
Write your own
C# static code analysis tool

to drive business rules

Raffaele Rialdi
Senior Software Architect

Microsoft MVP

@raffaeler
https://github.com/raffaeler
http://iamraf.net

https://github.com/raffaeler
http://iamraf.net/

Who am I?

• Raffaele Rialdi, Senior Software Architect in Vevy Europe – Italy
@raffaeler also known as "Raf"

• Consultant in many industries
Manufacturing, racing, healthcare, financial, …

• Speaker and Trainer around the globe (development and security)
Italy, Romania, Bulgaria, Russia (CodeFest @ Novosibirsk), USA, …

• And proud member of the great Microsoft MVP family since 2003

CodeAnalysis

• Is the process of analyzing the source code without running code

• The Roslyn Compiler provides APIs to read and extract information:
• The Abstract Syntax Tree provides the lexical structure and the graph of
all the possible execution paths

• The Semantic Model enriches the AST by applying language rules and
providing a better understanding of the nodes (types, properties, methods, …)

Roslyn API

Parse
Syntax
Tree

Symbols
IL

Emitter (many) other services

We already use CodeAnalysis …

• During development in the IDE
• Intellisense, code completion and refactoring
• Microsoft and third parties Analyzers

• Suggest changes, reveal errors and fix the code
• Naming conventions, language features, …

• On the build servers
• Enforcing «StyleCop» or other similar tools

• Code-quality measurement
• Banned APIs
• Documentation correctness
• …

Leveraging CodeAnalysis to add our own
Business Rules
• An inspirational example from C# 8.0: Nullable Reference Types

• Code Analysis will trigger a message for null on reference types

• The compiler will ask the user to express the will to use a reference type with
or without nulls

• But reference types will not change
from a CLR perspective

• The feature is similar to detecting an uninitialized variable

• Why not using the Compiler to enforce our own rules?

string hello; // field in a class
// ...
var size = hello.Length; // warning!

The serialization example

• We want the entity Customer to be constructed with:

• But if the default constructor is private, Json.NET will complain
• The solution is defining a custom converter or the JsonConstructor attribute

• This translates in: additional code or undesired dependency

• What about leaving the default constructor public and firing a
warning or error when using the default constructor?

public Customer(int id, string name) { ... }

The interface versioning example

• A new SDK can send commands or publish events

• Another assembly defines ICommand and IEvent

• What about getting rid of the interfaces?
• object is not a good choice, BUT …

• we can use CodeAnalysis to enforce the types

public interface IBusManager
{

bool Publish(IEvent event);
bool Send(ICommand command);

}

public interface IBusManager
{

bool Publish(object event);
bool Send(object command);

}

SDK

Domain
Library

Common
Interfaces

What we did until now

• We let the IDE walk the graph
• As soon as the given IOperation is verified, our callback is invoked
• Analyzer class validate the code
• CodeFix class, if any, fix the bug

• BUT
• Analyzers cannot access the workspace or the entire solution
• Even if they are asynchronous, it can take time to make complex analysis

• Writing a custom tool
• Same APIs but stand-alone tool (can be used on build servers)

Reading the solution (.sln) with Roslyn

• A Console app referencing Microsoft.CodeAnalysis nuget packages
• Loading the solution using Microsoft.Build.Locator (by msbuild)

• Compiling the solution to ensure there are no errors (by Roslyn)

• Processing the syntax and semantic data (our tool)

• What we will see now:
• Extract all the members from all the types defined in the solution

• Walking the graph upwards and downwards

Walking the graph

var semanticModel = _context.GetSemanticModelFor(invocationExpressionSyntax);
var method = semanticModel.GetSymbolInfo(invocationExpressionSyntax).Symbol;

foreach (var declaringSyntax in method.DeclaringSyntaxReferences)
{

var declarationSyntax = (MethodDeclarationSyntax)declaringSyntax.GetSyntax();
StartInternal(declarationSyntax);

}

From Method Invocations to Member Definitions

var refs = SymbolFinder.FindCallersAsync(memberSymbol, _context.Solution).Result;
foreach (var referenced in refs)
{

foreach (var definition in referenced.CallingSymbol.DeclaringSyntaxReferences)
{

var callerDeclarationSyntax = definition.GetSyntax();
Visit((MemberDeclarationSyntax)callerDeclarationSyntax); // recurse

}
}

From Method Definitions to Member Callers

Declarations

Invocations

Caller

Security Check Example

• When compiling code on the fly (provided by user)
• Security checks are mandatory

• Load and compile the code, then walk the syntax nodes
• Visit all the invocations

• Accept only the ones that are whitelisted

private static IList<ISecurityRule> GetBlackWhitelist()
{

var list = new List<ISecurityRule>();
list.Add(new SecurityRuleByNamespace(true, "System"));
list.Add(new SecurityRuleByNamespace(true, "System.Collections"));
list.Add(new SecurityRuleByNamespace(true, "System.Collections.Generic"));
list.Add(new SecurityRuleByType(true, typeof(System.IO.DirectoryInfo)));
list.Add(new SecurityRuleByType(false, typeof(System.Activator)));
return list;

}

But what about business logic?

• Business logic is a set of rules imposing constraints, actions and data
transformation to govern the business behavior.

• Examples:
• Never apply twice a discount

• Agent rebates must always occur after the discount (if any)

• Can we use CodeAnalysis to enforce these validations?
(Of course Yes ☺)

What we have seen

1. Get all the solution declared methods

2. Walk the graph to the top declarations

3. Walk the graph down (all the paths) looking for method invocations
on any object implementing IBizRule

4. Validate all the possible sequences are correct

But there is a flaw! … a bug on the logic of the tool

• Rules validation only makes sense if applied on the same instance!

it

could

work!

Statically tracking objects identity

• Visit maintaining a stack of dictionary<varName, identity>
• When visiting the Assignment and Declaration nodes

• Add to the dictionary the new variable with its identity (new or copied from right identifier)

• When visiting an Invocation to a method
• Creates a new dictionary for in the stack and copy the variables passed as parameters

• Variables are renamed according to the parameter name of the declaration

• The demo ignore other important syntax nodes
• "out", "ref", constructors, properties, etc.

Order order = o;

p.ProcessOrder(order); public void ProcessOrder(Order o)

Runtime vs CodeAnalysis rule validations

• CodeAnalysis is broader then any runtime tests
• Analyze all the possible invocation paths (even the "impossible by logic" ones)

• CodeAnalysis is NOT a replacement for tests!
• May result in false positives
• Loops may result in multiple invocations
• The demo omits the analysis of properties, constructors and delegates

• CodeAnalysis cannot replace any validation
• Runtime environment is totally different!!!

There is more!

Documentation is an example
1. Walk the graph

2. Capture relevant info

3. Draw a dependency diagram

To sum up

• The static flow is different from execution flow
• It is the largest possible graph

• Pros
• Call graph / sequences

• Dependencies

• Whitelisting / Blacklisting method calls

• Cons
• It may result in false positives

• Object identities are difficult to track

• Operations requiring runtime execution cannot be evaluated

Questions @ booth #1

Thank you!

Demos at:
https://github.com/raffaeler/dotnext2018Piter

https://github.com/raffaeler/dotnext2018Piter

