Building real world production-ready

Web APls with ASPNET Core .

Alex Thissen
Cloud architect at Xpirit, The Netherlands % M .
@alexthissen % i I mHE o

DOTNEXT X [

NET KOHOEPEHU WA Think ahead. A

Journey to a modern cloud-ready Web AP

MNew ASP.MET Core Web Application - HelloWorldWebAPI ? X

|
[] o
Visual Studio 2017 15.7 or newer is recommended for ASP.NET Core 2.1 projects. Learn more
.NET Core ASP.NET Core 2.1 ~ | Learn more

A project template for creating an ASP.MET Core
1 1 application with example ASP.NET Core Razor Pages
h E @ g content.
Empty AP

Web Angular
EVTEGGT Application
(Model-View-

Controller)

[] []
\ Secure
React.js React.js and e S I I e
Redx

Authentication Ne Authentication

e Instrumentation Versioning

Leamn more

Service contract ~ Health
File, New Project... tested checks

i

ASPNET Core 2.1

Many useful new features /
for building Web APIs 7 e

” LSS
-~

- Convention based assumptions for action //,::::”’ :, -
methods e

« ActionResult<T> return type for predictable API i
surface

« APl Behavior options: Model validation errors

« HttpClientFactory

« Resiliency policies

« Global tools for HTTPS support

« HTTP Strict Transport Security (HSTS)

« OpenAPI support

7
‘%
7
‘7
7
e
%
7
7

Design your modern Web AP (

Choose REST or POX O TakaAlooldat:

RESTful or less REST p Microsoft's API guidelines

Check Richardson maturity model e Azure Architecture APl design

Follow Web API best practices

Conform to HTTP semantics
Shape of URIs and meaningful verbs

ldempotent and stateless
Asynchronous support for long-running API operations

HATEOAS for resource navigation
Versioning of your API

Demo Web AP
Quick walkthrough ot ASPNET Core 2.1 project

Web API Master server catalog
|mp|ementation https://api.steampowered.com
- External
Web API
(& source

ASP.NET Core 2.1
After File, New Project
Refit

BDUNTERKS'IS'RIKE”

OUR

TEAN TORTRESS 2

Versioning Web APIs

Allow your APIs to evolve over time

Versioning of your AP
Dealing with types of change

Incompatible changes Compatible

Breaking of contract Careful with behavior changes
Violation of 'Principle of Least Astonishment' - Keep current version
—> Increase major and/or minor version

Version options

Advertise versions
Group-name and/or version number 2018-22-04 or v1.0

URI includes version in path or query string /api/v1.2/gameserver or
/api/gameserver?api-version=1.2

ACCEPT header or custom media type ACCEPT: application/vnd.gameserver.app-v1.2+json

Implementing versioning

Sta rtu p O pt| ONSsS Microsoft.AspNetCore.Mvc.Versioning
, , Version 2.1.0

Attributes for version metadata

Conventions for runtime flexibility

Can keep implementation of versions together

Separating by namespace is convenient
But might want to create separate solutions depending on complexity

namespace GameServerWebAPI.Controllers.V1
1

[Route("api/v{version:apiVersion}/[controller]")]
[ApiVersion("1.0")]

public class GameServerController : ControllerBase

De

mo: Versioning

Fvolving your web AP

Attri

outes for versions

Changed routing

Flue

Nt API for runtime versioning

A

Resiliency

Design for failure, because things will break

Cloud:

Transient errors
are a fact,
not a possibility

Determine your strategy for resiliency

Which failures can you expect?
Will you be able to recover in time? Is transient?
How do you handle outages?

