
SERVUS!

1 . 1

HELLO!

1 . 2

ПРИВЕТ!

1 . 3

ABOUT ME

2 . 1

I'M LAZY

2 . 2

AUTOMATION

Source: https://xkcd.com/1319/

2 . 3
 But being lazy makes me care a lot about automation
 Taking repetitive tasks, and putting them into some kind of algorithm, so that I can relax again

https://xkcd.com/1319/

AUTOMATION

Source: https://xkcd.com/1319/

2 . 4 Sometimes automation can also go completely wrong.... Anyway

https://xkcd.com/1319/

BUILD AUTOMATION

Source: https://gradle.org

3 . 1

 Process of automating the creation of a software build
 Build steps like Cleaning, Compiling, Packaging
 Reproducible => eliminate chance of human error

https://gradle.org/

Source: https://github.com/dotnet/roslyn

3 . 2 Builds can get quite complicated

https://github.com/dotnet/roslyn

BUILD TOOLS

3 . 3 You could put that into batch or shell scripts, but there is something called

BUILD SERVERS

3 . 4

 Lock-in for complex scripts
 Hard to execute local
 Feedback cycle (occupying / money)
 Versioning?

BUILD SYSTEM
 Tool orchestration
 Build everywhere
 Better feedback cycle
 Minimal coupling
 Versioning & Branching

3 . 5

GOTTA USE 'EM ALL!

3 . 6 Still build servers provide: historical statistics, investigation mechanisms, parallelization

BUILD SYSTEMS

3 . 7

BUILD SYSTEMS

3 . 8

 Is MSBuild a handy build system?
 Yes, but mostly for project related information (precompile, code-generation).
 Not so much for tool invocations, loops, conditional code

PATH CONCATENATION
<CombinePath BasePath="$(OutDir)"
 Paths="$(ManifestFileName)"
 Condition="$(CreateModule) == 'true'">
 <Output TaskParameter="CombinedPaths"
 ItemName="ManifestPath"/>
</CombinePath>

3 . 9

BUILD SYSTEMS

3 . 10

 If you're using one of these, there are 3 different situations I can think of:
 1. You're already using the language inside your project - everything alright.
 2. You point out that one person, that is responsible for the build - might become a bottleneck.
 3. Everyone needs to know about the new language - increased complexity for the team.

BUILD SYSTEMS

3 . 11

CAKE
var target = Argument("target", "Default");

Task("Default")
 .Does(() =>
 {
 Information("Hello from CAKE");
 });

RunTarget(target);

3 . 12

CAKE

Throws exception!

var target = Argument("target", "Default");

Task("Default")
 .IsDependentOn("Initialization");

Task("Initialisation");

RunTarget(target);

3 . 13

CAKE

Doesn't compile!

Task("Default")
 .Does(() =>
{
 Information("Hello from CAKE");
 Just.Say("Something");
});

class Just
{
 public static void Say (string str)
 {
 Information(str);
 }
}

3 . 14

CAKE
Task("Default")
 .Does(() =>
{
 Information("Hello from CAKE");
 Just.Say("Something", Context);
});

class Just
{
 public static void Say (string str, ICakeContext ctx)
 {
 ctx.Information(str);
 }
}

3 . 15

3 . 16
 Just an observation: experience is much better in VSCode
 Anyone using Cake in other IDEs? How do you know which alias to use?

BUILD SYSTEMS

3 . 17

BUILD AUTOMATION SYSTEM FOR C# DEVELOPERS

4

SETUP & EXECUTION

5 . 1

 Invoke setup script
 Tell about solution and platform choice
 git status --untracked
 Show added project in solution - it's a project!
 Help +

IMPLEMENTATION

6 . 1
 Console application, default target
 Targets are actual symbols -> refactoring/navigation

Clean Restore Compile Pack Push

6 . 2

 Clean: predefined directories; globbing
 Restore: default settings
 Compile: GitVersion field
 Pack: path construction
 Push: parameter resolution

6 . 3

CONSOLE APP

6 . 4

 Want to discover a method? Go to declaration!
 Refactorings? Use your IDE features!
 Debugging? Set a breakpoint and run!

TOOLS

... and many more!

7 . 1

HOW DO WE GET SUPPORT?

7 . 2

CODE-GENERATION

7 . 3

CODE-GENERATION

7 . 4

extract
Reference

generate
Metadata Code

7 . 5

GENERATED CODE
 Invocation
 Tool resolution
 Argument configuration
 XML documentation
 Assertions

7 . 6

THANKS TO
 Patrick Schwarz
 Robert Schili
 Sebastian Karasek
 Stefan Bertels
 Ulrich Buchgraber

8 . 1

8 . 2

Matthias Koch

 www.nuke.build

 nuke-build/nuke

 @nukebuildnet

 gitter.im/nuke-build/nuke

 present.nuke.build

8 . 3

