S.O.L.L.D Principles

Chris Klug | Dev/Architect @ Active Solution | @zerokoll

£
(O
O
C
=

The S.O.L.ID
Principles

How many of you...

..have heard about S.O.L.[.D?

How many of you...

..can name all 5 principles?

How many of you...

..can explain Liskov's
Substitution Principle?

O

OCP

Open/Closed
Principle

N

Interface
Segregation
Principle

Single Responsioility
Principle

"A class should have only one
reason to change”

"There is always only one reason to
change...changing requirements”

-Brilliant developer no. 1

There can be only one
requirement that, when
changed, will cause a
class to change...

What about things like
repositories for example?

And the benefits?

Open/Closed Principle

"Software entities should be
open for extension, but closed
for modification”

"So | should write coae that can be
made better without changing it?
Are you on drugs?"

-Brilliant developer no. 2

Once it's done, it's done!

Mevyer vs. Polymorphic

And the benefits?

| Iskov Substitution
Principle

"Let gq(x) be a property provable
about objects x of type T. Then
q(y) should be provable for
objects y of type S where S (S @
subtype of T"

"Ehh...wnhat did she say?!?”

- People attending Barbara Liskov’s keynote
entitled “Data abstraction and hierarchy”

A subclass should behave in
such a way that it will not
cause problems when used
instead of the superclass

"Rules

Il

Contravariance of method
arguments in sub class

Covariance of return types in
the sub class

NO new exception types
are allowed to be thrown,

MESS
O-C

orev

hey are sub classes
jously used ones

Preconditions cannot be
strengthened in a subtype

Postconditions cannot be
weakened in a subtype

The history constraint

What about abstract base
classes and interfaces?

And the benefits?

Interface Segregation
Principle

"Clients should not be forced to
depend upon interfaces that

Il

they don't use.

"Who cares if a client gets
a bit more than he needs?
It can just ignore it..."

- Made up person no 1

Breaking down interfaces in
smaller pieces make them easier
to implement, and offers more
control over who sees what

And the benefits?

Dependency Inversion
Principle

"A. Hign-level moaules should not
depend on low-level modules. Both
should depend on abstractions.

B. Abstractions should not depend

Uupon details. Details should depend
LUpon abstractions.”

'Ok, so everyone should depend on
apstractions. Is anyone actually going
to implement anything, or (s this whole
thing just going to be an abstraction?”

- Made up person no 2

By making sure classes
don't depend on specific
implementations, it
becomes easy to change
things around...

And the benefits?

Some considerations
® Over engineering and premature optimization

® Readability
® Debatability
® 50 vs. 230

BUt...

Single Responsioility
Principle

"Pointlessly Vague Principle”

- Dan north

"A class should have only one
reason to change”

“This principle is about people”

- Uncle Bob himself

IA'

COUu

O

iNg, and

M for high cohesi

refacto

N and low

f necessary”

-me

Open/Closed Principle

Coined in the 80s in a book
about EIFFEL, justifying the
design choices made in EIFFEL
by Meyer who aesigned EIFFEL

Changing a library by adding
fields or methods forced all
existing clients to update their
coge...

Also...if your code isn't
published somewnere like
NuGet or NPM, you can do
whatever you want...

| Iskov Substitution
Principle

..Is all about behavioral
subtyping, not syntactical
compatibility...

"Let gq(x) be a property provable
about objects x of type T. Then
q(y) should be provable for
objects y of type S where S (S @
subtype of T"

Just, don't break the contract”

-me

Interface Segregation
Principle

‘It you have done the S properly,
this is probably not required”

me

Dependency Inversion
Principle

's AWESOME!

's AWESOME! But...

Thank you!

Chris Klug | @zerokoll

