PacnpeneneHHble TPaH3aKUMKM YMepan,

1a 31PaBCTBYIOT pacnpeaenéHHble TpaH3aKkumm!

MNopaepxKa TpaH3akumm B Orleans 2.0

Sergey Bykov @msftorleans
Microsoft, @sergeybykov https://github.com/dotnet/orleans/

=& Microsoft

060 MHe

B Microsoft c 2001 r.

= Host Integration Server
= BizTalk Server

* Windows Embedded

= Bing

" Research

= Halo

= Xbox

=& Microsoft

[ThaH

= (OcHoBbI

" [lpobnembi c pacnpeaesEHHbIMM TPAH3AKLUMAMM
= |I3BeCTHble noaxoabl

" CnoxHoctun anAa paspabotumkos Ha Orleans

" [lopaeprKKa TpaH3akuun B Orleans

" KaK 310 BCé paboTtaeTt

" B paspabortke

" 33K/K4YeHue

=& Microsoft

OCHOBbI: KAHOHUYECKUM NpUuMep

Mepesoa $100 co cuéTta A Ha cyéT B

BCE& UK HUNYero

OorpaHN4YeHunA. OTleLI,aTe.I'IbeIﬁ 6anaHc HeJO0MNnyCTnm

tx2 He yBMAUT nnwHmne S100 B B oo 3aBeplueHuna txl

COXPaHHOCTb AaHHbIX

=& Microsoft

PenaumoHHas b/l Bcé obecneynT ... TOKaNbHO

J1aHHble XpaHATCA NOKaNbHO

CeTb He mewlaeT

OTKa3bl B OCHOBHOM KOppenunpyroT

PoKyC Ha KOMNIPOMUCCE MEXAY NPOU3BOANTENbHOCTbIO U U30AALUEN:
Serializable

Repeatable read
Read committed
Read uncommitted
Snapshot isolation

=& Microsoft

Pacnpen. TpaH3aKUMM — COBCEM ApYyras NCTOPUS
3

Application Sarver saL server
KoHbUrypauma CAnwKom CA0XKHa I [c}v'vfof_ﬁr'egau
CoBMme .
Cospe IHTErpPUPYHT
Hwu3Ka

3aJeprKKa — BbI30Bbl KOOPAUHATOPA

Mpon. cnocobHoCTb — 610KMPOBKKN 1 1 KOOPAMEEE . ot

[106UTbCA HaAEKHOCTN HENETKO

AJUpernl

https://blogs.msdn.microsoft.com/distributedservices/2011/11/22/troubleshooting-msdtc-communication-checklist/ CO m p | | ant
=& Microsoft

PacnpeneneHHble TpaH3aKUMM YMepn

Life beyond Distributed Transactions:

an Apostate’s Opinion
Position Paper

Pat Helland

Amazon.Com
705 Fifth Ave South
Seattle, WA 98104

USA

PHelland@A

Instead, applications are built using different
techniques which do not provide the same
ees but still meet the needs

of distribute

for the implementation md us
providing guarantees of global ser

s led me to
liken these pl'tt ms to the ginot Line!. In
6enenl ap 1llntlon developer ;

1ming
attempt to
use dl\tllblltt"d tran projects founder
because the perf;
them impractical. Natural

to raise
of new pattel r two reasons. First,
it is my belief that this awareness can ease the
challenges of people hand-craftin, /
scalable applications. Second,
patterns, hopeful
ds the creation of platfo 2
easier to build these very large 1ppluatmm

. INTRODUCTION

examine some goals for th
15 that I am making for this
S0me opin:

I am keenly int

expense between World War I and World W
successfully kept the German army from dixectl\ i : on the imp
the border betu een me.e 'md Ger uming we cannot have
ctions.
Goals

This paper has three broad goals:

Today, we see new design plE”l]lE' foisted onto
programmers that simply want to solve business
problems. Their realities are taking them into a world of
almost-infinite scaling and forcing them into design
prohlemﬁ'- largely unrelated to the real business at hand.

