
Building Responsive &

Scalable Applications
Jeffrey Richter

Jeffrey Richter: Microsoft Azure Software
Architect, Author, & Wintellect Co-Founder

JeffreyR@Microsoft.com

www.linkedin.com/in/JeffRichter

@JeffRichter

Architecting Distributed Cloud Apps
6.5hr technology-agnostic course
http://aka.ms/RichterCloudApps

http://aka.ms/RichterCloudApps

Motivation

 Early OSes didn’t support threads (there was just 1 thread)
 Problem: Long-running tasks affected all apps and the OS

 Solution: Windows supports 1+ threads/process for robustness

 Threads have space & time overhead
 Kernel object (contains thread’s properties & register set context)

 Context size in bytes: x86 = ~700, x64 = ~1240, ARM = ~350

 User-mode data (Thread Environment Block)

 4KB, exception-handling chain, TLS, GDI/OpenGL stuff

 Stacks: user-mode (1MB committed) & kernel-mode (12KB/24KB)

 DLL thread attach/detach notifications

 1 CPU can only run 1 thread at a time
 After quantum, Windows context switches to another thread

Motivation

 Every context switch requires that Windows
 Save registers from CPU to running thread’s kernel object
 Determine which thread to schedule next

 If thread owned by other process, switch address space

 Load registers from selected thread’s kernel object into CPU

 After the switch, CPU suffers cache misses repopulating its cache

 All of this is pure overhead and hurts performance
 But required for a robust OS

 Conclusion
 Avoid threads: incur time & memory overhead

 Use threads: responsiveness & scalability (on multi-CPU system)

 This talk is about wrestling with this tension

(Windows I/O Dispatcher)

ReadFile(...);

NTFS Driver

IRP Queue

Synchronous I/O

Network DVD-ROM

IRP

Your thread blocks here!

Hardware does I/O;

No threads involved!

FileStream fs = new FileStream(...);
Int32 bytesRead = fs.Read(...);

ReadFile(...);

FileStream fs = new FileStream(…, FileOptions.Asynchronous);
Int32 bytesRead = await fs.ReadAsync(...);

(Windows I/O Dispatcher)

CLR Thread Pool

Threads can extract

completed IRPs

from here

Asynchronous I/O with XxxAsync

NTFS Driver

IRP Queue

IRP

Your thread does

NOT block here!

Thread returns to caller!

Tells device driver:

1. Don’t block thread req’ing I/O

2. Put completed IRP in TP

Async Functions are

State Machine Objects

Compiler Transformation (Pseudo Code)

// 'async' turns method into state machine, requires Task return type

// (identifying operation completing in future) & allows use of await

async Task<Int32> HttpLengthAsync(String uri) {

 String html = await new HttpClient().GetStringAsync(uri);

 return html.Length;

}

───
Task<Int32> HttpLengthAsync() { // uri  m_uri

 try {

 switch (m_state) { // Defaults to 0

 case 0:

 m_taskHLA = new Task<Int32>(); // HttpLengthAsync’s task

 // XxxAsync queues IRP to device driver & returns Task<String>

 m_taskGSA = new HttpClient().GetStringAsync(m_uri);

 if (m_taskGSA.IsCompleted) goto case 1; // Perf optimization

 m_state = 1; m_taskGSA.ContinueWith(HttpLengthAsync); break; // From await

 case 1:

 String html = m_taskGSA.Result; // Throws if I/O failed

 m_taskHLA.SetResult(html.Length);

 break;

 }

 }

 catch (Exception e) { m_taskHLA.SetException(e); }

 return m_taskHLA;

} // Thread returns to caller or thread pool

Named Pipe Client

async Task<String> IssueClientRequestAsync(String serverName, String msg) {

 using (var pipe = new NamedPipeClientStream(serverName, "PipeName",

 PipeDirection.InOut, PipeOptions.Asynchronous)) {

 pipe.Connect(); // Must Connect before setting ReadMode

 pipe.ReadMode = PipeTransmissionMode.Message;

