CumBoabHoOe ncnonHeHme s .NET

ABTOMaTMYECKOE TECTUPOBAHME, BEpUDUKALMA N CUHTE3 MPOrPamm

Dmitry lvanov, Huawei Saint Petersburg Research Center, korifey@gmail.com,

@korifey ad
Dmitry Mordvinov, JetBrains Research, SPbU, mordvinov.dmitry@gmail.com

mailto:korirfey@gmail.com

Y4TO Mbl ceroaHa y3Haem?

» [YacTtb nepsasn, npoayKkrosaa] — 3a4yem HYKHO reHepMpoBaTb TeCTbl?

» [YacTb BTOpasn, TeopetnyecKkasn] — Kak paboTtaet cMMBO/IbHOE UCNOTHEHUE?

» [YacTb TpeTba, npaktuueckan] — Kak ncnonbsosatb SMT-consep?

» [Yactb yeTtBépTas,] — CumBoNbHaAA BUPTYyanbHas mawnHa VH#

» [Yactb naras,] — NoroBopum o byayLLeEM M O CUHTE3E NPOrpamm

PART | : TEST
GENERATION

LIVE DEMO

IntelliTest

Pain point

Programmers don’t like to write tests

Unit tests:

 Best defense against regression (quality increases)
 Kind of living specification (understanding increases)
Errors found by unit tests easier to correct (costs reduces)

Solution

Generate unit test automatically

/ \

Unit test generation Safety verification
Goal: to fixate code behavior Goal: to find bugs and vulnerabilities
Error suite

Criteria: generate minimum number of o
unit tests that will cover maximum lines Criteria: Find maximum number bugs and

of code express them in form of tests

No tests

Code contains NPE,
StackOverflows and so on

Error suite

[} Code contains NPE,

StackOverflows and so on
Aerate

Error suite

Error suite

[} Code contains NPE,

fix

StackOverflows and so on
Aerate

Error suite

Error suite

Code Code hasn’t NPE,

fix

StackOverflows and so on
%erate

|

fix

|

generate

} S EE

Regression

Code hasn’t NPE,
StackOverflows and so on

If developer commit change
nobody will notice bug until
it happens on production

fix

|

generate

} S EE

Regression suite

Code hasn’t NPE,
StackOverflows and so on

fix

3
|

J S EE

Regression suite

Code hasn’t NPE,
StackOverflows and so on

Now behavior is fixated.

Red Cl status means one of two things:

* Code change breaks correct behavior
* |nitial code behavior wasn’t correct

Anyway it’s easy to localize problem

fix

3
|

|

%erate J
Code
S EE

Error suite

.

Specification

add
asserts

Code hasn’t NPE,
StackOverflows and so on

Now behavior is fixated.

Red Cl status means one of two things:

* Code change breaks correct behavior
* |nitial code behavior wasn’t correct

Anyway it’s easy to localize problem

Code is tested against
specification formalized by
asserts

PART [l : TECHNIQUES

How to verify program is correct?

void absAndSum(int x, int y) {
int abs;

if (x > 0)
abs

X;
else

abs

_X;

if (y == 42)
if (abs + y < 0)
ERROR;
// else

..ETAPS FASE 2021

THEORY & PRACTICE OF SOFTWARE

3rd Competition on Software Testing (Test-Comp 2021)

FASE "21

Tue, March ??, 2021 3rd Intl. Competition on Software Testing held at FASE 2021 in Luxembourg.
Luxembourg
. mﬁ Competition Description
About Test-Comp . m{; 2020 Competition Report
Important Dates Motivation
Competition Jury

Tool competitions are a snecial form of comnarative evaluation where each tool has a team of

https://test-comp.sosy-lab.org/2021/

..ETAPS TACAS 2021

THEORY & PRACTICE OF SOFTWARE

10th Competition on Software Verification (SV-COMP 2021)