Unfortunately, programmers striving to solve business
goals like eCommerce, supply-chain-management,
financial, and health-care applications increasingly need
to think about scaling without distributed transactions.
They do this se atl - d1strl
transactions are too fragile and perform poorly.

We are at a juncture where the patterns for building
these applications can be seen but no one is yet applying
these patterns consistently. This paper argues that these
nascent patterns can be applied more consistently in the
hand-crafted development of applications designed for
almost-infinite scaling. Furthermore, in a few years we
are likely to see the development of new middleware or
platforms which provide automated management of these
applications and eliminate the scaling challenges for
applications developed within a stylized programming
paradigm. This is strongly parallel to the emergence of
TP-monitors in the 1970s.

=& Microsoft

CQRS / Event Sourcing

Denormalized read store
Subscribes to events
on the Write side

Query response

Exploring CQRS and
Event Sourcing

User views dﬁfﬂ. A journey into high scalability, availability,
h the i and maintainability with Windows Azure

Service
E‘JEhtS l lh’tﬂr'FﬂC€5 Dominic Betts

Julidn Dominguez
Grigori Melnik
Fernando Simonazzi
Mani Subramanian

User makes a change
Write side ih the Ul

Append Command

events

Event store
Publishes events after

they have been saved
=@ Microsoft

Nepesopg $S100 c Event Sourcing

S100A->B S100A->B Withdraw $100 Account
—) E — A
Ack Ack
e —— & . entity
- OG
Account

2,
1]l .
& J

[=}
S
—
s

EEER

RS
entity
M EERN

Append-only log

=m Microsoft

CQRS / Event Sourcing

No ~tomicity
Eventual ‘_onsistency

No 'solation

Durable

Tem He meHee Xxopowo noaxoaunTt ana MmMHOrmx cueHapueas.

Y10 genatb, Koraa CQRS+ES HepocTaTto4yHO?

=& Microsoft

Strong Consistency HaHocut OTBeTHbIN Yaap

N1V

New Kids on The Block

Spanner

Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. Tt is
the first system to distribute data at global scale and sup-
port externally-consistent distributed transactions. This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This API
and its implementation are critical to supporting exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

1 Introduction

Spanner is a scalable, globally-distributed database de-
signed, built, and deployed at Google. At the high-
est level of abstraction, it is a database that shards data
across many sets of Paxos [21] state machines in data-
centers spread all over the world. Replication is used for
global availability and geographic locality; clients auto-
matically failover between replicas. Spanner automati-
cally reshards data across machines as the amount of data
or the number of servers changes, and it automatically
migrates data across machines (even across datacenters)
to balance load and in response to failures. Spanner is
designed to scale up to millions of machines across hun-
dreds of datacenters and trillions of database rows.
Applications can use Spanner for high availability,
even in the face of wide-area natural disasters, by repli-
cating their data within or even across continents, Our
initial customer was F1 [35], a rewrite of Google’s ad-
vertising backend. F1 uses five replicas spread across
the United States. Most other applications will probably
replicate their data across 3 to 5 datacenters in one ge-
ographic region, but with relatively independent failure
modes. That is, most applications will choose lower la-

Published in the Proceedings of OSDI 2012

tency over higher availability, as long as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made
by other authors [37].) Many applications at Google
have chosen to use Megastore [5] because of its semi-
relational data model and support for synchronous repli-
cation, despite its relatively poor write throughput. As a
consequence, Spanner has evolved from a Bigtable-like
versioned key-value store into a temporal multi-version
database. Data is stored in schematized semi-relational
tables; data is versioned, and each version is automati-
cally timestamped with its commit time; old versions of
data are subject to configurable garbage-collection poli-
cies; and applications can read data at old timestamps.
Spanner supports general-purpose transactions, and pro-
vides a SQL-based query language.

