
Designing with capabilities
(DotNext 2021)

@ScottWlaschin

fsharpforfunandprofit.com/cap

DDD

API
Design

Security
Design

Not about OAuth, JWT etc

DDD

API
Design

Security
Design

Topics

• What does security have to do with design?

• Introducing capabilities

• Designing an API using capabilities

• Using capabilities in different ways

WHAT DOES SECURITY

HAVE TO DO WITH DESIGN?

Transparent
Opaque

It’s all about
security, right?

Sed ut perspiciatis unde omnis iste natus error sit voluptatem

accusantium doloremque laudantium, totam rem aperiam,

eaque ipsa quae ab illo inventore veritatis et quasi architecto

beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem

quia voluptas sit aspernatur aut odit aut fugit, sed quia

consequuntur magni dolores eos qui ratione voluptatem sequi

nesciunt. Neque porro quisquam est, qui dolorem ipsum quia

dolor sit amet, consectetur, adipisci velit, sed quia non

numquam eius modi tempora incidunt ut labore et dolore

magnam aliquam quaerat voluptatem. Ut enim ad minima

veniam, quis nostrum exercitationem ullam corporis suscipit

laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis

autem vel eum iure reprehenderit qui in ea voluptate velit esse

quam nihil molestiae consequatur, Temporibus autem quibus

Dacei Megasystems Tech Inc necessitatibust aut officiis debitis

auteo 2799 E Dragam Suite 7 quisquam saepe Itaque

enieti Los Angeles CA 90002 ut et voluptates repudiandae sint

et molestiae non recusandae. Itaque earum rerum hic tenetur a

sapiente delectus, ut aut reiciendis voluptatibus maiores alias

consequatur aut perferendis doloribus asperiores repellat.

Neque porro quisquam est, qui dolorem ipsum quia dolor sit

amet, consectetur, adipisci velit, sed quia non numquam eius

modi tempora incidunt ut labore et dolore magnam aliquam

quaerat voluptatem. Ut enim ad minima veniam, quis nostrum

exercitationem ullam corporis suscipit laboriosam, nisi ut

aliquid ex ea commodi consequatur?

Please deliver
this letter

A counterexample

Sed ut perspiciatis unde omnis iste natus error sit voluptatem

accusantium doloremque laudantium, totam rem aperiam,

eaque ipsa quae ab illo inventore veritatis et quasi architecto

beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem

quia voluptas sit aspernatur aut odit aut fugit, sed quia

consequuntur magni dolores eos qui ratione voluptatem sequi

nesciunt. Neque porro quisquam est, qui dolorem ipsum quia

dolor sit amet, consectetur, adipisci velit, sed quia non

numquam eius modi tempora incidunt ut labore et dolore

magnam aliquam quaerat voluptatem. Ut enim ad minima

veniam, quis nostrum exercitationem ullam corporis suscipit

laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis

autem vel eum iure reprehenderit qui in ea voluptate velit esse

quam nihil molestiae consequatur, Temporibus autem quibus

Dacei Megasystems Tech Inc necessitatibust aut officiis debitis

auteo 2799 E Dragam Suite 7 quisquam saepe Itaque

enieti Los Angeles CA 90002 ut et voluptates repudiandae sint

et molestiae non recusandae. Itaque earum rerum hic tenetur a

sapiente delectus, ut aut reiciendis voluptatibus maiores alias

consequatur aut perferendis doloribus asperiores repellat.

Neque porro quisquam est, qui dolorem ipsum quia dolor sit

amet, consectetur, adipisci velit, sed quia non numquam eius

modi tempora incidunt ut labore et dolore magnam aliquam

quaerat voluptatem. Ut enim ad minima veniam, quis nostrum

exercitationem ullam corporis suscipit laboriosam, nisi ut

aliquid ex ea commodi consequatur?

Please deliver
this letter

It’s not just
about security...

...hiding irrelevant
information is
good design!

David Parnas, 1971

• If you make information available:

– Programmers can’t help but make use of it

– Even if not in best interests of the design

• Solution:

– Don’t make information available!

