
@vkhorikov

Pragmatic Unit Testing

Vladimir Khorikov

http://enterprisecraftsmanship.com

http://enterprisecraftsmanship.com/

Cargo cult
unit testing

2

@vkhorikov

Vladimir Khorikov

http://enterprisecraftsmanship.com

Author at Pluralsight

3

Unit testing Better design=

Goals of Testing

4

Sustainable growth of
software project

5

Safety net

/ƘŀƴƎŜǎ ŘƻƴΩǘ ōǊŜŀƪ ŜȄƛǎǘƛƴƎ
functionality

Move with a faster pace

Maintain low amount of technical debt

6

Focus on the long term

With tests

Work
hours
spent

Progress

Without tests

7

Focus on the long term

With good tests

Work
hours
spent

Progress

With bad tests

8

Well, that’s life

9

You can sustain the
development speed!

10

All Tests are Not Created Equal

Contribute to the
software quality and

the safety net

Raise false alarms

5ƻƴΩǘ ŎŀǘŎƘ ǊŜƎǊŜǎǎƛƻƴǎ

Provide slow feedback

11

How to evaluate your
test suite?

12

Good negative indicator

Bad positive indicator

Coverage Metrics

13

Pragmatic Approach to Unit Testing

Net value

Test

Test

Test

Test Keep these

Test
Test

Get rid of these

14

What Makes a Test Valuable?

Protection
against

regressions

Resistance to
refactoring

Fast feedback Maintainability

15

Protection Against Regressions

The more code is exercised, the better the protection

Testing trivial code is not worth it

The more important the code, the better

External libraries and systems count too

16

Resistance to refactoring

False positive False alarm=

Dilute the ability to spot a problem

17

Resistance to refactoring

Coupling to
implementation

details
False positives

Decouple tests from implementation
details as much as possible

18

What Makes a Test Valuable?

Protection
against

regressions

Resistance to
refactoring

19

What Makes a Test Valuable?

Table of error types
Functionality is

Correct Broken

Test
result

Test passes
Correct inference
(True Negatives)

Type II error
(False Negative)

Test fails
Type I error

(False Positive)
Correct inference
(True Positives)

Protection
against

regressions

Resistance to
refactoring

20

What Makes a Test Valuable?

Protection
against

regressions

Resistance to
refactoring

Fast feedback Maintainability

0..1 = Value estimate* 0..1 * 0..1 * 0..1

21

What Makes a Valuable Test: Examples

Resistance to
refactoring

Fast
feedback

Protection
against

regressions

22

End-to-end Tests

Best protection against regressions

Immune to false positives

Slow feedback

23

What Makes a Valuable Test: Examples

Resistance to
refactoring

Fast
feedback

Protection
against

regressions

End-to-end tests

24

[Fact]
public void Test ()
{

var user = new User();

user. Name= "John Smith" ;

Assert . Equal ("John Smith" , user. Name);
}

Trivial Test

public class User
{

public string Name{ get ; set ; }
}

Fast feedback Good resistance to refactoring

Unlikely to catch a regression error

25

What Makes a Valuable Test: Examples

Resistance to
refactoring

Fast
feedback

Protection
against

regressions

End-to-end tests Trivial tests

26

Brittle Tests

public class UserRepository
{

public User GetById (int id)
{

Ƴǉ ƛ ǉƳ
}

public string LastExecutedSqlStatement
{ get ; private set ; }

}

[Fact]
public void GetById_executes_correct_SQL_code ()
{

var repository = new UserRepository ();

User = repository. GetById (5);

Assert . Equal (
Ƨ3%,%#4 ǉ &2/- ÄÂÏƚǁ5ÓÅÒǂ 7(%2% 5ÓÅÒ)$ ˮ ʪƨ,
repository. LastExecutedSqlStatement);

}

SELECT* FROMdbo. [User] WHEREUserID = 5
SELECT* FROMdbo. User WHEREUserID = 5
SELECTUserID , Name, Email FROMdbo. [User] WHEREUserID = 5
SELECT* FROMdbo. [User] WHEREUserID = @UserID

Coupling to implementation details

27

What Makes a Valuable Test: Examples

Resistance to
refactoring

Fast
feedback

Protection
against

regressions

End-to-end tests Trivial tests

Brittle tests

Ideal

28

Test Pyramid

End-
to-end

Integration
tests

Unit testsThe fastest

The slowest

Protection against
regressions and
resistance to
refactoring

29

Types of Testing

Output-based
testing

30

public class PriceEngine
{

public decimal CalculateDiscount (
params Product [] product)

{
decimal discount = product. Length * 0.01m;
return Math. Min(discount, 0.2m);

}
}

[Fact]
public void Test ()
{

Product product1 = new Product ("Hand wash");
Product product2 = new Product ("Shampoo");
var engine = new PriceEngine ();

decimal discount = engine. CalculateDiscount (
product1, product2);

Assert . Equal (0.02m, discount);
}

Functional style

Output-based Testing

31

Types of Testing

State-based testing

32

State-based Testing

public class Order
{

private readonly List <Product > _products ;
public IReadOnlyList <Product > Products

=> _products . ToList ();

public void AddProduct (Product product)
{

_products . Add(product);
}

}

[Fact]
public void Test ()
{

Product product = new Product ("Hand wash");
Order order = new Order ();

order. AddProduct (product);

Assert . Equal (1, order. Products . Count);
Assert . Equal (product, order. Products [0]);