Focuses on dependencies outside of your code

Proper exception handling in your implementation is a prerequisite

Depending on external resources

A

"\ Hosted Web App
Q-

Your WebAPI

Relational and NoSQL
databases

Other Web APIs
Webhooks

Buses and Queues

Cache

Other external
resources

Cloud patterns for handling transient faults

o 0 = G, 5
‘J —
_— - —
® ® ® ® o
Retry Circuit breaker Bulkhead isolation Timeout Fallback
Retry a number If you know you Isolate parts of Avoid waiting too long. Use an alternative
of times. are likely to fail, implementation to Fail within a certain when all attempts
fail fast contain failures amount of time have failed

Careful retries

Not too aggressive to avoid contention:
Exponential back-off, regular intervals, increasing intervals, immediate, random

Some Azure services have built-in retry logic

Built-in Retry mechanisms

Most Azure services and client

SDKs include retry mecr

anism

Service

Azure Storage

SQL Database with Entity

Framework

SQL Database with Entity
Framework Core

services.AddDbContext<GameServerContext>(options => {

string connectionString =

Retry capabilities

Native in client

Native in client

Native in client

Configuration.GetConnectionString("GameServerContext");

options.UseSqglServer(connectionString, sqlOptions =>

{

sgqlOptions.EnableRetryOnFailure(

maxRetryCount: 5,

maxRetryDelay: TimeSpan.FromSeconds(30),
errorNumbersToAdd: null);

})s
})s

Fault handling policies

Polly
Version 5.8.0

Use policy configurations

Create pro-active handling strategies
Add instrumentation and logging where necessary

Centralize policies in registry

Reuse existing policies

Policy.Handle<HttpRequestException>().WaitAndRetryAsync(
6, // Number of retries
retryAttempt => TimeSpan.FromSeconds(Math.Pow(2, retryAttempt)),
(exception, timeSpan, retryCount, context) => { // On retry

var msg = $"Retry {retryCount} at {context.ExecutionKey} : {exception}.";
logger.LogWarning(msg);

})

k(,““

Creating resilient HT TP clients with Polly
Leverage HttpClientFactory

Configure HttpClient objects and create typed clients that contains these clients

Built-in Polly support

L
Microsoft.Extensions.Http combined with Microsoft.Extensions.Http.Polly e

Polly policy handling Factory creates HttpClient Typed client injected as
behaviors defined with wrapped policies dependency
A .
» o o

HttpClientFactory Typed client

IIIIII
IIIIII
-

Demo: Resiliency

Dealing with failures

HttpClientFactory

Typed clients
Polly fault handling policies

Demo Web AP

Web API
Implementation

G

Unreliable
connection

Master server catalog
https://api.steampowered.com

5

POJLY

HttpClientFactory

Timeout policy
Server Error policy

Typed client

Refit

Automatic proxy
generated based
on C# interface
definition

0

" SOource

Individual game servers
tcp://41.189.244.100:27015, ..

A 4

Many expensive
TCP connections

GI:IUNTERKSTRIKE'“

SOURCE"

@

v

&4
4

Documentation
Describe your Web AP

TR T’ ¢ ¢ ¢ Vv

1104010 gm 00 1gP 14 0

010001 001011 110100 1101@/ 001001 001010 100110 010010 101010

110101 O 01 001018

110101 001007 OOgO1(

101010 11010010"

10010 101010 17 00010 010100

100110 0100 10K 10

1 10001 001031 11010 101 001001 CO101D 1

100 001001 0070101l 110101 0010g# 001010 100110 010010 101

57
it

i e o £ I

| — : ¢ A0 10 0@1001 0Q BUURRA1 0 101010 1101
I t I“\T'ﬁmi , 4 . m W i
W‘T | : o | Y ' Lm fJ : _:-,: £

7001001 10 3)
il

§01010 ""1

" O 1n e

HEe0) 010100 0001010 010

= .n

OpenAPl as documentation

OPENAPI

INITIATIVE

« Extendable
* Mocking
* Automated testing

* Generate
documentation

+ Data ingestion
* Lots of libraries
* Lots of integrations

Specification of REST services

Schema comparable to WSDL for SOAP Services
JSON format

Previously known as Swagger @

Service contract Message contract Data contract

Controller based Individual API actions Object graphs
grouping of
operations

Swagger

Tooling to implement OpenAP|

Swagger Petstore ®

i

Swagger Editor
Visual editor for creating
Swagger files

¢} swagger hitps:/flocalnost 44305/swaggeriv1/swagger json m

DotNext API
DotMext SPb 2018 Real-worls

GameServer

string

11111

dmum number of servers to query

Swagger Ul
Help pages based
on API surface and
Swagger document

.NET Core compatible

e Swashbuckle
* NSwag
* QSwag
o
Libraries
Generate OpenAPI
documentation,

client libraries, server stubs

Describe your Web AP

Metadata: Annotations in your code
Actions

[HttpGet("~/api/gameserver/status")]
[ProducesResponseType(typeof(GameServerStatus[]), 200)]
[ProducesResponseType(400)]

