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Event Tracing for Windows (ETW)

• Introduced in Windows 2000
• Event Tracing / Logging mechanism

• Low overhead even with high event volume

• Traces can be recorded to a file and/or to a real-
time session
• System-wide
• Lots of registered providers out of the box

• c:> logman query providers
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ETW Sessions
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Tools for Working with ETW

• Xperf, Tracerpt, Logman
• Built-in tools for recording ETW / reporting / formatting

• Windows Performance Recorder (WPR) / Analyzer (WPA)
• Part of the Windows Performance Toolkit (Windows SDK)

• TraceView
• Windows SDK and WDK

• PerfView
• Uses ETW to analyze (mostly) .NET related issues

• ProcMonX
• Possible replacement for ProcMon

• Your own tools!



ETW Explorer
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Working with ETW in .NET

•Providers
• System.Diagnostics.Tracing namespace

• Not the focus of this talk

•Consumers
• Open source libraries (available through Nuget)

• Microsoft.Diagnostics.Tracing.TraceEvent
• Used by PerfView

• Microsoft.O365.Security.Native.ETW
• krabs wrapper (a.k.a. “Lobsters”)



Simple Provider and Consumer
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The Kernel Provider

•Requires running elevated to use

•Prior to Windows 8 – only one such session can 
exist
• Name of session must be “NT Kernel Logger”

• KernelTraceEventParser.KernelSessionName has 
this name

•Many interesting events
• Mostly “documented” in MSDN



Consuming Kernel Provider Events
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TraceEvent and Parsers

• The Diagnostics.TraceEvent library comes 
with several built-in parsers
• E.g. Kernel and CLR

• For other providers, a tool can generate the 
required parser code based on the XML manifest
• TraceParserGen.exe



Parser Generator
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The CLR Provider

• Events published by the CLR itself

•Use ClrTraceEventsParser to consume

•Register for interesting events

• Filter by the process(es) of interest

• For .NET Core (2.2 and later)
• Use the EventListener class



Consuming CLR Provider Events

Demo
try {

// many lines of code
}
Catch {

// maybe log
}



Call Stacks

• ETW Events can provide call stack

• The Microsoft.Diagnostics.Tracing.Etlx.TraceLog
class does all the heavy lifting

•Must enable some kernel provider events
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Summary

• ETW is a low-overhead logging infrastructure
• Common across kernel mode and user mode

•Many ETW providers out of the box
• Research and experiment

• Easy to consume to a file or a real-time session
• Sometimes state management is required

•Call stack is also available



Thank you!