TACAS "21

Thur, March ??, 2021 10th Intl. Competition on Software Verification held at TACAS 2021 in Luxembourg.
Luxembourg
m’t 2020 Competition Report (results of the competition and a lot of detailed information on SV-
About SV-COMP COMR:2020)
Important Dates Motivation
G Competition is a driving force for the invention of new methods, technologies, and tools. This web
= W page describes the competition of software-verification tools, which will take place at TACAS.

https://sv-comp.sosy-lab.org/2021/

https://test-comp.sosy-lab.org/2021/
https://sv-comp.sosy-lab.org/2021/

Fuzzers

Random testing

Random inputs generation until crash

Adaptive random testing (ART)

while () {
generate new test()
add to suite if coverage increases

Evolutionary algorithm

 Generations (test suites)
e Cross-over existing tests

e Mutate existing tests

Instrument

BLACK-BOX
TECHNIQUE

GREY-BOX
TECHNIQUE

Tool Score Ranking

t3 145.27 2.30
evosuite 255.43 2.38
randoop 154.34 231
tardis 66.80 3.3
sushi 39.84 4.09

WHITE-BOX

Symbolic execution TECHNIQUE

Symbolic Virtual Machine State void absAndSum(int x, int y) {

. I | int abs;
Instruction: <Enter>

if (x > 9)
Symbolic Memory(SM): X = z20, y = y0 abs

I
X
e

else

: true abs = -x;

if (y == 42)
if (abs + y < 0)
ERROR;

Symbolic execution

Symbolic Virtual Machine State void absAndSum(int x, int y) {
int abs;
Instruction: if (x > 0) >
) | if (x > 0)
SM: X = 20, Yy = 0 abs = x;
else
: true && x0 > © abs = -x;
if (y == 42)
if (abs + y < 0)
ERROR;

Symbolic execution

Symbolic Virtual Machine State

Instruction: abs = x

SM: x = z0, y = y0, abs = 20

T X0 > 0

void absAndSum(int x, int y) {

int abs;

if (x > 0)
abs

I
X
e

else

abs = -x;

if (y == 42)
if (abs + y < 0)
ERROR;

Symbolic execution

Symbolic Virtual Machine State void absAndSum(int x, int y) {

int abs;
Instruction: if (y == 42) ’

if (x > 9)

SM: X = 20, y = y0, abs = x0 abs = x;
else

: X0 > 0 && y0 == 42 abs = -x;

) | if (y == 42)

if (abs + y < 0)
ERROR;

Symbolic execution

Symbolic Virtual Machine State void absAndSum(int x, int y) {
int abs;
Instruction: if (abs + y < 0)
if (x > 0)
SM: X = 20, y = y0, abs = x0 abs = x;
else
: X0 > 0 && y0 == 42 && X0 + y0 < O abs = -x;
if (y == 42)
> if (abs +y < 0)
ERROR;
}

Symbolic execution

Symbolic Virtual Machine State

Instruction: ERROR

SM: X = 20, y = y0, abs = x0

: X0 > 0 && y0 == 42 && x0 + yO < O

(Ask SMT Solver “Is satisfiable?”)

void absAndSum(int x, int y) {

int abs;

if (x > 0)
abs

I
X
e

else

abs = -x;

if (y == 42)
if (abs + y < 0)
ERROR;

Symbolic execution

Symbolic Virtual Machine State void absAndSum(int x, int y) {
int abs;
Instruction: if (abs + y < @) //else HE abs
if (x > 0)
SM: X = 20, y = y0, abs = x0 abs = x;
else
: X0 > 0 && yO == 42 && -~(x0+y0<0) abs = -Xx;
(Go to else branch: negate last 1f.(y == 42)
condition) if (abs +y < 0)
ERROR;
}

SMT solver

SMT = Satisfability modulo theories

X0 > 0 (declare-const x0 Int)

(declare-const y@ Int)
yo == 42
X0 + y0 < 0 (assert (> x0 0))

(assert (= yo0 42))
(assert (< (+ x0 y0) 9))

(check-sat)

SMT-LIB2 syntax

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

SMT solver: Z3

X0 > 0 (declare-const x@ Int) https://rise4fun.com/z3/tutorial
(declare-const y0 Int)

yo == 42

X0 + y0 < 0 (assert (> x0 0))

