
1

Approaches for application
request throttling
Maarten Balliauw
@maartenballiauw

3

Who am I?

Maarten Balliauw

Antwerp, Belgium

Developer Advocate, JetBrains

Founder, MyGet

AZUG

Focus on web
ASP.NET MVC, Azure, SignalR, ...
Former MVP Azure & ASPInsider

Big passion: Azure

http://blog.maartenballiauw.be

@maartenballiauw

http://www.azug.be/

4

Agenda

Users and traffic patterns

Rate limiting and considerations

Which resources?

Which limits?

Who to limit? Who not to limit?

What when a limit is reached?

Where to limit?

5

Users...

6

MyGet

Hosted private package repository – www.myget.org

NuGet, NPM, Bower, Maven, VSIX, PHP Composer, Symbols, ...

HTTP-based

Web UI for managing things

API for various package managers
PUT/POST – Upload package

DELETE – Delete package via API

GET – Fetch metadata or binary

http://www.myget.org/

7

We’re using background workers

Example: package upload

PUT/POST binary and metadata to front-end

PackageAddedEvent on queue with many handlers handled on back-end
ProcessSymbols

UpdateLatestVersion

Indexing

...

8

What could possibly go wrong...

Too many uploads incoming!

Front-end
IIS server needs workers to read the incoming network stream

Application logic has to check credentials, subscription, quota

Back-end
Delays in queue processing (luckily workers can process at their own pace)

Too many uploads that are too slow!

Front-end
IIS server needs lots of workers to slowly copy from the network stream

Workers == threads == memory == synchronization == not a happy place

9

What could possibly go wrong...

Too many downloads!

Application logic has to check credentials, subscription, quota

404’s still need that application logic...

Package managers are crazy!

Total # requests Total # 404’s % 404’s

of packages in solution 200 800 600

on NuGet.org 190 200 10 5%

on MyGet feed 1 5 200 195 97,5%

on MyGet feed 2 4 200 196 98%

on company-internal
TeamCity

1 200 199 99,5%

12

Other examples

Web UI requests

Trying to register spam accounts

Trying to brute-force login/password reset

Trying to validate credit card numbers via a form on your site

Robots / Crawlers

Imagine a spider adding 20k items to a shopping cart

For us, usually fine (e.g. Googlebot by default up to 5 req/sec)

Limiting is easy with rel=“nofollow” and robots.txt crawl-delay

13

Recent, real-life example

14

Rate limiting!
(or “throttling”)

15

Rate limiting – what?

Limits # of requests in a given timeframe

Or limits bandwidth, or another resource – up to you

Helps eliminate:

Unexpected traffic patterns

Unwanted traffic patterns (e.g. script kiddie brute-force login)

Potentiallly damaging traffic patterns
(accidental and malicious)

16

Rate limit everything.
- Maarten Balliauw

17

Rate limiting – everything???

Everything that could slow down or break your application

Typically everything that depends on a scarce or external resource

CPU

Memory

Disk I/O

Database

External API

So yes, everything...

18

Let’s do this!

Database with table Events
UserIdentifier – who do we limit

ActionIdentifier – what do we limit

When – event timestamp so we can apply a query

Filter attribute

SELECT COUNT(*) FROM Events WHERE UserIdentifier = <user> AND
ActionIdentifier = <action> AND When >= NOW() – X

INSERT INTO Events (<user>, <action>, NOW())

DELETE FROM Events WHERE UserIdentifier = <user> AND
ActionIdentifier = <action> AND When < NOW() – X

19

Let’s do this!
demo

20

Rate measuring

21

That database was a bad idea!

Very flexible in defining various limits or doing combinations

Very flexible in changing limits, e.g. changing the time period

The database will suffer at scale...

Every request is at least 2 – 3 queries

Constant index churn

We need to manually run DELETE to remove old events

Database size!

22

That database was a bad idea!

We created a denial of service opportunity!

SELECT, INSERT, DELETE for every request

Consider a simpler technique to limit # of operations

Ideally just a simple counter

“Buckets”

24

Quantized buckets

Create “buckets” per <identifier> and <timespan>

Use incr <bucket> on Redis and get back the current count per <timespan>

public string GetBucketName(string operation, TimeSpan timespan)
{

var bucket = Math.Floor(
DateTime.UtcNow.Ticks / timespan.TotalMilliseconds / 10000);

return $"{operation}_{bucket}";
}

Console.WriteLine(GetBucketName("someaction", TimeSpan.FromMinutes(10)));
// someaction_106062120 <-- this will be the key for +/- 10 minutes

25

Quantized buckets

Super easy and super cheap (atomic write and read on Redis, auto-expire LRU)

Not accurate... (but that may be ok)

(n-1)x2 / 10 sec

Theoretically: max. 6 / 10 sec

26

Leaky bucket

“Imagine a bucket where water is
poured in at the top and leaks from the
bottom.

If the rate at which water is poured in
exceeds the rate at which it leaks, the
bucket overflows.“

Widely used in telecommunications to deal with
bandwidth/bursts.

27

Bucket algorithms
demo

28

Bucket approaches

QUANTIZED BUCKET

Create “buckets” per
<identifier>_<timespan>

No rolling window (new bucket
every <timespan>)

Simple key/value store is
sufficient, 1 atomic read+write

Old keys can auto-expire (unlike
our DB approach)

LEAKY BUCKET

Get <delta> tokens, with maximum
<count> per <timespan>

Rolling window, smooths traffic, allows
bursts when bucket has capacity

Need to store # tokens, last refill,
concurrency needs to be taken into account

Or use a FIFO queue of timestamps (works
great with Redis sorted set)

29

Redis sorted set
as a bucket
Demo

30

Cool! That’s it, right?

