
.NET КОНФЕРЕНЦИЯ

File, New Project…

Documentation Monitoring

Resilient
Instrumentation Versioning

Service contract
tested

Secure

Scalable

Health

checks

Many useful new features
for building Web APIs

• ActionResult

• HttpClientFactory

Choose REST or POX

Follow Web API best practices

Take a look at:
Microsoft's API guidelines
Azure Architecture API design

Master server catalog
https://api.steampowered.com

Demo Web API
Quick walkthrough of ASP.NET Core 2.1 project

Web API
Implementation

External
Web API

ASP.NET Core 2.1

After File, New Project

Refit

Versioning Web APIs
Allow your APIs to evolve over time

Dealing with types of change

Version options

Startup options

Can keep implementation of versions together

namespace GameServerWebAPI.Controllers.V1
{
[Route("api/v{version:apiVersion}/[controller]")]
[ApiVersion("1.0")]
public class GameServerController : ControllerBase

Microsoft.AspNetCore.Mvc.Versioning

Version 2.1.0

Demo: Versioning
Evolving your web API

Attributes for versions
Changed routing
Fluent API for runtime versioning

Resiliency
Design for failure, because things will break

Resiliency: design for failure

Determine your strategy for resiliency

Focuses on dependencies outside of your code

Cloud:

Transient errors

are a fact,

not a possibility

Hosted Web App

Relational and NoSQL
databases

Other Web APIs
Webhooks

Buses and Queues

Cache

Other external
resources

Careful retries

Timeout
Avoid waiting too long.

Fail within a certain

amount of time

Fallback
Use an alternative

when all attempts

have failed

Bulkhead isolation
Isolate parts of

implementation to

contain failures

Circuit breaker
If you know you

are likely to fail,

fail fast

Retry
Retry a number

of times.

Most Azure services and client
SDKs include retry mechanism

Patterns and Practices
TFH Application Block (.NET FX)

Roll your own for container
connectivity

services.AddDbContext<GameServerContext>(options => {
string connectionString =

Configuration.GetConnectionString("GameServerContext");
options.UseSqlServer(connectionString, sqlOptions =>

{
sqlOptions.EnableRetryOnFailure(

maxRetryCount: 5,
maxRetryDelay: TimeSpan.FromSeconds(30),
errorNumbersToAdd: null);

});
});

Use policy configurations

Centralize policies in registry

Policy.Handle<HttpRequestException>().WaitAndRetryAsync(
6, // Number of retries
retryAttempt => TimeSpan.FromSeconds(Math.Pow(2, retryAttempt)),
(exception, timeSpan, retryCount, context) => { // On retry

var msg = $"Retry {retryCount} at {context.ExecutionKey} : {exception}.";
logger.LogWarning(msg);

})

Polly

Version 5.8.0

Leverage HttpClientFactory

Built-in Polly support

Demo: Resiliency
Dealing with failures

HttpClientFactory
Typed clients
Polly fault handling policies

Web API
Implementation

Individual game servers

Master server catalog

HttpClientFactory

Timeout policy
Server Error policy

Typed client

Refit

Automatic proxy
generated based
on C# interface
definition

https://api.steampowered.com

tcp://41.189.244.100:27015, …

Documentation
Describe your Web API

Specification of REST services

Previously known as Swagger

Service contract
Controller based

grouping of

operations

Message contract
Individual API actions

Data contract
Object graphs

.NET Core compatible

• Swashbuckle

• NSwag

• QSwag

Tooling to implement OpenAPI

Swagger Editor
Visual editor for creating

Swagger files

Swagger UI
Help pages based

on API surface and

Swagger document

Libraries
Generate OpenAPI

documentation,

client libraries, server stubs

Metadata: Annotations in your code

Actions

Data contract API Controller

Additional metadata

[HttpGet("~/api/gameserver/status")]
[ProducesResponseType(typeof(GameServerStatus[]), 200)]
[ProducesResponseType(400)]
[UsedImplicitly]

[Required]
[DefaultValue(false)]

[Produces("application/json")]
public class GameServerController

/// <response code="201">Returns the newly-created item</response>
/// <response code="400">If the item is null</response>

Demo: Documentation

Attributes and XML comments
NSwag generated OpenAPI specification
Multiple API versions