As a globally-distributed database, Spanner provides
several interesting features. First, the replication con-
figurations for data can be dynamically controlled at a
fine grain by applications. Applications can specify con-
straints to control which datacenters contain which data,
how far data is from its users (to control read latency),
how far replicas are from each other (to control write la-
tency), and how many replicas are maintained (to con-
trol durability, availability, and read performance). Data
can also be dynamically and transparently moved be-
tween datacenters by the system to balance resource us-
age across datacenters. Second, Spanner has two features
that are difficult to implement in a distributed database: it

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time 1n designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable |9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made
by other authors [37].) Many applications at Google
have chosen to use Megastore [5] because of its semi-
relational data model and support for synchronous repli-
cation, despite 1ts relatively poor write throughput. As a
consequence, Spanner has evolved trom a Bigtable-like
versioned key-value store into a temporal multi-version
database. Data is stored in schematized semi-relational
tables: data 1s versioned, and each version 1s automati-
cally timestamped with its commit time; old versions of
data are subject to configurable garbage-collection poli-
cies; and applications can read data at old timestamps.
Spanner supports general-purpose transactions, and pro-
vides a SQL-based query language.

B Microsoft

Cloud Spanner

Schema

sQL

Consistency

Availability

Scalability

Replication

CLOUD SPANNER

Yes

Yes
Strong
High
Horizontal

Automatic

TRADITIONAL RELATIONAL

Yes

Yes

Strong

Failover

Vertical

Configurable

TRADITIONAL NON-RELATIONAL

X

X

X
v
v

No

No

Eventual

High

Horizontal

Configurable

A

Spanner reasonably claims to be an “effectively CA" system despite operating over a wide area, as it is
always consistent and achieves greater than 5 9s availability. As with Chubby, this combination is possible
In practice iIf you control the whole network, which is rare over the wide area. Even then, it requires
significant redundancy of network paths, architectural planning to manage correlated failures, and very
careful operations, especially for upgrades. Even then outages will occur, In which case Spanner chooses
consistency over availability.

Eric Brewer, https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45855.pdf W i ft
m Microso

Cosmos DB - globally distributed, multi-model DB service

Replicate data globally Failover Priorities
ndrl

Drag-and-drop read regions items to reorder t

Tip: Drag
WRITE REGION

Central US

READ REGIONS PRIORITIES

Australia East

B Microsoft

Cosmos DB: Consistency Options

Strong Bounded-stateless Session Consistent prefix Eventual

B Microsoft

CHOBa eaMHasa Hba3a AaHHbIX!

&

=m Microsoft

k‘ Microsoft Orleans

Mopagenb nporpamm-4

Orleans: ®penmBopk ana Obnaka™*

[nAa Bcex MHXeHepoB HeT y3Kux mecr

[pocTan, HO MOLLHaA HeT eAMHOM TOYKM OTKa3a

3x —10x meHbLle Koaa [lpoBepeHHble BpemeHem

NnpPUemMbl U aNTOPUTMBbI

MacwtabupyemocTtb

*Mommmo obnauHbIX cepaucos, Orleans xopoLo NoAXoAUT A8 NOCTPOEHUA CaMbIX Pa3HOODOPaA3HbIX pacnpeaen&HHbIX NPUIOKEHUN

