	is	willing	to	add	it	in	the	specifications

• Leverage	metadata	to	understand	the	Types	'shape'
• Offered	as	an	API	in	.NET	as	"Reflection"	(System.Reflection)
• Another	API	is	available	in	a	"raw"	form	in	"System.Reflection.Metadata"

• Reflection	does	not	offer	any	"cache"	mechanism
• Reading	a	Type	metadata	can	be	very	expensive
• It	is	still	fundamental	during	the	code	generation	phase

Code	Generation:	complexity	vs	performance

Compile
time

main()	{	 Start Runtime End

Some	internal	object	lifecycle

}

App	lifecycle

Move	code
as	much	as	possible	to	the	left

Create	the	
required	types

Generate
the	types	/	code

Use
Reflection

Options	to	generate	code

• Legacy	/	old-school	options
• T4	templates
• CodeDom
• IL	Emit
• Composing	textual	code	by	hand

• The	most	interesting
• Expression	Trees
• Roslyn	(.NET	Compiler	Platform)
• Mono.Cecil (inject	/	modify	IL)

Why	are	these	libraries	less	attractive?

• T4	templates
• Requires	a	3rd party	runtime,	difficult	to	debug

• CodeDom
• Old	API	still	working	but	does	not	cover	all	the	language	features

• IL	Emit
• Total	freedom	but	complex	structures	are	much	harder	to	build

• Composing	textual	code	by	hand
• Very	prone to	syntax	errors

CodeGen	with	the	Expressions

Generating	method	calls
Example:	msg =>	Console.WriteLine(msg);

// using reflection to get the exact overload
var type = typeof(Console);
var methodInfo = type.GetMethod("WriteLine", new Type[] { typeof(string) });

// generate the call method
var message = Expression.Parameter(typeof(string), "msg");
var call = Expression.Call(null, methodInfo, message);

Expression<Action<string>> lambda =
Expression.Lambda<Action<string>>(call, message);

// compile
Action<string> delegate1 = lambda.Compile();

// invoke
delegate1.Invoke("hello, world");

typed	lambda

Finding	the	exact	overload	in	Reflection

• There	are	NO	APIs	to	distinguish	these	two	overloads

• Solution:

IQueryable<TSource>	Where<TSource>(this IQueryable<TSource>	source,
Expression<Func<TSource,	bool>>	predicate)

IQueryable<TSource>	Where<TSource>(this IQueryable<TSource>	source,
Expression<Func<TSource,	int,	bool>>	predicate)

public static MethodInfo Where2 = GenericMethodOf(_ =>
Queryable.Where<int>(default(IQueryable<int>), default(Expression<Func<int, bool>>)));

private static MethodInfo GenericMethodOf<T>(Expression<Func<object, T>> expression) =>
GenericMethodOf(expression as Expression);

private static MethodInfo GenericMethodOf(Expression expression) =>
((expression as LambdaExpression).Body as MethodCallExpression)
.Method.GetGenericMethodDefinition();

Generating	predicates
Example:	x	=>	x	>	-10

public Expression<Func<int, bool>> CreatePredicate()
{
var left = Expression.Parameter(typeof(int), "x");
var right = Expression.MakeUnary(ExpressionType.Negate,

Expression.Constant(10), typeof(int));

var f = Expression.MakeBinary(ExpressionType.GreaterThan, left, right);

return Expression.Lambda<Func<int, bool>>(f, left);
}

Expression	visitors

• Many	use	cases:
• Modify	a	Linq predicate	/	query
• Block	some	user	code	using	a	whitelist	of	callable	methods
• Replace	the	data	source	of	a	query
• Replace	variables	with	constants	to	simplify	the	query

public class WhereExtractor<T> : ExpressionVisitor
{

protected override Expression VisitMethodCall(MethodCallExpression node)
{

if (node.Method.Name == "Where")
{

...

Creating,	visualizing	and	
debugging Expression Trees

Generate	code	with	Roslyn

Roslyn	(.NET	Compiler	Platform)

• The	compiler exposing APIs!	(code	generation	is just	a	small	part)
• Compile	code,	semantic	API,	symbol	API,	formatting code,	colorize code
• Intellisense and	code	completion too!

• Cover	the	whole	set	of	language	features
• The	API	is	not	as	type	safe	as	the	Expression	Trees
• Syntax	Nodes	can	be	composed	to	produce	code	that	does	not	compile

• Powerful	compilation	APIs	(assemblies	can	be	saved	in	memory)
• Parser	APIs	convert	text	to	syntax	nodes	with	full	fidelity
• Code	visitor	to	change	code	instead	of	generating	it	from	scratch

Parsing	and	visiting
• You	can	start	parsing	an	existing	source	code	(text)	and	then	…
• Use	a	Linq-style	syntax	to	find	and	replace	the	desired	nodes
• Use	a	CSharpSyntaxWalker derived	class	to	find	nodes	and	make	changes

var root = CSharpSyntaxTree.ParseText(@"
using System;
using System.Collections.Generic;
namespace RafNamespace{
class RafClass{
void main(){Console.WriteLine(""Hello, world"");
}}}
").GetRoot();

// Format the code "nicely" (like Visual Studio does)
var wspace = new AdhocWorkspace();
var formatted = Formatter.Format(root.ToString(), wspace, wspace.Options);
return formatted.ToString();

