DOTNEXT
Pragmatic Unit Testing

Viadimir Khorikov
http://enterprisecraftsmanship.com
@vkhorikov

http://enterprisecraftsmanship.com/

Cargo cult
unit testing

Viadimir Khorikov

http://enterprisecraftsmanship.com

Author at Pluralsight
W @vkhorikov

Goals of Testing

esign

Sustainable growth of
software project

Focus on the long term

Work |
hours Without tests

spent
With tests

Progress

Focus on the long term

Work
hours
spent /

/ With good tests

Progress

With bad tests

You can sustain the
development speed!

All Tests are Not Created Eque

Contribute to the Raise false alarms
software quality and 52y Qi OF G§OK NB

the safety net
Provide slow feedback

11

How to evaluate your
test suite?

12

Coverage Metrics

Qf Good negative indicator
2@ Bad positive indicator

y

Pragmatic Approach to Unit Testing

> Keep these

J

Net value

} Get rid of these

14

What Makes a Test Valuable?

Protection
against
regressions

Resistance to
refactoring

Fast feedbacki Maintainability

15

Protection Against Regressions

The more code Is exercised, the better the protection
The more important the code, the better

External libraries and systems count too

Testing trivial code is not worth it

16

Resistance to refactoring

False positive — False alarm

Dilute the ability to spot a problem

17

Resistance to refactoring

Coupling to

Implementation False positives
detalls

Decouple tests from implementation
details as much as possible

18

What Makes a Test Valuable?

Protection Resistance to

refactoring

against
regressions

19

What Makes a Test Valuable?

Functionality Is |
Table of error types Protection
Correct Broken against

regressions

Correct inference | Type Il error —

Test passes (True Negatives) | (False Negative

Test
result

Type | error Correct inferenc

Test fails (False Positive) | (True Positives;

Resistance to
refactoring

20

What Makes a Test Valuable?

Protection
against
regressions

Resistance to

refactoring

Fast feedbacki Maintainability

0..1* 0..1* 0..1* 0..1 = Value estimate

What Makes a Valuable Test: Examples

W

Fast
feedback

22

Endto-end Tests

> @ i > >

Qf Best protection against regressions

Qf Immune to false positives

2@ Slow feedback

23

What Makes a Valuable Test: Examples

Endto-end tests

W

Fast
feedback

24

public class User

{
}

public

Trivial Test

[Fact]
public void Test()

{

string Name{ get: set;} var user = new User();

user. Name= "John Smith" :

Assert . Equal ("John Smith" , user. Namé;

Fast feedback Good resistance to refactoring

Unlikely to catch a regression error

25

What Makes a Valuable Test: Examples

Trivial tests

-

Fast
feedback

Endto-end tests

26

public

{

public
{

}

public
{ get;

Y ||

class UserRepository

User GetByld (int id)

A

string
private

Brittle Tests

j Y

LastExecutedSglStatement
set ; }

[Fact]
public void GetByld executes correct SQL code ()

{

var repository = new UserRepository ();
User =repository. GetByld (5);
Assert . Equal (

23%, %#4 1l &2/ - AATt+ 1 50A0%+
repository. LastExecutedSqglStatement);

SELECT* FROMdbo. [User] WHERRserID = 5
SELECT* FROMdbo. User WHERBJserID = 5

SELECTUserID, Name Emall

FROMdbo. [User] WHERBJserID = 5

SELECT* FROMdbo. [User] WHERRserID = @UserlD

% Coupling to implementation details

27

What Makes a Valuable Test: Examples

Endto-end tests Trivial tests

|deal

Fast
feedback

Brittle tests

28

The slowest

The fastest

Test Pyramid

Integration

tests

Unit tests

Protection against
regressions and
resistance to
refactoring

29

Types of Testing

oo

Output-based
testing

30

Outputbased Testing

[Fact]
public class PriceEngine public void Test ()

