MANAGED MEMORY
LEAK INVESTIGATION

Wodshop
Michael Yarichuk

Possible symptoms of memory leaks

Slowdowns
Execution pauses (freezes)
High resource usage (CPU/RAM)

Obviously - constantly growing memory!

[his workshop is about working in Windowsl

Working with dumps on Linux requires usage of different
tools, but roughly works the same

A word (or two) about qarbage collector

* Partl

GC A|gor ithm Types - Manual - allocate/release via language
API

- Reference counting - allocate via
language API, release via reference
count

Used by the CLR=——> . Mark-sweep

« Others (rare!)

https://courses.cs.washington.edu/courses/csep521/07wi/prj/rick.pdf

Net Garbage Collector

Pause EE (Execution Engine)

Mark
Sweep

Compact?

Mark Phase

Sweep phase

- All objects marked as unreachable are freed

- Objects with finalizers are moved to finalization queue

Compact

Free

Free

Compact

Free

Free

6C Roots

- Starting point for Mark Phase iteration

« GC Roots and any objects they reference are not released!

6C Roots

Static references

Stack references (roots for duration of method execution!)
Handles (for p/invokes & unmanaged)

F-reachable queue references (more on this later!)

Shortest retention path

N
N - B -

- 6C Generati -
e o eneraons -
&)

6C Generations

- Newly allocated objects start at Gen O

« Objects surviving a GC are promoted
to next Gen

- Bigger Gen = less frequent GC

Finalization & f-reachable queues

Memory Fragmentation

When CLR GC frees memory, it leaves "holes"
It may decide to compact memory and "close" the "holes"
Big fragmentation = more frequent GC cycles

LOH is not compacted automatically!

Except one specific scenario - read more in the Github link

https://github.com/dotnet/runtime/issues/8392
https://github.com/dotnet/docs/blob/master/docs/standard/garbage-collection/large-object-heap.md

Memory Fragmentation

High fragmentation = more GC cycles

More GC cycles = More CPU

A word (or threel
about the investigation

process

Part 2

WHAT/IEI{TOLD,YOU

THERE ISNO SILVERBULLET)

Investigation process

. Start here!

|

)

o6

1) Theory!

Note: resource leaks as a symptom
(not only memory leaks!)

public static async Task<string> GetResponseFromGet(string url)

{

| | . Dispose will
using (var httpClient = new HttpClient()) "eak"
t connections

var result = await httpClient.GetAsync(url);

return await result.Content.ReadAsStringAsync();

}
}

https://www.nimaara.com/beware-of-the-net-httpclient/

1) Investigation|
(qather information)

WinDBG
Perfview
Memory Profilers
CIlrMD

Dashboards/monitoring

https://github.com/microsoft/clrmd
https://github.com/microsoft/perfview

3) Evidence
(find a smoking qun...)

Examples:
Unreasonable amount of object instances
The amount of HUGE object instances
Very high memory fragmentation
Too much connections (resource leak?)

GC Root s pointing to certain objects

Example of evidence

8(0xa8) bvtes
158 (038) bvtss

Field Off=et Type VT Attr Value Hamne
4000245 8 ...=.Llogging.Ilogger 0 instance [019 log
40002d6 10 ... eansTaskScheduler
4000247 78 Sy=temn.Int32
4000248 18 Sy=stem.Object
4000249 20Task, mscorlibl]]
40002da 50 System.Int6d
40002db 58 Sy=tem.Int6d
40002dc a0 Sy=tem.TineSpan
40002dd 28 ...eading.Tasks.Task
40002de 88 Sy=tem.DateTine
400024df 60 Systemn.Int6d
40002e0 68 Sy=tem.Int6d
40002el 30 .. .TrackingStatistic
40002e2 70 Sy=tem.Int6d
40002e3 7c Systemn.Int32
40002e4 90 .. .CancellationToken
40002e5 38 .. .erStatisticsGroup
40002e6 40 .. .tionTaskScheduler
40002e7 98 Sy=tem.DateTine
4000229 48 .. .ime.IGrainContext
4000244 ...ding.WaitCallback

instance 0000 7 nasterScheduler
instance
instance

= 5=

instance . currentTaskStarted

instance 0 shutdownSinceTimestamp

instance 0 lastShutdownWarningTimestamp

instance 0000000000000000 gueueTracking

instance 0 gquantumExpirations

instance 0 workItemGroupStatisticsNumber

instance [a0 cancellationToken

instance schedulerStatistics

instance 6 ¢TaskScheduler>k___BackingField

instance <TimeQueued>k__ BackingField

instance <GrainContext >k___BackingField
static 0 EzecutelorkItemCallback

COHOORKHHORRHEORREREROOREO

Example of evidence

Statistics:
| of Tasks

DELEGATE INVOKED
FAULTED

of Tasks

48 5) Make changes & check if resolved

Make relevant changes (less allocations, remove references etc.)
It is possible that the original theory wasn't correct!