SyntaxGenerator in	action
• Is	a	Roslyn	class	providing	high-level	services	to	generate	SyntaxNodes
• Frequently	used	methods
• Get	a	syntax	node	for	a	type

• var node	=	SyntaxFactory.ParseTypeName("string")
• Create	a	node	from	a	literal

• var node	=	generator.IdentifierName(literalName)
• Declaring	a	class

• var node	=	generator.ClassDeclaration(name,	genericParameters,	accessibility,	…);
• Create	a	new	object

• var node	=	generator.ObjectCreationExpression(type,	arguments);
• «adjust»	the	space	among	nodes	with	SyntaxNode extension	method

• node.NormalizeWhitespace();

Visual	Studio	Syntax Tree tool

Building	a	class	with	the	SyntaxGenerator
var nodes = new List<SyntaxNode>();
nodes.AddRange(Usings.Select(n =>
_generator.NamespaceImportDeclaration(n).NormalizeWhitespace()));

nodes.Add(_generator.NamespaceDeclaration(Namespace,
_generator.ClassDeclaration(Name, null, Accessibility.Public,

DeclarationModifiers.Partial, null, null,
Properties.Select(kvp =>

CreateProperty(kvp.Key, kvp.Value)))).NormalizeWhitespace());

var root = _generator.CompilationUnit(nodes).NormalizeWhitespace();

// optional step (not needed in this case)
var formatted = Formatter.Format(root, _workspace, _workspace.Options);
var sourceCode = formatted.ToString();

Creating	a	trivial	property
private SyntaxNode CreateProperty(string name, SyntaxNode type)
{

var propertyDeclaration = _generator.PropertyDeclaration(name, type,
Accessibility.Public, DeclarationModifiers.None);

var getAccessor = _generator.GetAccessor(
propertyDeclaration, DeclarationKind.GetAccessor);

var simpleGetAccessor = _generator.WithStatements(getAccessor, null);
propertyDeclaration = _generator.ReplaceNode(

propertyDeclaration, getAccessor, simpleGetAccessor);

var setAccessor = _generator.GetAccessor(
propertyDeclaration, DeclarationKind.SetAccessor);

var simpleSetAccessor = _generator.WithStatements(setAccessor, null);
propertyDeclaration = _generator.ReplaceNode(

propertyDeclaration, setAccessor, simpleSetAccessor);

return propertyDeclaration.NormalizeWhitespace();
}

public string Name { get; set; }

trivial

SyntaxGenerator in	action

Going	down	to	IL

What	about	generating	IL	code?
• In	my	experience	it	fits	better	for	"patching"	/	modifying	existing	code
• Mono.Cecil	is	your	friend:	Decompile,	Add	and	Remove	IL	code

var processor = method.Body.GetILProcessor();
var callsOpcodes = processor.Body.Instructions

.Where(i => i.OpCode == OpCodes.Call ||
i.OpCode == OpCodes.Callvirt)
.ToList();

Searching	IL	calls

var premsg = processor.Create(OpCodes.Ldstr, $"{before}");
var postmsg = processor.Create(OpCodes.Ldstr, $"{after}");
var externalCall = processor.Create(OpCodes.Call, method);

Creating
new	instructions

processor.InsertBefore(current, premsg);
processor.InsertBefore(current, externalCall);Injection

A	vision	to	the	future:	PicoLibraries

• This	is	not	(yet)	a	thing,	just	an	idea	and	some	code	around
• My	vision	is	creating	building	blocks	to	be	orchestrated	by	generated	
code
• PicoLibraries are	designed	to	avoid	as	much	of	boilerplate	code	as	
possible
• A	set	of	PicoLibraries is	a	DSL	that	can	be	assembled	by	a	designer	or	
by	an	automatic	Artificial	Intelligence	process
• It	is	a	way	to	promote	autonomous	systems

To	sum	up

• Use	code	generation	to	free	the	"hot	paths"

• Get	the	most	out	Roslyn	and	Expressions	by	mixing	them
• Roslyn	is	the	choice	to	create new	Types	or	modify existing	source	code
• Expressions	are	good	to	enforce	the	validation of	the	assembled	Expressions

• Leverage	IL	only	when	you	need	to	intervene	after	the	compilation

Questions	@	booth	#1

Thank	you!

Parsing	the	sources

• Transformation	from	text	to	nodes	is	reversible
• Full	fidelity	(comments	and	alignments	as	well)

• Every	syntax	tree	is	immutable	and	thread-safe
• Allow	multiple	consumers	to	access	concurrently	a	single	tree

… ……

From	sources	to	syntax	tree

• Syntax	API	is	represented	with	these	classes:
• SyntaxTree is	the	binary	form	of	the	source	with	full	fidelity
• SyntaxNode represents	declarations,	statements,	clauses	and	expressions
• SyntaxToken identifies	the	special	language	tokens	like	keywords,	identifiers,	
operators	or	punctuation
• They	never	have	children

• SyntaxTrivia everything	not	impacting	on	the	generated	IL	code	such	as	
whitespaces,	comments,	etc.

SyntaxTree tree = CSharpSyntaxTree.ParseText(source);
SyntaxNode node = tree.GetRoot();
Debug.Assert(node.CSharpKind() == SyntaxKind.CompilationUnit);
var root = (CompilationUnitSyntax)node;