(assert (= yo 42)) #> apt-get install z3

(assert (< (+ x0 y0) 0)) #> z3 -smt2 sample.smt

#Hunsat
(check-sat)

https://rise4fun.com/z3/tutorial

SMT solver: theories

Integer arithmetic theory Bitvector theory
. (set-option :pp.bv-literals false)

X0 > 0 (declare-const x0 Int) (declare-const x0 (_ BitVec 32))
(declare-const y@ Int) (declare-const yo@ (_ BitVec 32))

yo == 42

X0 + y0 < 0 (assert (> x0 0)) (assert (bvsgt x0 (_ bve 32)))
(assert (= yo0 42)) (assert (= yo@ (_ bv42 32)))
(assert (< (+ x0 y@) 0)) (assert (bvslt (bvadd x0 y@) (_ bve 32)))
(check-sat) (check-sat) ;satisfiable

(get-model) ;x0 = MAXINT-41, yO = 42

Symbolic execution: problems

How to deal with path explosion ?

How to handle loops / recursion?

How to present Heap in symbolic memory?
How to invoke native functions/syscalls?

What to do with concurrency?

o v o~ W bhoRE

if (sha256(x) == “try to solve this!”)

A Survey of Symbolic Execution Techniques

https://arxiv.org/pdf/1610.00502.pdf

Path Explosion

for (Int i =0: i < n: ++i) {
if (cond(1i))
F§ PTW
else
i A

}

e Symbolic conditional statements fork the execution state
* N iterations of loop with conditional statement can fork 2N times

Bidirectional Symbolic Execution

[

=

|)
T_E T _’"%;{} L
L ;?}«]’m@ e
o A@J'Jj ['::_
== lm{o 35
5 =

Weakest Preconditions

class A
* |s throw reachable? {
e Yes if public int X { get; set; }
’ }
p!=null
& & void F(A p, A q)
ReferenceEquals (p, 9g) 1
. . " X =15
* Intuitively, weakest preconditions "roll z -

back" the condition through the
program

IF (DX == 0.1
throw new Exception();

Program Invariants

* Loops and recursion can lead to the unbounded amount of different
program behaviours

* Solution: over-approximate them!

int max = 0;

for (int i = 0; i < a.Length; ++i)

max = Math.Max(Math.Abs(a[i]), max);
Over-approximate the whole loop with

if (max < 0) max >= 0

throw new Exception();

eap and Symbolic Execution

Memory models in symbolic execution:
key ideas and new thoughts

Luca Borzacchiello, Emilio Coppa*', Daniele Cono D’Elia and Camil Demetrescu

Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, Italy

SUMMARY

Symbolic execution is a popular program analysis technique that allows seeking for bugs by reasoning over
multiple alternative execution states at once. As the number of states to explore may grow exponentially. a
symbolic executor may quickly run out of space. For instance, a memory access to a symbolic address may
potentially reference the entire address space, leading to a combinatorial explosion of the possible resulting
execution states. To cope with this issue, state-of-the-art executors either concretize symbolic addresses that
span memory intervals larger than some threshold or rely on advanced capabilities of modern satisfiability
modulo theories solvers. Unfortunately, concretization may result in missing interesting execution states, for
example, where a bug arises, while offloading the entire problem to constraint solvers can lead to very large
query times. In this article, we first contribute to systematizing knowledge about memory models for sym-
bolic execution, discussing how four mainstream symbolic executors deal with symbolic addresses. We then
introduce MEMSIGHT, a new approach to symbolic memory that reduces the need for concretization: rather
than mapping address instances to data as previous approaches do, our technique maps symbolic address
expressions to data, maintaining the possible alternative states resulting from the memory referenced by a
symbolic address in a compact, implicit form. Experiments on prominent programs show that MEMSIGHT,
which we implemented in both ANGR and KLEE, enables the exploration of states that are unreachable for
memory models that perform concretization and provides a performance level comparable with memory
models relying on advanced solver theories. © 2019 John Wiley & Sons, Ltd.