{ {

public decimal CalculateDiscount (Product productl = new Product ("Hand wash");
params Product [] product) Product pr0dUCt2 = new Product ("ShampOO");
{ var engine = new PriceEngine ();
decimal discount= product. Length *0.01m;
return Math. Min(discount, 0.2m); decimal discount= engine. CalculateDiscount (
} productl, product2);

Assert . Equal (0.02m, discount);

}

Qf Functional style

Types of Testing

Statebased testing

>

32

Statebased Testing

public class Order

{
private readonly List <Product > products ;
public IReadOnlyList <Product > Products
=> products . ToList ();
public void AddProduct (Product product)
{
_products . Add(product);
}
}

[Fact]
public void Test ()

{

Product product = new Product ("Hand wash");
Order order = new Order ();

order. AddProduct (product);

Assert . Equal (1, order. Products . Count);
Assert . Equal (product, order. Products [0]);

33

Types of Testing

@ O

/ \Test doubles
> P

\Q \O/

\ Collaborationbased testing

34

Collaboratiorbased Testing

[Fact]
public class OrderService public void Test ()
{ {
public void Submit(Order order var order= new Order ();
|Database database) var service = new OrderService ();
{ var mock = new MocklIDatabase >();
database. Save(order);
) service. Submit(order, mock.Object);
}
mock. Verify (x=> x. Save(order));
}

Types of Testing: Comparison

Types of testing Valuable test

Output-based testing Protection agains! Qf

;) L regressions)
Statebased testing Resistance to refactorin§ 2@
Collaboratiorbased Fast feedback Q/

L testing) . .
Maintainability 2@

36

Outputbased Testing

@
DI XTI

w Best protection against false positivesQf Easy to maintain

Only suitable for functional code

37

Statebased Testing

:r> /.\/’8.
"o 2%e

Q/ Good protection against false positives

Should verify through the public API

Q/ Reasonable maintenance cost

Collaboratiorbased Testing

O
/0

K%

Maintainability is worse

Resistance to refactoring can be much worse

Implementation Detail vs Observable Behavio

Message
bus
Application Business logic
services 1\ (domain model)

N

40

Collaboratiorbased Testing

o

N

Inter-application

Inner-application

<

Message bus
Inter-application

41

Collaboratiorbased Testing

Postcondition

Implementation detall

Message bus
Postcondition

42

Collaboratiorbased Testing

public class Order {
private readonly IUser _user;

public Order (IUser user){

[Fact]
public void Test ()

{

var mock = new MocklIUser >();

_user =user; var order= new Order (mock.Object);
} var product= new Product ("M0359");
public void AddProduct (Product product) { order. AddProduct (product);

_products . Add(product);

_user . UpdateLastBoughtProduct (product); mock. Verify (x=> x. UpdateLastBoughtProduct (product));
} }

Collaboration inside the application

42

Collaboratiorbased Testing

public class OrderService ({ [Fagt] :
private readonly IPaymentGateway _gateway; {pUb“C void Test()

var mock = new MockIPaymentGateway>();

ublic OrderService (IPaymentGatewa atewa
P (1Pay v 9 Y var order= new Order (100);

__gateway = gateway;

} var service = new OrderService (mock.Object);
oublic void Submit(Order order) { service. Submit (order);
_gateway . ChargePayment(order. TotalAmount); :
} mock.Verify (x=> x. ChargePayment(100m));
} }

Collaboration between applications

44

Collaboratiorbased Testing

UpdateLastBoughtProdugt

e
Payment

t
HEIEHEY ChargePaymeN

45

Types of Testing: Comparison

Types of testing

Output-based testing

Statebased testing

Collaborationbased |
testing

46

The further you take
your tests away from
the implementation
details, the better.

a7

GROWING
OBJECT—ORIENTED
SOFTWARE,

STEVE FREEMAN BEANS
NAT PrYCE W\

For

Afternword by Tim Mackinnon

Example

48

7

.