Can’t do

anything

Just right Unnecessary

coupling

In the large: Bounded Contexts
In the small: Interface Segregation Principle

Software Design Spectrum

Too much information availableToo little information available

Can’t get your

work done

Too much information available

Just right Potential for

abuse

Principle of Least Authority (POLA)

Too little information available

Security spectrum

Ak.a. Minimize your surface area
(to reduce chance of abuse)

Good Software Design

Intention-revealing interface

Minimize coupling

Make dependencies explicit

Good Security

Principle of Least Authority (POLA)

Ak.a. Minimize your surface area
(expose only desired behavior)

Good security => Good design

Good design => Good security

Security-aware design

• "Authority" = what can you do at any point?

– Be aware of authority granted

– Assume malicious users as a design aid!

Stupid people Evil people

What’s the difference?

Security-aware design

• "Authority" = what can you do at any point?

– Be aware of authority granted

– Assume malicious users as a design aid!

• Use POLA as a software design guideline

– Forces intention-revealing interface

– Minimizes surface area & reduces coupling

INTRODUCING

“CAPABILITIES”

Typical API

APIcallClient

call

I'm sorry,

Dave, I'm afraid

I can't do that

Rather than telling me what I can't do,

why not tell me what I can do?

Capability-based API

Client Service

Login

Available

Capabilities

Capability-based API

Many available
actions initially

Client Service

Use a

capability

Available

Capabilities

Capability-based API

Fewer available
actions in a
given state

API DESIGN

WITH CAPABILITIES

Client
TicTacToe

Service

Request

Response

Tic-Tac-Toe as a service
Proper name is "Noughts and Crosses" btw

Tic-Tac-Toe API (obvious version)

type TicTacToeRequest = {
player: Player // X or O
row: Row
col: Column
}

Tic-Tac-Toe API (obvious version)

type TicTacToeResponse =
| KeepPlaying
| GameWon of Player
| GameTied

Demo:

Obvious Tic-Tac-Toe API

What kind of errors can happen?

• A player can play an already played move

• A player can play twice in a row

• A player can forget to check the response and

keep playing

Intention-revealing interface

"If a developer must consider the

implementation of a component in order to

use it, the value of encapsulation is lost."

-- Eric Evans, DDD book

“Make illegal operations

unavailable”

Don’t let me do a bad thing and
then tell me off for doing it...

Yes, you could return errors, but...

Client
TicTacToe

Service

New Game

Available Moves

Tic-Tac-Toe service with capabilities

Nine available
moves

Client

1st move

Available Moves

Tic-Tac-Toe service with capabilities

Eight available
moves

TicTacToe

Service

Client
Available Moves

Tic-Tac-Toe service with capabilities

2nd move

Seven available
moves

TicTacToe

Service

Client
Available Moves

Tic-Tac-Toe service with capabilities

3rd move

Six available
moves, etc

TicTacToe

Service

Client
No available

Moves

Tic-Tac-Toe service with capabilities

Winning

move TicTacToe

Service

Tic-Tac-Toe API (cap-based version)
type MoveCapability =

unit -> TicTacToeResponse
// aka Func<TicTacToeResponse>

type TicTacToeResponse =
| KeepPlaying of MoveCapability list
| GameWon of Player
| GameTied

Tic-Tac-Toe API (cap-based version)
type MoveCapability =

unit -> TicTacToeResponse
// aka Func<TicTacToeResponse>

type TicTacToeResponse =
| KeepPlaying of MoveCapability list
| GameWon of Player
| GameTied

Tic-Tac-Toe API (cap-based version)
type MoveCapability =

unit -> TicTacToeResponse
// aka Func<TicTacToeResponse>

type TicTacToeResponse =
| KeepPlaying of MoveCapability list
| GameWon of Player
| GameTied

type InitialMoves = MoveCapability list

Where did the "request" type go?
Where's the authorization?

Demo:

Capability-based Tic-Tac-Toe

What kind of errors can happen?

• A player can play an already played move

• A player can play twice in a row

• A player can forget to check the response and

keep playing

Is this good security or good design?
All fixed now!