=& Microsoft

Moaenb nporpammmpoBaHma Orleans

Frontends

£
£
£

/ Business Logic \

®e .00 5 @

Storage

[penH — 06beKT co ctabunbHbiM ID

KMBET BEYHO, B BUPTYa/ZIbHOM CMbIC/1e

MHKancynupyeT CBOE COCTOAHME
HeT npamoro gocrtyna n3sHe

TonbKo nocbinKa coobLeHuin

[pelH ynpaBnaeT CBOMM COCTOAHNEM

MoaaeprKKa pasHbIX XPaHUANLL, AaHHbIX

OTnnyHo noaxoauTt ana Event Sourcing

N301nMpoBaHHbIN XKYPHAN USMEHEHWUN

OTAnMYHan maclwTabupyemocTb

HeT mexaHn3moB KOopAanHaunu

=& Microsoft

Nepesoa $100 B Orleans

SlOO A->B
— B o

Persist

4TO Ham NPUXOANTCA AEeNaThb

Recovery Persist
mechanism Account Grain) s
Ack

Ack

$100 A->B $100 A-> B
E@
Yo

Persist

Ack
C
Yo

Record request Record (Account Grain

with a unique ID to dedup completion

== Microsoft

HabntoaeHne ot Martin Kleppmann

Eyq_r\.‘ Su”‘icim“v lcrsc_ c‘cf‘m’wcl\{‘q"
Microsesryices

COV\“AiV\g on GJ'IV\OC., In-FOf'Mjlv-

seea}rigJ : Bvﬂ-rio‘olo.n , slow
NS mplewentation of half

strange corons

" S R &,\ el ~ - A
sy !

Sept 25-26,2015

thestrangeloop.com

B Microsoft

Onepauna nepesoaa B naeane

Persist
Account Grain)
Ack
Y —
[Tx(RequiresNew)]
S100A->B S100A->B
EEEE——)
@ Ack
Y —
Y
Persist
Account Grain ——)
Ack
Y —

=m Microsoft

XoTenocb bbl UmeTb rapaHTum ACID

Persist

Account Grain) s N 7 N
Ack $500 $400
= —=
[Tx(RequiresNew)]
S100A->B $100A->B
EEEE—— E)
Ack
@ = —=
Persist
Account Grain)
Ll $500 | | $600
= —= L JERN)

=m Microsoft

TpaH3akumm Orleans npenoctasnatoT ACID

NHTeppenc rpemHa baHKa

public interface IBankGrain : IGrainWithIntegerKey

{

[Transaction(TransactionOption.RequiresNew)]

Task Transfer(Guid fromAccount, Guid toAccount, uint amount);

B Microsoft

NHTeppenc rpemHa BaHKOBCKOro CYETA

public interface IAccountGrain : IGrainWithGuidKey

{

[Transaction(TransactionOption.Required)]
Task Withdraw(uint amount);

[Transaction(TransactionOption.Required)]
Task Deposit(uint amount);

[Transaction(TransactionOption.Required)]
Task<uint> GetBalance();

B Microsoft

Onepauna nepeBoaa

public class BankGrain : Grain, IBankGrain

{

Task Transfer(Guid fromAccount, Guid toAccount, uint amount)

{

var from = GrainFactory.GetGrain<IAccountGrain>(fromAccount);
var to = GrainFactory.GetGrain<IAccountGrain>(toAccount);

return Task.WhenAll(
from.Withdraw(amount),
to.Deposit(amount));

m Microsoft

Account Grain: Balance State Facet

public class Balance

{
public uint Value { get; set; } = 1000;

public class AccountGrain : Grain, IAccountGrain

{

private readonly ITransactionalState<Balance> balance;

public AccountGrain(
[TransactionalState("balance")] ITransactionalState<Balance> balance)

{

this.balance = balance ?? throw new ArgumentNullException(nameof(balance));

m Microsoft

Account Grain: onepaumnmn

Task IAccountGrain.Deposit(uint amount) Task IAccountGrain.Withdraw(uint amount)

{ {

this.balance.State.Value += amount; this.balance.State.Value -= amount;
this.balance.Save(); this.balance.Save();

return Task.CompletedTask; return Task.CompletedTask;

async Task<uint> IAccountGrain.GetBalance()

{

return this.balance.State.Value;

m Microsoft

JTO B NPUHUMNE BCE, YTO TpebyeTcal

OcTanocb ToNbKo A06aBUTb KOHPUTYypaL MO

var builder = new SiloHostBuilder()
.UseLocalhostClustering()

.AddMemoryGrainStorageAsDefault()
.UseInClusterTransactionManager()
.UseInMemoryTransactionLog()
.UseTransactionalState();

var host = builder.Build();
await host.StartAsync();

B Microsoft

KaK 310 paboTaeT?