A 4

\

J

r

A 4

Sockltem
_

7

.

SockMessage

Tranglator

\

BuyerLauncher

BuyerPortfolio

J

v

Buyer hapshot

v

>
MainViewModel

49

g v

. i

SockMessage
Tranglator

BuyerLauncher

BuyerPortfolio

~\

Buyer hapshot

v
MainViewModel

J

50

Communication with
warehouse service

Domain model

Communication with
user

Warehouse

Stockltem

Buyerlauncher

BuyerPortfolio

StockMessage
Translator

StockEvent

Buyer
Snapshot

MainViewMode|

51

[Fact]

public

{
var
var
Sut.
Sut.

Unit Tests Analysis

void Notifies_stock closes when close message received
sut = new StockMessageTranslator ("Buyer");

mock = new MockIStockEventListener >();
AddStockEventListener (i mock.Object);

ProcessMessage("Event: CLOSE;");

mock. Verify (x=> x. IltemClosed ());

0

52

Communication with

_ Domain model
warehouse service

Communication with
user

Buyerlauncher

Warehouse BuyerPortfolio

Stockltem

StockMessage Buyer
Translator Snapshot

StockEvent

MainViewMode|

53

Collaboratiorbased Testing

Warehouse
service

"Event: CLOSE:"

StockMessageTranslator

ltemCloseq()

Buyer

54

Communication with
warehouse service

Domain model

Communication with

user

Warehouse

Stockltem

BuyerPortfolio

StockMessage
Translator

StockEvent

Buyer
Snapshot

MainViewMode|

55

Communication with
warehouse service

Domain model

Communication with
user

Warehouse

Stockltem

Buyerlauncher

BuyerPortfolio

StockMessage
Translator

StockEvent

Buyer
Snapshot

MainViewMode|

56

StockEvent

Refactored version

Internal state
machine

StockCommand

57

Refactored version

Warehouse External world

Application
services layer

BuyerViewModel

StockEvent StockCommand

> Domain model

BuyerSnapshot

58

Unit Tests Analysis

[Fact]
public void Notifies stock closes when close _message received

{

var sut = new StockMessageTranslator ("Buyer");
var mock = new MockIStockEventListener >();
sut. AddStockEventListener (mock.Object);

sut. ProcessMessage("Event: CLOSE;");

mock. Verify (x=> x. ItemClosed ());

Unit Tests Analysis

[Fact]
public void Closes when item closes ()

{
var buyer = CreateJoiningBuyer ();

StockCommandcommand = buyer. Process (StockEvent . Close ());

commandShouldEqual (StockCommandNong));
buyer. SnapshotShouldEqual (BuyerState . Closed, 0, 0, 0);

60

Unit Tests Analysis

[Fact]
public void Closes when item closes ()

{
var buyer = CreateJoiningBuyer ();

StockCommandcommand = buyer. Process (StockEvent . Close ());

commandShouldEqual (StockCommandNong));
buyer. SnapshotShouldEqual (BuyerState . Closed, 0, 0, 0);

60

Resources

Growing ObjecOriented Software, Guided by Tests Withddibcks
A https://enterprisecraftsmanship.com/2016/07/05/growingbjectoriented-software-quidedby-testswithout-mocks/

When to usanocks
A https://enterprisecraftsmanship.com/2016/10/19/whetp-usemockg

Verifying collaborations at the systesdges
A https://enterprisecraftsmanship.com/2016/10/26/2367/

61

Summary

AComponents of a valuable test
AProtection against regressions
AResistance to refactoring
AFast feedback
AMaintainability

ATypes of testing
AOutput-based testing
A Statebased testing
A Collaborationbased testing

AObservable behavior vs Implementation
detall

62

DOTNEXT
Pragmatic Unit Testing

Viadimir Khorikov
http://enterprisecraftsmanship.com
@vkhorikov

http://enterprisecraftsmanship.com/