}

33

Types of Testing

Collaboration-based testing

Test doubles

34

Collaboration-based Testing

public class OrderService
{

public void Submit (Order order ,
IDatabase database)

{
database. Save(order);

}
}

[Fact]
public void Test ()
{

var order = new Order ();
var service = new OrderService ();
var mock = new Mock<IDatabase >();

service. Submit (order, mock.Object);

mock.Verify (x => x. Save(order));
}

35

Types of Testing: Comparison

Types of testing Valuable test

Output-based testing
Protection against

regressions

State-based testing Resistance to refactoring

Collaboration-based
testing

Fast feedback

Maintainability

36

Output-based Testing

Best protection against false positives Easy to maintain

Only suitable for functional code

37

State-based Testing

Good protection against false positives

Should verify through the public API

Reasonable maintenance cost

38

Collaboration-based Testing

Maintainability is worse

Resistance to refactoring can be much worse

39

Implementation Detail vs Observable Behavior

Business logic
(domain model)

Application
services

3rd party
system

Message
bus

SMTP
service

40

Collaboration-based Testing

3rd party
system

Message bus

Inner-application

Inter-application

Inter-application

41

Collaboration-based Testing

3rd party
system

Message bus

Implementation detail

Postcondition

Postcondition

42

[Fact]
public void Test ()
{

var mock = new Mock<IUser >();
var order = new Order (mock.Object);
var product = new Product ("M0359");

order. AddProduct (product);

mock.Verify (x => x. UpdateLastBoughtProduct (product));
}

public class Order {
private readonly IUser _user ;

public Order (IUser user) {
_user = user;

}

public void AddProduct (Product product) {
_products . Add(product);
_user . UpdateLastBoughtProduct (product);

}
}

Collaboration-based Testing

Collaboration inside the application

42

Collaboration-based Testing

public class OrderService {
private readonly IPaymentGateway _gateway;

public OrderService (IPaymentGateway gateway) {
_gateway = gateway;

}

public void Submit (Order order) {
_gateway . ChargePayment(order. TotalAmount);

}
}

[Fact]
public void Test ()
{

var mock = new Mock<IPaymentGateway>();
var order = new Order (100);
var service = new OrderService (mock.Object);

service. Submit (order);

mock.Verify (x => x. ChargePayment(100m));
}

Collaboration between applications

44

Collaboration-based Testing

Payment
gateway

UpdateLastBoughtProduct()

ChargePayment()

45

Types of Testing: Comparison

Types of testing

Output-based testing

State-based testing

Collaboration-based
testing

46

The further you take
your tests away from
the implementation
details, the better.

47

Example

48

Warehouse

StockItem

StockMessage
Translator

StockEvent

Buyer

BuyerLauncher

BuyerPortfolio

BuyerSnapshot

MainViewModel

49

Warehouse

StockItem

StockMessage
Translator

StockEvent

Buyer

BuyerLauncher

BuyerPortfolio

BuyerSnapshot

MainViewModel

50

51

Communication with
warehouse service

Domain model
Communication with

user

Unit Tests Analysis

[Fact]
public void Notifies_stock_closes_when_close_message_received ()
{

var sut = new StockMessageTranslator ("Buyer");
var mock = new Mock<IStockEventListener >();
sut. AddStockEventListener (mock.Object);

sut. ProcessMessage("Event: CLOSE;");

mock.Verify (x => x. ItemClosed ());
}

52

53

Communication with
warehouse service

Domain model
Communication with

user

Collaboration-based Testing

Warehouse
service StockMessageTranslator

"Event: CLOSE;"

Buyer

ItemClosed()

54

55

Communication with
warehouse service

Domain model
Communication with

user

56

Communication with
warehouse service

Domain model
Communication with

user

57

58

[Fact]
public void Notifies_stock_closes_when_close_message_received ()
{

var sut = new StockMessageTranslator ("Buyer");
var mock = new Mock<IStockEventListener >();
sut. AddStockEventListener (mock.Object);

sut. ProcessMessage("Event: CLOSE;");

mock.Verify (x => x. ItemClosed ());
}

59

[Fact]
public void Closes_when_item_closes ()
{

var buyer = CreateJoiningBuyer ();

StockCommandcommand = buyer. Process (StockEvent . Close ());

command.ShouldEqual (StockCommand. None());
buyer. SnapshotShouldEqual (BuyerState . Closed , 0, 0, 0);

}

60

[Fact]
public void Closes_when_item_closes ()
{

var buyer = CreateJoiningBuyer ();

StockCommandcommand = buyer. Process (StockEvent . Close ());

command.ShouldEqual (StockCommand. None());
buyer. SnapshotShouldEqual (BuyerState . Closed , 0, 0, 0);

}

60

61

Growing Object-Oriented Software, Guided by Tests Without Mocks
Å https://enterprisecraftsmanship.com/2016/07/05/growing-object-oriented-software-guided-by-tests-without-mocks/

When to use mocks
Å https://enterprisecraftsmanship.com/2016/10/19/when-to-use-mocks/

Verifying collaborations at the system edges
Å https://enterprisecraftsmanship.com/2016/10/26/2367/

Summary

ÅComponents of a valuable test

ÅProtection against regressions

ÅResistance to refactoring

ÅFast feedback

ÅMaintainability

ÅTypes of testing

ÅOutput-based testing

ÅState-based testing

ÅCollaboration-based testing

ÅObservable behavior vs Implementation
detail

62

@vkhorikov

Pragmatic Unit Testing

Vladimir Khorikov

http://enterprisecraftsmanship.com

63

http://enterprisecraftsmanship.com/