Received 11 April 2019: Revised 21 October 2019: Accepted 22 October 2019

KEY WORDS: symbolic execution; software testing: pointer reasoning

1. INTRODUCTION

Symbolic execution is a technique for program property verification largely employed in the soft-
ware testing and security domains [1]. By taking on symbolic rather than concrete input values,
multiple execution paths can be explored at once, with each path describing the program’s behaviour
for a well-defined class of inputs. Nonetheless, the number of paths to explore can be prohibitively
large, for example, in the presence of unbounded loops. In this article, we tackle one specific
problem that may affect exploration in a symbolic executor: symbolic pointers.

As in prior works [2], we use the term symbolic pointer to refer to any symbolic expression used
during the exploration carried by a symbolic engine to reason over the memory state of the program
under analysis. In more detail, any expression with at least one non-concrete constituent and that
is used by program to perform a memory read or write operation can be regarded under this term.
Symbolic pointers may lead an executor to fork the execution, possibly generating an extremely
large number of paths. When forks are avoided or at least limited, symbolic executors must resort

Heap Abstractions for Static Analysis

VINI KANVAR and UDAY P. KHEDKER, Indian Institute of Technology Bombay

Heap data is potentially unbounded and seemingly arbitrary. Hence, unlike stack and static data, heap data
cannot be abstracted in terms of a fixed set of program variables. This makes it an interesting topic of study
and there is an abundance of literature employing heap abstractions. Although most studies have addressed
similar concerns, insights gained in one description of heap abstraction may not directly carry over to some
other description.

In our search of a unified theme, we view heap abstraction as consisting of two steps: (a) heap modelling,
which is the process of representing a heap memory (i.e., an unbounded set of concrete locations) as a heap
model (i.e., an unbounded set of abstract locations), and (b) summarization, which is the process of bounding
the heap model by merging multiple abstract locations into summary locations. We classify the heap models
as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting,
allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This
approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and
also paves the way for creating new abstractions by mix and match of models and summarization techniques.

Categories and Subject Descriptors: A. [General and Reference]: General Literature: F.3 [Theory of Com-
putation]: Logic—Logic and verification; Design and Analysis of Algorithms; Semantics and Reasoning—
Program analysis; Abstraction; D.2 [Software Engineering]: Software Organization and Properties—
Automated static analysis; Software verification

General Terms: Design, Algorithms, Verification, Languages

Additional Key Words and Phrases: Abstraction, heap, pointers, shape analysis, static analysis, store based,
storeless, summarization

ACM Reference Format:

Vini Kanvar and Uday P. Khedker. 2016. Heap abstractions for static analysis. ACM Comput. Surv. 49, 2,
Article 29 (June 2016), 47 pages.

DOI http://dx.doi.org/10.1145/2931098

1. HEAP ANALYSIS: MOTIVATION

Heap data is potentially unbounded and seemingly arbitrary. Although there is a
plethora of literature on heap, the formulations and formalisms often seem dissimilar.
This survey is a result of our quest for a unifying theme in the existing descriptions of
heap.

1.1. Why Heap?

Unlike stack or static memory, heap memory allows on-demand memory allocation
based on the statements in a program (and not just variable declarations). Thus, it

Symbolic execution: problems

How to deal with path explosion ?
How to handle loops / recursion?
How to present Heap in symbolic memory? SMM: Theory of Arrays + Theory of Bitvectors
How to invoke native functions/syscalls? Write mock / make value concrete and execute / forget

What to do with concurrency? Hard: #concurrent_states=#states » #threads

o v o~ W bhoRE
o v o~ W

if (sha256(x) == “try to solve this!”) Rare in real programs, bypass

A Survey of Symbolic Execution Techniques

https://arxiv.org/pdf/1610.00502.pdf

PART [II : SMT SOLVER

G | W | . |
e Boilte | Nl
eel] i Bl ——3
|4 &2 04

#!/usr/bin/python
from z3 import x*

circle, square, triangle = Ints('circle square triangle')
s = Solver()

s.add(circle+circle==10)

s.add(circle*square+square==12)
s.add(circlexsquare-triangle*xcircle==circle)

print s.check()

print s.model ()