[UsedImplicitly]

Data contract APl Controller
[Required] [Produces("application/json")]
[DefaultValue(false)] public class GameServerController

Additional metadata

/// <response code="201">Returns the newly-created item</response>
/// <response code="400">If the item is null</response>

Demo: Documentation

Attributes and XML comments
NSwag generated OpenAPI specification

Multiple APl versions i-

Consuming and testing Web APIs

Putting your Web API through its paces

Web API Client libraries
Provide a client SDK

Facilitates consuming your Web API
Typed proxies and client-side data model

Generate from specs

Use open source tools and libraries

Refit Version 4.3.0
Microsoft.Rest.ClientRuntime
Version 2.1.0

NSwag

»

A .. AutoRest Refit

» Uses OpenAPI spec » Server and client « Dynamically

 Client libraries

generated
 Based on attributed
C# interface

libraries

« Used by Microsoft « NSwagStudio tool

Azure SDKs

Service contract integration testing
Find out whether your Web APl is still compatible

Did your changes break any clients?

Use versioned client proxies
SpeC|a| ASPN ET COI’G J[@SJ[server .e Microsoft.AspNetCore.TestHost

Integration testing from unit tests Version 2.1.0

Full Web API calls without network overhead

var builder = new WebHostBuilder() ..

// Create test stack

TestServer server = new TestServer(builder);
HttpClient client = server.CreateClient();
DotNextAPI proxy = new DotNextAPI(client);

Demo: Testing clients

Generate client proxies with AutoRest
Service contract integration tests

A

Instrumentation, health and telemetry

Individual applications Entire landscape
Health endpoints End-to-end tracing
Metrics (performance and other statistics) Application maps
Tracing calls Bottlenecks and failure locations
Failed request count
& Availability , realworldwebapi 3 Azure storage
20 | gl petomne B
e h w h 1 Client: realworldwebapi HTTP
E:If.l ::et::::t rl;aad, performance & b Monitor HTTP dependencies
0
‘ Y / - :

Application New Relic AppMetrics
Insights

Instrumentation, health and telemetry

Operations Dependencies

Failed request count

Exceptions = Ve

20

Reguest count ~ |

20
Regquest count
2 5
12:40 12 Prd 06 Pid
@ !| Frii3 08 AM 12 P
Select operation O Search to fitter items._.
OPERATION MAME USERS COUNT (FAILED) w0 DOUNT PIN
F
Owverall 81 149
GET /health 81 149 -

Y Filters ‘9 Reset

G Time range U Refresh =: Analytics *== More

Search

v o [T I gy

3 3 total results betwesn 471372018 2:09:55 AM and 4/13/2018 2:19:55 AM (10 {9
minutes)
g
5]
2
B —— .
‘ 2:10 AN 215 AM 2:20 J!'.I#l
REQUEST

.

06 PM !
Results {:} Grouped results

I 4/13/2018, 2:19:52 AM - REQUEST
GET /fhealth

Request URL: http://realworldwebapi.azurewebsites.net/health Response code: 503
Server response time: 562.8 ps Request URL path: /health

I 4/13/2018, 2:19:52 AM - AVAILABILITY
Fing test
Awailability result: Failed Availability location: West US Duration: 171 ms

Health endpoints: how are you doing?

o
Microsoft.AspNetCore.