HATEOAS

Hypermedia As The Engine

Of Application State

“A REST client needs no prior knowledge

about how to interact with any particular

application or server beyond a generic

understanding of hypermedia.”

RESTful done right

How NOT to do HATEOAS

POST /customers/
GET /customer/42

If you can guess the API
you’re doing it wrong
Security problem!

Also, a design problem –
too much coupling.

How to do HATEOAS

POST /81f2300b618137d21d
GET /da3f93e69b98

You can only know what URIs
to use by parsing the page

Each of these URIs is a capability

Tic-Tac-Toe HATEOAS
[

{ "move": "Play (Left, Top)",

"rel": "Left Top",

"href": "/move/ec03def5-7ea8-4ac3-baf7-b290582cd3f2" },

{ "move": "Play (Left, Middle)",

"rel": "Left Middle",

"href": "/move/d4532ca0-4e61-4fae-bbb1-fc11d4e173df" },

{ "move": "Play (Left, Bottom)",

"rel": "Left Bottom",

"href": "/move/fe1bfa98-e77b-4331-b99b-22850d35d39e" }

...

]

Demo: Tic-Tac-Toe HATEOAS

Good security => Good design

Good design => Good security

DESIGN CONSEQUENCES

OF USING CAPABILITIES

Not just for APIs -- use these design techniques
inside a bounded context too

Example:

Read a customer from a database

Controller/

API

Business

Logic

Database

Client

Could also be Onion architecture or
Ports and Adapters -- not important

Controller/

API

Business

Logic

Database

Client
Which component decides whether you
are allowed to read the customer?

Controller/

API

Business

Logic

Database

Client

But if you bypass this you
have complete access to

the database

Controller/

API

Business

Logic

Database

Client

But then it doesn’t have
enough context to decide

Which component decides whether you
are allowed to read the customer?

Controller/

API

Business

Logic

Database

Client

Global

Authorizer

Are you doing this already?

Controller/

API

Business

Logic

Database

Client

Dependency

Injection

public class CustomerController : ApiController
{
readonly ICustomerDb _db;

public CustomerController(ICustomerDb db)
{

_db = db;
}

...

public class CustomerController : ApiController
{
readonly ICustomerDb _db;

public CustomerController(ICustomerDb db)
...

[Route("customers/{customerId}")]
public IHttpActionResult Get(int customerId)
{

var cust = _db.GetProfile(customerId);
var dto = DtoConverter.CustomerToDto(cust);
return Ok(dto);

}

public interface ICustomerDb
{
CustomerProfile GetProfile(CustomerId id);
void UpdateProfile(CustomerId id, CustomerProfile cust);

void CreateAccount(CustomerId id, CustomerProfile cust);
void DeleteAccount(CustomerId id);

void UpdateLoginEmail(CustomerId id, string email);
void UpdatePassword(CustomerId id, string password);

void LaunchMissiles();
}

How much authority do you really need?

public interface ICustomerDb
{
CustomerProfile GetProfile(CustomerId id);
void UpdateProfile(CustomerId id, CustomerProfile cust);

void CreateAccount(CustomerId id, CustomerProfile cust);
void DeleteAccount(CustomerId id);

void UpdateLoginEmail(CustomerId id, string email);
void UpdatePassword(CustomerId id, string password);

void LaunchMissiles();
}

How much authority do you really need?

public interface ICustomerDb
{
CustomerProfile GetProfile(CustomerId id);

}

How much authority do you really need?

Func<CustomerId,CustomerProfile>

How much authority do you really need?

Tip:

Inject capabilities, not interfaces!

public class CustomerController : ApiController
{
Func<CustomerId,CustomerProfile> _readCust;
public CustomerController(Func<..> readCust)
{

_readCust = readCust;
}

[Route("customers/{customerId}")]
public IHttpActionResult Get(int customerId)
{

var cust = _readCust(customerId);
var dto = DtoConverter.CustomerToDto(cust);
return Ok(dto);

}

Vertical Slices

Controller

/API

Business

Logic

Database

Use Case

Controller

/API

Business

Logic

Database

Use Case

Controller

/API

Business

Logic

Database

Use Case

Global

Authorizer

Every controller
is injected with

minimal capabilities
it needs

(aka functions)

Controller

/API

Business

Logic

Database

Use Case

Controller

/API

Business

Logic

Database

Use Case

Controller

/API

Business

Logic

Database

Use Case

Global

Authorizer

Vertical
slices

But wait, there's more!

public class CustomerController : ApiController
{

public IHttpActionResult Get(int custId)
{

var fnReadCust = authorizer.ReadCust(custId);
if (fnReadCust != null)
{

...