“'k = ‘?' sat
2 [triangle = 1, square = 2, circle = 5]

S0/ W W [

[1=l 8 00—
| Dile——2 il | ¥ | kil

= 5

[g
|l B
b

g oN_ oy _ s T O01 — .—
bl [T
AN e

|8 8 ig ¥

=101 x|

* Minesweeper
Help

Game

od

I~

I~

(¥ |

I~

I~

I~

LIVE DEMO

Using Z3 in .NET

Homework Problem: Nonograms

1. Solve Nonograms using SAT/SMT technique i .

NN
-
- e
- e e e
L AL
-..u.-'
-l
-

L

2 4102 2,21
* https://webpbn.com/export.cgi A
%
4
[2]e
2. (*) Solve colored nonogram AE
3121
3. (**) Experiment with solvers and choose IR,
2. 41
the best 2.1

SMT-COMP 2020

The 15th International Satisfiability Modul
SMT- Workshop 2020, affiliated with IJCAR 202

the competitors and results of the compet

COMP

The International News
Satisfiability Modulo
Theories (SMT)

Competition.

e 31 Jul 2020 Competition Results Ave
« 05 Jul 2020 Competition Results anc e G
« 29 May 2020 Benchmark List publist B it R

||||||||

||||||||
‘‘‘‘‘
|||||

SMT-solvers becomes twice faster every 1.5 years

https://webpbn.com/export.cgi

PART IV : V#

IntelliTest .NET Core issues

On Roadmap © 47m 167 Q@

~ 167 Add IntelliTest support for .NET Core/Standard

Vot
N RS Q Roberto Santana Perdomo - Reported Oct 16, 2018

Most of our projects are being developed on ASP.NET Core and we develop our libraries on .NET
Standard.

We really want to add IntelliTest to our set of testing technologies but it currently only supports
projects targeting the .NET Framework.

As we believe .NET Core/Standard to be the future of .NET (web) development, | think great features
like these should be prioritized for these ecosystems.

visual studio testing-tools enterprise-2017 dotnet-roadmap vs2022-roadmap

[Kendra Havens [MSFT]

We are working on re-costing this work. I'll update this ticket when we have something scheduled. To give
background, adding .NET Core / .NET Standard / .NET 5 support may require complete rewrites of certain
components of IntelliTest and we would need to spend significant time rebuilding the code base
knowledge within the team. We are trying to invest in experiences that will have the highest impact while

also keeping pace with rapid advancements in the platform and tooling (including .NET 6 Hot Reload, VS
2022 64bit to name a few). Thank you for bearing with us.

& 8 47 May 19, 2021

V

* https://github.com/vsharp-team/vsharp

* Open source symbolic execution engine

* Supports .NET Core

* Written in F#
* Currently under development

https://github.com/vsharp-team/vsharp

LIVE DEMO

Chess.NET library test

public static bool CheckMate(string moveString)

{

var whiteKing = (Piece) new King(owner:Player.White);

var blackKing = (Piece) new King(owner:Player.Black);

var whiteQueen = (Piece) new Queen(owner:Player.White);

var board = new [] {
new Piece[8] { blackKing, null, null, null, null, null, null, null },
new Piece[8] { null, null, whiteQueen, null, null, null, null, null },
new Piece[8] { null, null, whiteKing, null, null, null, null, null },
new Piece[8] { null, null, null, null, null, null, null, null },
new Piece[8] { null, null, null, null, null, null, null, null },
new Piece[8] { null, null, null, null, null, null, null, null },
new Piece[8] { null, null, null, null, null, null, null, null },
new Piece[8] { null, null, null, null, null, null, null, null },

-

var data = new GameCreationData {Board = board, WhoseTurn = Player.White};

var game = new ChessGame(data);

Move move = new Move(originalPosition: "C7", newPosition: moveString, Player.White);

game.ApplyMove(move, alreadyValidated: true);

return game.IsCheckmated(Player.Black);

