
M A N A G E D M E M O R Y
L E A K IN V E S T I G A T IO N

Workshop

MichaelYarichuk

Possible symptoms of memory leaks

• Slowdowns

• Execution pauses (freezes)

• High resource usage (CPU/RAM)

• Obviously – constantly growing memory!

T his workshop is about working in Windows!
Working with dumps on Linux requires usage of different

tools, but roughly works the same

A word (or two) about garbage collector
Part 1

GC Algorithm Types •

•

•

•

Used by the CLR

https://courses.cs.washington.edu/courses/csep521/07wi/prj/rick.pdf

.Net Garbage Collector

• Pause EE (Execution Engine)

• Mark

• Sweep

• Compact?

Mark Phase
GC Root #1

A

B

C

GC Root #2

X

Y

F

G

H

Sweep phase

•

•

Compact

Allocated Free Allocated Allocated

Allocated Allocated Free Allocated

Compact

Allocated Allocated Allocated Free

Allocated Allocated Allocated Free

GC Roots

•

•

GC Roots

• Static references

• Stack references (roots for duration of method execution!)

• Handles (for p/invokes & unmanaged)

• F-reachable queue references (more on this later!)

Shortest retention path

GC Root B C

GC Generations

Gen 0 Gen 1 Gen 2 LOH

GC Generations

•

•

•

Finalization & F-reachable queues

Object with Finalizer is
allocated

Object added to
Finalization Queue GC "releases" the Object

Object added to F-
reachable Queue

GC Finalizer takes object
from F-Reachable and

executes Finalizer

GC actually releases the
Object

Memory Fragmentation

• When CLR GC frees memory, it leaves "holes"

• It may decide to compact memory and "close" the "holes"

• Big fragmentation = more frequent GC cycles

• LOH is not compacted automatically!

• Except one specific scenario – read more in the Github link

https://github.com/dotnet/runtime/issues/8392

https://github.com/dotnet/docs/blob/master/docs/standard/garbage-collection/large-object-heap.md

Memory Fragmentation

• High fragmentation = more GC cycles

• More GC cycles = More CPU

A word (or three!)
about the investigation

process

(1) Theory

(2)
Investigation

(3) Evidence!
(4) Make
Changes

(5) Check If
Resolved

Investigation process
Start here!

1) Theory?

Symptoms

Theory

Note: resource leaks as a symptom
(not only memory leaks!)

{

}

Dispose will
"leak"
connections

https://www.nimaara.com/beware-of-the-net-httpclient/

2) Investigation!
(gather information)

• WinDBG

• Perfview

• Memory Profilers

• ClrMD

• Dashboards/monitoring

https://github.com/microsoft/perfview
https://github.com/microsoft/clrmd

3) Evidence
(find a smoking gun...)

Examples:

• Unreasonable amount of object instances

• The amount of HUGE object instances

• Very high memory fragmentation

• Too much connections (resource leak?)

• GC Root s pointing to certain objects

Example of evidence

Example of evidence

4 & 5) Make changes & check if resolved

• Make relevant changes (less allocations, remove references etc.)

• It is possible that the original theory wasn't correct!

• Rinse and repeat as needed

F-Reachable queue

• Elements in f-reachable

• roots duringmark phase

• "live" in Gen2 while in f-reachable

• Cease to become roots after GC

T he practical side of things...
Part 3

Memory dumps, when?

•

•

•

Note: memory dumps are a last resort!

Not only WinDbg!

Any memory
profiler PerfView

VMMap, Process
Monitor,

ProcDump
(SysInternals)

Debug
Diagnostic Tool

Visual Studio
(parallel stacks!) .Net CLI tools

Linux – where to start?

Valgrind LLDB GDB .Net CLI tools

vmstat, htop,
other bash tools

https://github.com/microsoft/ProcDump-for-Linux

Investigating in Linux SOS plugin exists for LLDB
debugger

Working in LLDB is similar
to WinDbg

Install SOS plugin in Linux
using dotnet-sos CLI tool

https://github.com/dotnet/diagnostics/blob/master/documentation/sos-debugging-extension.md

.Net CLI Tools

Collect and analyze
Windows and Linux dumps. https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump

Downloads PDBs and
DAC files https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-symbol

Performance monitoring https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters

dotnet tool install --global [tool name]

https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-dump
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-symbol
https://docs.microsoft.com/en-us/dotnet/core/diagnostics/dotnet-counters

WinD bg
How and what?

WinDbg?

Windows-only
debugger

Can debug kernel and
user-mode

Not only post-mortem!
Can do live debugging

SOS debugging extension
(Son of Strike)

•

•

•

•

•

https://docs.microsoft.com/en-us/dotnet/framework/tools/sos-dll-sos-debugging-extension

.loadby sos clr

.loadby sos coreclr
Load SOS with those
commands

Common commands •

•

•

•

•

•

•

•

•

•

Useful extensions

• SOSEX - http://www.stevestechspot.com/downloads/sosex_64.zip

• GSOSE (Grand SonOf Strike) - https://github.com/chrisnas/DebuggingExtensions

• MEX Debugging Extension - https://github.com/REhints/WinDbg/tree/master/MEX

.load [path to extension dll]

Note: GSOSE and MEX don't work with .Net Core

http://www.stevestechspot.com/downloads/sosex_64.zip%E2%80%8B
https://github.com/chrisnas/DebuggingExtensions%E2%80%8B
https://github.com/REhints/WinDbg/tree/master/MEX

Useful reading materials

• .Net Book of Runtime

• https://blog.reverberate.org/2013/05/deep-
wizardry-stack-unwinding.html

• https://eli.thegreenplace.net/2011/09/06/stack-
frame-layout-on-x86-64/

• https://github.com/dotnet/docs/blob/master/docs/
standard/garbage-collection/index.md

• https://mattwarren.org/2017/07/10/Memory-
Usage-Inside-the-CLR/

https://github.com/dotnet/coreclr/tree/master/Documentation/botr
https://blog.reverberate.org/2013/05/deep-wizardry-stack-unwinding.html
https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64/
https://github.com/dotnet/docs/blob/master/docs/standard/garbage-collection/index.md
https://mattwarren.org/2017/07/10/Memory-Usage-Inside-the-CLR/

Hands-on practice

Part 4

Hands-on flow

1. Take a look at the process, it's usage of system resources. Do
tracing.

2. Use Process Explorer to take "Full Dump" and investigate

3. Once theory is established, take a look at code

•

4. Conclusions, perhaps a fix

Summary •

•

•

•

•

•

Questions?

• michael.yarichuk@gmail.com

• @myarichuk

• https://github.com/myarichuk

• http://www.graymatterdeveloper.com/

mailto:michael.yarichuk@gmail.com
https://twitter.com/myarichuk
https://github.com/myarichuk
http://www.graymatterdeveloper.com/