}

public class CustomerController : ApiController
{

public IHttpActionResult Get(int custId)
{

var fnReadCust = authorizer.ReadCust(custId);
if (fnReadCust != null)

{
var cust = fnReadCust();
var dto = DtoConverter.CustomerToDto(cust);
return Ok(dto);

}
else

// return error
}

TRANSFORMING CAPABILITIES

FOR BUSINESS RULES

Capability

transformer
capability

constrained

capability

Capabilities are functions... ...so can be transformed to
implement business rules

With Auditingcapability
Audited

capability

Only in office

hours
capability

Time-constrained

capability

Only Oncecapability
Once-only

capability

How to revoke access in a cap-based system?
It's hard to revoke physical keys

in the real world... But this is software!

Revokablecapability
Revokable

capability

Revoker

Revoke

automatically

after 10 mins

capability
Short-lived

capability

Demo:

Transforming Capabilities

DELEGATING AUTHORITY

USING CAPABILITIES

Reasons for access control

• Prevent any access at all.

• Limit access to some things only.

• Revoke access when you are no longer

allowed.

• Grant and delegate access to some subset of

things.

It’s not always
about saying no!

Office

Supplies

Alice

Bob
Secret

Files
X

Capabilities support

decentralized delegation

Delegation of authority

examples

Delegation of authority (gdocs)

Delegation of authority (dropbox)

Controller

/API

Business

Logic

Database

Use Case
Inject authority
to read just
one customer

Global

Authorizer

Services

(e.g. Read customer and

send them email)

Security risk
& implicit
dependency

Controller

/API

Business

Logic

Database

Use Case

Services

(e.g. Read customer and

send them email)

Inject authority
to read just
one customer

Global

Authorizer

Delegated capabilities can be

transformed too!

Full authority

(at start up)

Owner

Some capabilities

Scott Alice

Delegate

capabilities

Delegate

capabilities

Delegated capabilities can be

transformed too!

Full authority

(at start up)

Owner

Some capabilities

Scott

transformer

Only once

Alice

Delegate

capabilities

Delegate

capabilities

Delegated capabilities can be

transformed too!

Full authority

(at start up)

Owner

Some capabilities

Scott

transformer

Only once

Alice

Only during office hours

transformer

Delegate

capabilities

Delegate

capabilities

CONCLUSION

Common questions

• Is this overkill? Is it worth it?

– It depends....

– Useful as a thought experiment

• How does this relate to design process?

– Intention-revealing interfaces

– Map commands from event storming to

capabilities

Common questions

• Are you saying that all external IO should be

passed around as capabilities?

– Yes! You should never access any ambient

authority.

– You should be doing this anyway for mocking.

• How do you pass these capabilities around?

– Dependency injection or equivalent

Common questions

• Won’t there be too many parameters?

– Less than you think!

– Counter force to growth of interfaces

– Encourages vertical slices (per use-case)

• Can’t this be bypassed by reflection or other

backdoors?

– Yes. This is really all about design not about total

security.

Summary

• Good security good design

– Bonus: get a modular architecture!

• Use POLA as a design principle

– Don’t trust other people to do the right thing

– Don’t force other people to read the documentation!

• Intention revealing interfaces

– Don't force the client to know the business rules

– Make interfaces more dynamic

– Change the available capabilities when context
changes

Thanks!

@ScottWlaschin

fsharpforfunandprofit.com/cap

Contact me

Slides and video here

http://fsharpforfunandprofit.com/cap/
http://fsharpforfunandprofit.com/cap/