31

Deciding on limits

32

Things to decide on

Decide on the resources to limit

Decide on a sensible limit

Come up with an identifier to limit on

Decide on exceptions to the rule

33

Which resources to limit?

...

34

Rate limit everything.
- Maarten Balliauw

35

What are sensible limits?

Approach 1
1. Figure out current # of requests for a certain resource
2. Set limits
3. Get angry phone calls from customers

Approach 2
1. Figure out current # of requests for a certain resource
2. Set limits, but only log when a request would be limited
3. Analyze logs, set new limits, ...
4. Start rate limiting
5. Keep measuring

36

Will you allow bursts or not?

Laddering! Different buckets per identifier and resource...

10 requests per second can be 36000 requests per hour.

But 10 requests per second could also be 1000 requests per hour.

Bucket Operation A Operation B Operation C

Per second 10 10 100

Per minute 60 60 500

Per hour 3600 600 500

...

Steady flow of max.
10/sec

Steady flow of max.
10/sec, but only
600/hour max.

Bursts of up to 100/sec,
but only 500/hour max.

37

What will be the identifier?

Per IP address?

But what with NAT/proxy?

Per user?

But how do you limit anonymous users?

Per session?

But what when the user starts a new session for every request?

Or what if there is no such thing as a session?

Per browser?

But everyone uses Chrome!

38

What will be the identifier?

Probably a combination!

IP address (debatable)

+ User token (or “anonymous”)

+ Session token

+ Headers (user agent + accept-language + some cookie + ...)

39

Decide on exceptions

Do we rate limit all users? Do we have separate limits for certain users?

Dynamic limiting

Do we rate limit all IP addresses?

What about ourselves?

What about our monitoring tools?

What about web crawlers?

What about certain datacenter ranges? (https://github.com/client9/ipcat)

“IP addresses that end web consumers should not be using"

https://github.com/client9/ipcat

40

Responding to limits

41

What when the user hits the limit?

Do we just “black hole” and close the connection?

Do you tell the user?

API: status code 429 Too Many Requests

Web: error page stating rate limit exceeded / captcha (StackOverflow)

42

Try to always tell the user

Format? Depends on Accept header (text/html vs. application/json)

Tell them why they were throttled

Can be a simple link to API documentation

Tell them when to retry (e.g. GitHub does this even before rate limiting)

Status: 200 OK

X-RateLimit-Limit: 5000

X-RateLimit-Remaining: 4999

X-RateLimit-Reset: 1372700873

https://developer.github.com/v3/rate_imit/

43

Where do we limit?

44

Rate limiting – where?

MvcThrottle
Runs as action filter

Requests per timespan

Per action, user, IP, ... (so knows about actions)

Owin.Limits
Runs as OWIN middleware

Bandwidth, concurrent requests, ...

No knowledge about application specifics

Many, many others

https://www.nuget.org/packages/MvcThrottle
https://www.nuget.org/packages/Owin.Limits
https://libraries.io/search?keywords=throttling&languages=C

45

MvcThrottle
Demo

46

How far do we allow traffic
before saying no?

KNOWLEDGE ABOUT THE OPERATION

RESOURCES SPENT

47

How far do we allow traffic
before saying no?

KNOWLEDGE ABOUT THE OPERATION

RESOURCES SPENT

48

What options are there?

In our application

ActionFilter / Middleware / HttpModule / ...

Easy to add custom logic, based on request details

On the server

Outside of our server

Outside of our datacenter

49

What options are there?

In our application

On the server

IIS has dynamic IP restrictions, bit rate throttling, <limits />

Kestrel minimum speed throttle

Found these less flexible in terms of configuraton...
E.g. IIS dynamic IP restrictions returns 403 Forbidden, wth!

Not a big fan, as these are usually HttpModules anyway (and thus hit our app)

Outside of our server

Outside of our datacenter

https://www.iis.net/downloads/microsoft/dynamic-ip-restrictions
https://www.iis.net/downloads/microsoft/bit-rate-throttling
https://docs.microsoft.com/en-us/iis/configuration/system.applicationhost/sites/site/limits
https://docs.microsoft.com/en-us/aspnet/core/aspnetcore-2.0#minimum-request-body-data-rate

50

What options are there?

In our application

On the server

Outside of our server

Reverse proxy (IIS Application Request Routing, NGinx, HAProxy, Squid, ...)

Traffic does not even hit our application server, yay!

Outside of our datacenter

51

Rate limiting with NGinx
Demo

52

What options are there?

In our application

On the server

Outside of our server

Outside of our datacenter

Azure API management, CloudFlare

Filters traffic very early in the request, yay!

Often also handle DDoS attacks

Often more expensive

54

Conclusion

55

Conclusion

Users are crazy! (typically unintended)

We need rate limiting

Decide on the resources to limit (tip: everything)

Decide on a sensible limit (tip: measure)

Come up with an identifier to limit on

Decide on exceptions

What when the user reaches a limit?

Decide where in the request/response flow to limit

56

Thank you!
http://blog.maartenballiauw.be

@maartenballiauw