APXUTEKTYPA

Application

Transaction

Manager
(TM)

Distributed
Runtime
Services

Object-
Oriented
Runtime

Figure 1 System Architecture

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/10/EldeebBernstein-TransactionalActors-MSR-TR-1.pdf

Transactions for Distributed Actors in the Cloud

Tamer Eldeeb
Columbia University

Abstract— NI

perform poorly is environment, primarily because locks must
be held until after the forced-writes of two-phase commit, which
e slow in cloud storage systems. We preseni a new transaction
tocol that aveids this blocking by releasing all of a tr
e one of two-phase con
commit de ’ ment cascading
transaction T s phase ter conflicting tran
their update: 3 ayed batch can prepare,
t. We describe how to
ited runtime such as

tation in the Orleans actor framework show throughput
up to 20x that of two-phase locking and two-phase commit.

words—database system, transaction, two-phase locki)

1. INTRODUCTIO!

Many cloud services a 3-tier architecture with :
stateless front-end, stateful muddle-tier that implement
siness logie, and a storage | The stateful middle-tier is
ed due to its heavy CPU and memory requirements, which
e it uneconomical to embed as stored procedures in the
e layer. Today, the middle-tier is frequently organized
a set of micro-services. This is driven in part by the popul
of conts hnology like Docker [26], which is off
9](32][39]. An application
d of small, independent
¢ versioned, deployed, upgraded and led
separately. Services communicate via well-defined APIs
(usually REST) and do not have acce d data.

A similar model is s, which are also popular in building
middle tive ones such
5 game g > 3 1 telemetr
[6][10]. Such applications are made of many actors, which are

hat do not share memory and interact via asynchronous

In what follows, we use the more familiar, generic term
bject” unless talking about a specific actor
It is often nece / to perform an operation that s
multiple objects with strong consistency and fault tolerance

since objects are isolated from each other, multi
require a transaction m

October 3

Philip A. Bernstein
Microsoft Research
philbe@microsoft.com

must be

istributed

ems to

action support (e.g., within a shard or with

no support at all. This puts the burden on
to obtain

e los
ommit (2PC) for atomic

it receives a prepare-request in phase-one of 2PC. However,
each object in its writeset must hold its te locks until it
receives a commit request in phase-two of 2PC. This technique,
called strict 2PL, ensures that a transaction that aborts before
phase-two can undo its writes easily, without c; 1 1bo;

Two-phase commit does two s;
before phase-two, one to prepare and one to commit. Thus, a
data item particip; 0 s to be locked and
inaccessible for { 5
throughput on write
transaction appli

ction execution typically takes a few milliseconds. Low
y $SD-based cloud ; faster [4][28], but it still
mneurs double-digit millisecond 2PC latencies, plus higher cc

This prablem of lock-holding time also applies to system that
control (OCC). Like strict 2PL, an
OCC validator needs to set write loc : action I's
set before val ng I and hold those locks untl 7
rted without cascading

use optimistic conc

In this paper
em that av

ng, it will not acquire more loc
point has no value from a 2PI
Ders write locks before it commit
subsequent transactions can read “dirty” data that will be invalid
To avoid thi o ency, a transaction k
. dependenc transaction
validator service, the Transaction Manager, make
commits only after all of I's dependent transactions commut. If
one of T"'s dependent transactions aborts, then I"will abort too.

=& Microsoft

APXUTEKTYPA

Cluster of Silos Silo

/E-\ < >/\
P ®0® 02 00
/ .@QO ® -

—_—
|=—7—

~~

® 0
©e20® %%
N B @ @
o O ©e®q @eO®q

Storage

2-Phase Commit

Account Grain

)
'\0
\\6‘3\‘4\5
A
N «

TC
[Tx(RequiresNew)] Validate(N, {A, B}, {N-5, N-2})
M Committed
|
Success N
. = | | A(N-5)
= | | B(N-2)

Account Grain

p/"
€p ared
\

Transaction log

== Microsoft

YTo nponcxoamT B caydvae cboa’?

2PC Abort

Account Grain

TC
[Tx(RequiresNew)] Validate(N, {A, B}, {N-5, N-2})
S100A->B Abort
Error !