}

https://github.com/thomas-daniels/Chess.NET

https://github.com/thomas-daniels/Chess.NET

Epilogue: FUTURE

Next decade opportunities for Software Automation

UML diagrams, Code

Informal Formal
Client requirements AnaLysts requirements Architects models, docs N DeveLopers . QA
Advanced synthesis Model checking ode generation Software verification anually
Program synthesis Jest generation tested
product
—| Release

Formal specification
P | PROGRAM
search in

SYNTHESIS L e

| /////////” PLATFORM Program|
Guessed user intent
Generate mock for
native methods

Program

A 4

A

Provided examples

Programming by Example: FlashFill in Excel

A B
Email B Column 2 -
Nancy.FreeHafer@fourthcoffee.com nancy freehafer
IAndrew.Cencici@northwindtraders.com andrew cencici
Jan.Kotas@litwareinc.com
Mariya.Sergienko@gradicdesigninstitute.com
Steven.Thorpe@northwindtraders.com
Michael.Neipper@northwindtraders.com
Robert.Zare@northwindtraders.com
Laura.Giussani@adventure-works.com
Anne.HL@northwindtraders.com
Alexander.David@contoso.com
Kim.Shane@northwindtraders.com
Manish.Chopra@northwindtraders.com
Gerwald.Oberleitner@northwindtraders.com
Amr.Zaki@northwindtraders.com
Yvonne.McKay@northwindtraders.com
Amanda.Pinto@northwindtraders.com

—lhd e e -
DN 2SS0 eNUN SN -

od e - -
N oy b

Excel automatically syntheses the formula
Concatenate(ToLower(Substring(v, WordToken, 1)), “”, ToLower(Substring(v, WordToken, 2)))

CO d e CO m p | et | O n Formal specification: code compiles

Guessed user intent:
- Probability of each expression in program

object Main {

def main(args:Array[String]) = { Provided examples: statistics of previous
var body = "email.txt" completions
var sig = "signature.txt”

var inStream:SequencelnputStream = |

- new SequencelnputStream(new FilelnputStream(sig), new FileInputStream(sig))

var eof:Boolean = false " new SequencelnputStream(new FilelnputStream(sig), new FileInputStream(body))

var byteCount:Int = 0 new SequencelnputStream(new FileInputStream(body), new FileInputStream(sig))

while (leof) { new SequencelnputStream(new FileInputStream(body), new FileInputStream(body))
var cInt = inStream.read() new SequencelnputStream(new FileInputStream(sig), System.in)

if (c == -1)

Superoptimization

e Optimization: try some predefined rewriting rules

e Superoptimization: search the optimal implementation in the whole
program space

Average of x and y:

Formal specification: same semantics,
verified by symbolic execution

(x +y)/ 2 can overflow

Guessed user intent:
Fastest possible (x/2)+(y/2)+(((a%2)+ (b % 2))/2) is too expensive

Superoptimizer synthesises (x|y) = ((x @ y) >> 1)

[lone3Hble CCbINKU

e |IntelliTest - odpnuymansvHbie ook ot Microsoft

* A Survey of Symbolic Execution Technigues - xopoluasa BBOAHaA CTaTbA B CUMBOJIbHOE UCMOJIHEHME

e “SAT/SMT by Example” — MHOro npakTU4YecKnx NnpnumepoB ncnosb3osaHusa SAT n SMT consepos

* https://github.com/vsharp-team/vsharp

* Program Synthesis: Opportunities for the Next Decade

Dmitry lvanov, Huawei Saint Petersburg Research Center, korifey@gmail.com,
@korifey ad
Dmitry Mordvinov, JetBrains Research, SPbU, mordvinov.dmitry@gmail.com

https://arxiv.org/pdf/1610.00502.pdf
https://arxiv.org/pdf/1610.00502.pdf
https://github.com/vsharp-team/vsharp
https://dl.acm.org/doi/pdf/10.1145/2784731.2789052
mailto:korirfey@gmail.com

