
Writing Your Own Diagnostic 
Tools with Event Tracing for 

Windows (ETW)

Pavel Yosifovich

@zodiacon

zodiacon@live.com

mailto:zodiacon@live.com


Something About Me

(C)2019 Pavel Yosifovich

• Developer, Trainer, Author and Speaker
• Book author

• “Windows Internals 7th edition, Part 1” (co-author, 2017)
• “WPF 4.5 Cookbook” (2012)
• “Windows Kernel Programming” (WIP, 2019)

• Pluralsight author
• Author of several open-source tools 

(http://github.com/zodiacon)
• Blogs: http://blogs.microsoft.co.il/pavely, 

http://scorpiosoftware.net

http://github.com/zodiacon
http://blogs.microsoft.co.il/pavely
http://scorpiosoftware.net/


Agenda

• Introduction to ETW

• Tools

• Libraries

•Demos

• Summary

•Q & A



Event Tracing for Windows (ETW)

• Introduced in Windows 2000
• Event Tracing / Logging mechanism

• Low overhead even with high event volume

• Traces can be recorded to a file and/or to a real-
time session
• System-wide
• Lots of registered providers out of the box

• c:> logman query providers



Controller

ETW Architecture

ETW

Session Session Session

Buffers Buffers Buffers

Provider A Provider B Provider C

Events Events

ETL
File

Consumer 1 Consumer 2

Logged
Events

Real-time 
Events

Controller

Enable / 
Disable

Start / Stop



ETW Sessions

Demo



Tools for Working with ETW

• Xperf, Tracerpt, Logman
• Built-in tools for recording ETW / reporting / formatting

• Windows Performance Recorder (WPR) / Analyzer (WPA)
• Part of the Windows Performance Toolkit (Windows SDK)

• TraceView
• Windows SDK and WDK

• PerfView
• Uses ETW to analyze (mostly) .NET related issues

• ProcMonX
• Possible replacement for ProcMon

• Your own tools!



ETW Explorer

Demo



Working with ETW in .NET

•Providers
• System.Diagnostics.Tracing namespace

• Not the focus of this talk

•Consumers
• Open source libraries (available through Nuget)

• Microsoft.Diagnostics.Tracing.TraceEvent
• Used by PerfView

• Microsoft.O365.Security.Native.ETW
• krabs wrapper (a.k.a. “Lobsters”)



Simple Provider and Consumer

Demo



The Kernel Provider

•Requires running elevated to use

•Prior to Windows 8 – only one such session can 
exist
• Name of session must be “NT Kernel Logger”

• KernelTraceEventParser.KernelSessionName has 
this name

•Many interesting events
• Mostly “documented” in MSDN



Consuming Kernel Provider Events

Demo



TraceEvent and Parsers

• The Diagnostics.TraceEvent library comes 
with several built-in parsers
• E.g. Kernel and CLR

• For other providers, a tool can generate the 
required parser code based on the XML manifest
• TraceParserGen.exe



Parser Generator

Demo



The CLR Provider

• Events published by the CLR itself

•Use ClrTraceEventsParser to consume

•Register for interesting events

• Filter by the process(es) of interest

• For .NET Core (2.2 and later)
• Use the EventListener class



Consuming CLR Provider Events

Demo
try {

// many lines of code
}
Catch {

// maybe log
}



Call Stacks

• ETW Events can provide call stack

• The Microsoft.Diagnostics.Tracing.Etlx.TraceLog
class does all the heavy lifting

•Must enable some kernel provider events



Call Stacks

Demo



Summary

• ETW is a low-overhead logging infrastructure
• Common across kernel mode and user mode

•Many ETW providers out of the box
• Research and experiment

• Easy to consume to a file or a real-time session
• Sometimes state management is required

•Call stack is also available



Thank you!