Account Grain

- Transaction log

== Microsoft

HeJOCTaTKMU

1. KackagHbie abopTbl

= MoryT Nnpon3onTK TONbKO B cayyae cbos cepepa nnm OC (cpaBHUTENBHO peKo)

2. OpHo-rpenHoOBbIe TPaH3aKUMKM TPpebytoT Baanaauum (meaneHHo)

" BsuAeT Ha CKOPOCTb, HO HE Ha NPOMYCKHY CMNOCOOHOCTb

3. OtpenbHbin TM BeAET K AONONAHUTENIbHbIM ONEPaALMUOHHbIM PAacXoaam

4. EpmnHbin TM orpaHn4mBaeT maclutabmpyemocTtb

" He camas nsioxas npobnema

= EcTb cnocobbl yay4wnTsb...

=& Microsoft

Batching

Account Grain

[Tx(RequiresNew)] Validate({N, O, P, Q, X, Y, Z})

ol00A->8 Committed ({N,O,P.Q,X}) Aborted({Y.z})

Success

Account Grain

- Transaction log

== Microsoft

[lpon3soanTenbHOCTL TM

N
-
-
-
o
o

8-core VM

—
-
O
-
Q
W

~
v
-

O

—
O
O
v
-
(O
—
}_

Figure 6 TM Throughput =& Microsoft

I 3TO TONbKO Havano (Beta)

TM v2

TC

[Tx(RequiresNew)]
S100A->B
EEE—

Success

Account Grain

alidate(N, {A, B}, {N-5, N-2})

Committed

Account Grain

Transaction log

== Microsoft

Hepnoctatkn TM vl

1. KackagHbie abopTbl

= MoryT npoM3onTN TONLKO B ciyyae cbona cepepa nam OC

2. OpHoO-rpenHoBble TPaH3aKUUKM TpebytoT Banngaunm

" BiAunAeT Ha CKOPOCTb, HO HE Ha NPOMNYCKHY CNOCOBHOCTb

3. OtpenbHbi TM BeAET K 4ONONAHUTENbHbIM OM. Pacxoaam

Christopher Meiklejohn

| A

Alejandro Tomsic
J =& Microsoft

4. EanHbin TM orpaHnymBaeT macwtabmpyemocTb

" He camaa nnoxasn npo6nelv\a

Camoe rnasHoe...

Becb Koa *MBET Ha GitHuUb

O Ty | e Gl s Yermrte oo

/ orleans

New pull requ

ReubenBon

run-build

README.md

Orleans

P o “This repository

t/ orleans

draft of distributed TM implementation

stianburckha. merge 2 commit: dotnetimaster from
MIT
sebastianburckh:

First draft o

sebastianburckhardt co

vith t

© g@seba

@ jason-bragg

jason-bragg on Jan Member

Pull requests Issues Marketplace Explore

© Unwatch ~

&

B Microsoft

3aKYeHune

B }KM3HW BCeraa eCTb MeCTO MHHOBAUMAM, AaXKe B TPaH3aKUUAX
= SQL <-> NoSQL <-> Distributed SQL <-> Distributed Transactions

Ba*KHO MHOrAQ COMHEBATLCA B OOLLLENPUHATBIX K UICTUHAXY

= HecTn «epecb» Henerko

Cnown middle-tier no3sonser caenatb MHOIO MHTEPECHOTO

= He NPUBA3bIBAACb K KOHKPETHOMY XPaHUINNLWY AadHHbIX

Open Source N HUKaAK UHa4Ye

" [lpncoeanHaunrteco!

=& Microsoft

=& Microsoft

<Messaging>
<SerializationProviders>»

<Provider type="Orleans.Serialization.ProtobufSerializer, OrleansGoogleUutils" />
</SerializationProviders>
</Messaging>

Cnacubo!

Sergey Bykov @msftorleans
Microsoft, @sergeybykov https://github.com/dotnet/orleans/

== Microsoft

