
Kevin Gosse @kookiz

Christophe Nasarre

Advanced .NET debugging

techniques from real world

investigations

2 | Copyright © 2018 Criteo

1. Identify 2. Understand 3. Verify

AGENDA… of an investigation

Gather meaningful data
your can trust

Make hypothesis based on
application state and
experience

Validate your assertions

3 | Copyright © 2018 Criteo

Look at Grafana boards

4 | Copyright © 2018 Criteo

First symptom of the issue: increase in contention rate

5 | Copyright © 2018 Criteo

•GUESS: graph looks like a leak (but of what?)

•Looking for contention cause

6 | Copyright © 2018 Criteo

Look in code changes

7 | Copyright © 2018 Criteo

•GUESS: graph looks like a leak (but of what?)

•Looking for contention cause

•Nothing in code change

8 | Copyright © 2018 Criteo

Measure with more details: hard to beat a profiler

Comparing exact contention

9 | Copyright © 2018 Criteo

•GUESS: graph looks like a leak (but of what?)

•Looking for contention cause

•Nothing in code change

•Sounds related to TimerQueueTimer

•What is that?

10 | Copyright © 2018 Criteo

• Look for the source code if available on sourceof.net or a decompiler

Know the code but not only your code

A decompiler is ALWAYS a good friend… even with https://referencesource.microsoft.com

https://referencesource.microsoft.com/
https://referencesource.microsoft.com/

11 | Copyright © 2018 Criteo

~Finalizer()

Look into the Timer creation code

TimerHolder

m_timer

TimerQueue

s_queue

TimerQueueTimer

m_next
m_prev

Timer

m_timer

12 | Copyright © 2018 Criteo

•GUESS: graph looks like a leak (but of what?)

•Looking for contention cause

•Nothing in code change

•Sounds related to TimerQueueTimer

•What is that?

• where do we use Timer?

13 | Copyright © 2018 Criteo

procdump + WinDBG + sos

DEMO

14 | Copyright © 2018 Criteo

•GUESS: graph looks like a leak (but of what?)

•Looking for contention cause

•Nothing in code change

•Sounds related to TimerQueueTimer

•What is that?

• where do we use 14.000+ Timer?

15 | Copyright © 2018 Criteo

DEMO

16 | Copyright © 2018 Criteo

•GUESS: graph looks like a leak (but of what?)

•Looking for contention cause

•Nothing in code change

•Sounds related to TimerQueueTimer

•What is that?

•Where do we use 14.000+ Timer?

•Relations between MeterMetric and Timer?

17 | Copyright © 2018 Criteo

Current analysis state

MeterMetric

_timer

Timer

callback

Meter

DelegateMeter

Root ?

18 | Copyright © 2018 Criteo

WinDBG + sosex.refs: who is holding us?

DEMO

19 | Copyright © 2018 Criteo

•GUESS: graph looks like a leak (but of what?)

•Looking for contention cause

•Nothing in code change

•Sounds related to TimerQueueTimer

•What is that?

•Where do we use 14.000+ Timer?

•Relations between MeterMetric and Timer?

•Meter

•but…finalizers should have done the job?...

20 | Copyright © 2018 Criteo

Verify what we know about finalizer

21 | Copyright © 2018 Criteo

Current analysis state

full reference graph please!

MeterMetric

_timer

Timer

Meter

DelegateMeter

TimerQueue

s_queue

m_

TimerQueueTimerTimer

m_timer

Static root

m_timerCallback

TimerHolder

m_timer

~Finalizer()

No root!

22 | Copyright © 2018 Criteo

• Meter does not implement IDisposable

• Timer is immortal if not disposed

• Each time a Timer ticks, a lock needs to be acquired

 Progressive increase of contention as the number of timers grows

Wrapping it up!

23 | Copyright © 2018 Criteo

Mantra… Mantra… Mantra…

• 1. Identify • 2. Understand • 3. Verify

24 | Copyright © 2018 Criteo

Identify | Ready for another investigation?

25 | Copyright © 2018 Criteo

• Nothing in the application logs

• Let’s see the exceptions
procdump -ma -e 1 -f E0434352.CLR <pid>

 ThreadAbortException

• Are we crazy enough to call Thread.Abort?

• …Catch another exception red-handed!

CannotUnloadAppDomainException

Understand: which exceptions and why

26 | Copyright © 2018 Criteo

public void SomeMethod()

{

while (someCondition)

{

try

{

// Do some stuff

Thread.Sleep(15 * 60 * 1000);

}

catch (Exception ex) { ... }

}

}

Verify: journey from AppDomainUnload to ThreadAbortException

“Once you eliminate the impossible, whatever

remains, no matter how improbable, must be

the truth”
Arthur Conan Doyle

27 | Copyright © 2018 Criteo

Verify the behaviour of ThreadAbortException

DEMO

28 | Copyright © 2018 Criteo

• Thread.Abort is in fact « asynchronous »

• The AbortRequested flag is set on the Thread object

• ThreadAbortException is thrown as soon as the thread reaches a safe place

• The JIT generates code to rethrow ThreadAbortException after catch block

• except in 64 bit + release build with RyuJIT…

 Forever throwing ThreadAbortException

Wrapping it up!

Thanks for your attention!

Take away:

• Gather as much data as possible beforehand

• Build your own tools when needed

• Assume nothing, verify everything

Additional resources:

• ClrMD (read our Criteo labs blog series)

• Contact us: k.gosse@criteo.com | c.nasarresoulier@criteo.com

http://labs.criteo.com/2017/03/clrmd-part-2-clrruntime-clrheap-traverse-managed-heap/
mailto:k.gosse@criteo.com
mailto:c.nasarresoulier@criteo.com