 // Asynchronously send data to the server

 Byte[] request = Encoding.UTF8.GetBytes(msg);

 await pipe.WriteAsync(request, 0, request.Length);

 // Asynchronously read the server's response

 Byte[] response = new Byte[1000];

 Int32 bytesRead = await pipe.ReadAsync(response, 0, response.Length);

 return Encoding.UTF8.GetString(response, 0, bytesRead);

 } // Close the pipe

}

Some Async Functions in the FCL

 Stream-derived types
 ReadAsync, WriteAsync, FlushAsync, CopyToAsync

 TextReader-derived types
 ReadAsync, ReadLineAsync, ReadToEndAsync, ReadBlockAsync

 TextWriter-derived types
 WriteAsync, WriteLineAsync, FlushAsync

 HttpClient
 GetAsync, PostAsync, PutAsync, DeleteAsync, …

 SqlCommand
 ExecuteDbDataReaderAsync, ExecuteNonQueryAsync, ExecuteReaderAsync, ExecuteScalarAsync, …

 Tools (like SvcUtil.exe) that produce web service proxy classes

Non-Scalable Servers

The Server

(Ex: ASP.NET, WCF)

T
h

re
a
d

 P
o
o
l

Context switching

Another Server

(Ex: SQL)

Scalable Servers

The Server

(Ex: ASP.NET, WCF)

T
h

re
a
d

 P
o
o
l

Another Server

(Ex: SQL)

Application Models &

their Threading Models

Applications & their Threading Models

 Applications impose their own threading model
 CUI/Services: no model; any thread can do anything

 GUI: window must be modified by thread that creates it

 ASP.NET (Forms/Services): impersonates client’s culture/identity

 http://msdn.microsoft.com/en-us/library/bz9tc508.aspx

 SynchronizationContext-derived objects connect an application model to its
threading model

 The await operator captures the calling thread’s SC and
calls through it when resuming the state machine
 For application code, this is usually good

 For class library code, this is usually bad

http://msdn.microsoft.com/en-us/library/bz9tc508.aspx
http://msdn.microsoft.com/en-us/library/bz9tc508.aspx
http://msdn.microsoft.com/en-us/library/bz9tc508.aspx

GUI App Deadlocks

private sealed class MyWpfWindow : Window {

 protected override void OnActivated(EventArgs e) {

 // Calling GetResult makes GUI thread block waiting for the result

 var uri = "http://Wintellect.com/";

 Int32 length = HttpLengthAsync(uri).GetAwaiter().GetResult();

 // Do something with ‘length’ ...
 base.OnActivated(e);

 }

 private async Task<Int32> HttpLengthAsync(String uri) {

 // Issue HTTP request & let thread return to caller

 String text = await new HttpClient().GetStringAsync(uri);

 // We never get here: GUI thread waits for this method to finish but it

 // can't because the GUI thread is waiting for it to finish  DEADLOCK!

 return text.Length;

 }

}

App-Model Agnostic Code
should use ConfigureAwait(false)

private async Task<Int32> HttpLengthAsync(String uri) {

 // Issue HTTP request & let thread return to caller

 String text = await new HttpClient().GetStringAsync(uri)

 .ConfigureAwait(false); // Do NOT use calling SynchronizationContext

 // We DO get here now because a thread pool thread can execute

 // this code as opposed to forcing the GUI thread to execute it.

 // Of course, don’t try to update the UI here!

 return text.Length;

}

You must apply .ConfigureAwait(false) to every Task you await !
(because some tasks may complete synchronously)

Also, ignoring SynchronizationContext improves performance

Task.Run Forces use of
Thread Pool Threads

private /* async */ Task<Int32> HttpLengthAsync(String uri) {

 // Task.Run is called on the GUI thread & returns immediately

 return Task.Run(async () => {

 // The lambda body executes via a thread pool thread which

 // doesn’t have a SynchronizationContext associated with it
 String text = await new HttpClient().GetStringAsync(uri);

 // We DO get here because a thread pool thread can execute this code

 return text.Length;

 });

}

Note: .ConfigureAwait(false) not needed anywhere now !

Questions