Rinse and repeat as needed

F-Reachable queue

Elements in f~reachable
roots during mark phase
"live" in Gen2 while in f~-reachable

Cease to become roots after GC

[he practical side of things...

Part 3

Memory dumps, when?

High resource usage (CPU/RAM)
Process hangs/crashes

Inefficiencies/slowdowns

Note: memory dumps are a last resort!

Any memory
profiler

Not only WinDbg!

VMMap, Process
Monitor,
ProcDump
(Syslnternals)

PerfView

Visual Studio

(parallel stacks) .Net CLItools

Debug
Diagnostic Tool

Linux - where to start?

LLDB 6DB Net CLI tools

vmstat, htop,
other bash tools

https://github.com/microsoft/ProcDump-for-Linux

Investigating i Linux SOS plugin exists for LLDB
debugger

Working in LLDB is similar
to WinDbg

Install SOS plugin in Linux
using dotnet-sos CLI tool

https://github.com/dotnet/diagnostics/blob/master/documentation/sos-debugging-extension.md

Net CLI Tools

Performance monitoring https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters

Downloads PDBs and

DAGC filos https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-symbol

Collect and analyze

e https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dum

dotnet tool install --global [tool name]

https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-symbol
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters

LN

WinD bg

How and what?

 § N

WinDbq?

Windows-only Can debug kernel and Not only post-mortem!
debugger user-mode Can do live debugging

30§ debugqing extension WinDBG extension that allows
(Son of Strike) debugging .Net processes
SOS depends on Windows version!

Especially relevant for dumps
from another machine

New WinDbg will fetch SOS
automatically

Use dotnet-sos for Linux or old
WinDbg

Load SOS with those , -10d(5y IN Cll’
commands loadby sos coreclr

https://docs.microsoft.com/en-us/dotnet/framework/tools/sos-dll-sos-debugging-extension

Common commands

Idumpheap [-stat] [-mt <>] [-type <>] [-strings] [-
min] [-max]

Idumpgen <genNum> [-free] [-stat] [-type <>] [-
nostrings] (SOSEX)

lgcroot <objectAddr> [-nostacks]

Irefs <objectAddr> [-target|-source] (SOSEX)
Ifinalizequeue

Ifing [genNum] [-stat] (SOSEX)

Ifrq [-stat]

lobjsize <addr>

ldo <address>

Imdt [typename | MT] [addr] [-r[:level]] [-e[:level]]
(SOSEX)

Useful extensions

SOSEX - http://www.stevestechspot.com/downloads/sosex 64.zip

GSOSE (Grand Son Of Strike) - https://github.com/chrisnas/DebuggingExtensions

MEX Debugging Extension - https://github.com/REhints/WinDbg/tree/master/MEX

load [path to extension dll]

Note: 6SOSE and MEX don't work with Net Core

http://www.stevestechspot.com/downloads/sosex_64.zip%E2%80%8B
https://github.com/chrisnas/DebuggingExtensions%E2%80%8B
https://github.com/REhints/WinDbg/tree/master/MEX

Useful reading materials

.Net Book of Runtime

https://blog.reverberate.org/2013/05/deep-
wizardry-stack-unwinding.html

https://eli.thegreenplace.net/2011/09/06/stack-
frame-layout-on-x86-64/

https://github.com/dotnet/docs/blob/master/docs/
standard/garbage-collection/index.md

https://mattwarren.org/2017/07/10/Memory-
Usage-Inside-the-CLR/

https://github.com/dotnet/coreclr/tree/master/Documentation/botr
https://blog.reverberate.org/2013/05/deep-wizardry-stack-unwinding.html
https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64/
https://github.com/dotnet/docs/blob/master/docs/standard/garbage-collection/index.md
https://mattwarren.org/2017/07/10/Memory-Usage-Inside-the-CLR/

Hands-on practice

Part 4

Hands-on flow

1. Take alook at the process, it's usage of system resources. Do
tracing.

2. Use Process Explorer to take "Full Dump" and investigate

3. Once theory is established, take a look at code
- If needed, take a look at dump again

2. Conclusions, perhaps a fix

Summary

Dumps are most useful to investigate issues in
production

WinDDbg can and should be used together with other
tools

Memory leaks in .Net can have multiple possible
symptoms

Dump investigation: common sense + technical
knowledge + code behavior

Dump investigation is unpredictable

More often than not, managed memory leak =
reference leak

Questions?

mailto:michael.yarichuk@gmail.com
https://twitter.com/myarichuk
https://github.com/myarichuk
http://www.graymatterdeveloper.com/