Diagnostics.HealthChecks

Specific endpoints to query
Statu S Of We b AP | Version 2.2.0 (preview 1)
App.Metrics.AspNetCore.Health

Usually /health or /ping Version 2.0.0

Middleware exposes health details

Bootstrap specific health checks and information to determine status

services.AddHealthChecks(checks => {

checks
.AddUrlCheck("https://api.steam.com") // Web based dependencies

.AddPrivateMemorySizeCheck (10000000) ; // Maximum private memory
1

Combine with monitoring solution to alert ops

Structured logging

Message templates

Strings with named placeholders semantics
Avoid string interpolation for messages

// Placeholders in template become queryable custom data
logger.LogInformation("Searching with {SearchLimit} results."”, limit);

Log providers supporting semantic logging

Azure Application Insights
Serilog

A better logging

Get your log levels right Log Levels
Choose your level regardless of providers 5 — Critical
Too much information makes log hard to read 4 — Error
Different log filter level per environment 3 — Warning

: : : : 2 — Information
Register logging providers (sinks) 1 - Debug

0 — Trace
loggerFactory.AddApplicationInsights(..);

loggerFactory.AddAzurelWebAppDiagnostics(...)
loggerFactory.AddEventSourcelLogger();

NN Tips and tweaks
O High performance logging with LogMessage.Define
— Use scopes for bundling logs messages
i Apply filters per category prefix to reduce noise

Centralized logging

Leverage existing resources

Increases traceability and easy of access
Plug into facilities already available
Harvest across entire landscape

Appropriate Tilters

B

' Your Web API
for eaCh Sl n|< Instrumented with
Minimum log level required log output

Special filter expressions

@

Metrics and monitoring
e.g. Application Insights
AppMetrics

L

Log indexers
e.g. OMS Log Analytics,
Splunk, ELK stack

YZ Warning v-‘
IS

Application logs and traces
File or blob based logs
ETW, IntelliTrace,

Azure App Service logging

Yz Trace

Demo: Monitoring

Nelole[lgle
Monitoring and instrumentation
Health checks

2

\/

W

=

ENnvironments

Kee

[oo =1 | =| | =] loo =] | =1 | =]|
] @ |[=] © =] o =
e e =] e e =] e e =]
o o o
Test Staging Production

0 environments same as much as possible

SNV

ronment specific configurations:

Files appsettings.*.json
Environment variables

Hosting in production

APl gateway
Abstract and shields
internal details

Provides additional
features and patterns

Voo

Your Web APIs
Self-hosted or IS hosted

Integrate with an APl gateway

E.g. Azure APl Management or Amazon API Gateway

Leverage features from gateway

Throttling and client tracking
Monetization (if needed)

Developer registration and access of API keys

Do not expose Kestrel to Internet

Not security hardened like IS
At least use reverse proxy, such as NGINX proxy

o
- Microsoft.AspNetCore.Proxy
Version 0.2.0

‘O’ Take a look at:

A new lifecycle

Production is everywhere
Automate everything

One-click deployments
Pipelines for build, release and infrastructure

Fixing bugs

Roll forward, never go back

An error occurred while starting the application.

NET Core 4.6.26216.04 X86 v4.0.0.0 | Microsoft. AspNetCore.Hosting version 2.1.0-preview1-28290 | Microsoft Windows 10.0.14393 |

Testing in production
Works well with CI/CD

Breaks with traditional OTAP
No dependency on different environments

raffic management

Run different versions side by side and observe

Release gates based on runtime behavior of new
functionality

Feature toggles

New functionality behind a switch

Also works for Web APIs
Y
FeatureToggle
Version 4.0.2

Switch on and off

Traffic manager
Directs between versions

@

! !