Consuming and testing Web APIs
Putting your Web API through its paces

Provide a client SDK

Generate from specs Refit Version 4.3.0

Microsoft.Rest.ClientRuntime

Version 2.1.0

Find out whether your Web API is still compatible

Use versioned client proxies

Special ASP.NET Core test server

var builder = new WebHostBuilder() …
// Create test stack
TestServer server = new TestServer(builder);
HttpClient client = server.CreateClient();
DotNextAPI proxy = new DotNextAPI(client);

Microsoft.AspNetCore.TestHost

Version 2.1.0

Demo: Testing clients

Generate client proxies with AutoRest
Service contract integration tests

Monitoring
Using telemetry, logging and instrumentation

Instrumentation not optional

Who wants to fly in the blind?

Individual applications Entire landscape

Application New Relic AppMetrics

Insights

Individual applications Entire landscape

Application New Relic AppMetrics

Insights

Specific endpoints to query
status of Web API

Middleware exposes health details

Combine with monitoring solution to alert ops

services.AddHealthChecks(checks => {
checks
.AddUrlCheck("https://api.steam.com") // Web based dependencies
.AddPrivateMemorySizeCheck(10000000); // Maximum private memory

});

Microsoft.AspNetCore.

Diagnostics.HealthChecks

Version 2.2.0 (preview 1)

App.Metrics.AspNetCore.Health

Version 2.0.0

Message templates

Log providers supporting semantic logging

// Placeholders in template become queryable custom data
logger.LogInformation("Searching with {SearchLimit} results.", limit);

Get your log levels right

Register logging providers (sinks)

Log Levels

5 – Critical

4 – Error

3 – Warning

2 – Information

1 – Debug

0 – Trace
loggerFactory.AddApplicationInsights(…);
loggerFactory.AddAzureWebAppDiagnostics(…)
loggerFactory.AddEventSourceLogger();

Tips and tweaks
High performance logging with LogMessage.Define
Use scopes for bundling logs messages
Apply filters per category prefix to reduce noise

Leverage existing resources

Appropriate filters
for each sink

Metrics and monitoring
e.g. Application Insights

AppMetrics

Log indexers
e.g. OMS Log Analytics,

Splunk, ELK stack

Application logs and traces
File or blob based logs

ETW, IntelliTrace,

Azure App Service logging

Your Web API
Instrumented with

log output

Demo: Monitoring

Logging
Monitoring and instrumentation
Health checks

37

Moving

into
production

Keep environments same as much as possible

Environment specific configurations:

Take a look at:

Integrate with an API gateway

Leverage features from gateway

Do not expose Kestrel to Internet

Your Web APIs
Self-hosted or IIS hosted

API gateway
Abstract and shields

internal details

Provides additional

features and patterns

Microsoft.AspNetCore.Proxy

Version 0.2.0

Production is everywhere

Automate everything

Fixing bugs

API v2.0*
Version with new

functionality

behind feature

toggle

Works well with CI/CD

Traffic management

Feature toggles API v2.0
Original version

Traffic manager
Directs between versions

FeatureToggle

Version 4.0.2

Demo: Feature toggles

Defining and applying features

Use HTTPS protocol

Enable HSTS for production

Don't expose errors in production

app.UseHttpsRedirection();

dotnet install tool dotnet-dev-
certs -g --version 2.1.0-
preview1-final

dotnet dev-certs https --trust

if (env.IsProduction())
{

app.UseHsts();
}

Getting access to the vault

Key and secret names

User secrets for local development

Microsoft.Azure.

Services.AppAuthentication

Version 4.0.2

Demo: Security features

HTTPS
Key Vault and user secrets

File, New Project…

OpenAPI

Swagger

Polly

Logging

Versioning

HTTPS & HSTS

Health diagnostics

App Insights

TestHost

Questions and Answers

Resources

https://github.com/Microsoft/api-guidelines

https://blogs.msdn.microsoft.com/webdev/2018/02/02/asp-net-core-2-1-roadmap/

http://visualstudio.com/
https://blogs.msdn.microsoft.com/webdev/2018/02/02/asp-net-core-2-1-roadmap/

Better handling failed model validation

Follows RFC408 specification

services.Configure<ApiBehaviorOptions>(options => {
options.InvalidModelStateResponseFactory = context => {

// …
return new BadRequestObjectResult(problemDetails) {

ContentTypes = {
"application/problem+json",
"application/problem+xml" }

};
};

});