API v2.0 APl v2.0*
Original version Version with new
functionality
behind feature
toggle

D>

Demo: Feature toggles Y

Defining and applying features f
u_"!'i

Secure It
Use HTTPS protocol

Listeners for HTTP and HTTPS by default in ASPNET 2.1
Consider redirecting HTTP to HTTPS

Environment variables: Name Value

ASPNETCORE_URLS https://localhost:5001;http://localhost:5000 Add

ASPNETCORE_ENVIF Development
Remove

Register server certificate for local development with HTTPS

Enable HSTS for production

Instructs browsers to avoid HTTP traffic on specified URL
Make sure everything is set up correctly before enabling this

Don't expose errors in production

Exclude exception details

Code snippets

app.UseHttpsRedirection();

dotnet install tool dotnet-dev-
certs -g --version 2.1.0-
previewl-final

dotnet dev-certs https --trust

if (env.IsProduction())

{
app.UseHsts();

}

Hiding secrets in Azure Key Vault

Getting access to the vault

Bootstrap in Startup.cs when building Configuration
Requires:
Application registration in Azure AD
Service Principal with Get and List rights
If possible, use Managed Service Identity for Azure App Service

Key and secret names

Simple names work OOTB
Section names with double dash --

User secrets for local deve

Secrets.json file, excluded from repository
GUID added to .csproj file

Microsoft.Azure.
Services.AppAuthentication
Version 4.0.2

MNAME

Applicationlnsights--InstrumentationKey

SteamApiOptions--DeveloperApiKey

Demo: Security features A

HTTPS ¥
Key Vault and user secrets Vooud

W

Looking back at our journey

to a modern cloud-ready Web AP

New ASP.NET Core Web Application - HelloWorldWebAP| ? X

Wisual Studio 2017 15.7 or newer is recommended for ASP.NET Core 2.7 projects, Learn more

.NET Core ASP.NET Core 2.1 Learn more

A project template for creating an ASP.NET Core

application with example ASP.NET Core Razor Pages
E E @ﬂ w content,
Empty APl Web Angular [T
LULITENEL Application -
(Model-View-
Controller)

B &

Reactjs Reactjs and

Redux Change Authentication

Authentication No Authentication

[] Enable Docker Support

05 Windows

Requires Docker for Windows
Docker support can also be enabled later Learn more

File, New Project...

+ swagg hitps-iocalhost 44305/swagger/v2/swagger json

DotNext API

DolNext SPb 2018 Real-world Web API

GameServer

Iapilv2 0/iGameServer
Response Class (Status 200)
Listof online game servers.

odel Example Value

“addr’s “string”,
“ganaport”: 8,

“product”: “string”,

Fesponse Crtent Type scatcnson <)

Parameters
s e e f s
=

Response Messages
HTTPStasCode Reason Responsa Model

= Incoming Requests

Request Rate

= Outgoing Requests

Degendency Call Rate

El Overall Health

Commited Memary

OpenAP]
Swagger
Polly

VL WP

Zseversonine | [lPsuse #Pin | B Open inansiics | [2]

*y Request Duration *y Request Failure fate

* Dependency Call Duration *y Dependency Call Failure Rate

*y CPU Total (%) *y Exception Rate

Logging
Versioning
HTTPS & HSTS

Availability test summary

Apr 7

6.AM 12PM 6PM
4772018813 AM CENTRALUS

481 s ping test-realworldwebapi

B i All availability tests

TEST NAME 20MIN 1H 24H 72H

@ Ping test 100% 100% 100% 99%

1/1

Health diagnostics
App Insights
TestHost

The chart shows a sample of the test results. To see more samples, select a shorter time [
&) range or select a specific availability test. Te see all the results, use Search Explorer or an
Analytics query. Ta see Availability metrics, use Metrics Explorer.
»*

Questions and Answers

.

Maybe later?
@alexthissen
athissen@xpirit.com

Resources

Microsoft API guidelines https.//github.com/Microsoft/api-guidelines
OpenAPI Initiative https://www.openapis.org
ASPNET Core 2.1 Roadmap

https://blogs.msdn.microsoft.com/webdev/2018/02/02/asp-net-core-2-1-roadmap/ "

http://visualstudio.com/
https://blogs.msdn.microsoft.com/webdev/2018/02/02/asp-net-core-2-1-roadmap/

Dealing with wrong input

Better handling failed model validation

-ollows RFC408 specitication

services.Configure<ApiBehaviorOptions>(options => {
options.InvalidModelStateResponseFactory = context => {
/] .
return new BadRequestObjectResult(problemDetails) {
ContentTypes = {
"application/problem+json”,
"application/problem+xml" }
15
}s

