
Игорь Луканин

Как выжить под нагрузкой:
отказоустойчивый сервер,
умный клиент

1



Igor Lukanin

Surviving overload:
fault-tolerant servers,
smart clients

2



Intro
Surviving overload
Fault-tolerant servers
Smart clients
Takeaways

3



Kontur

The largest .NET product company in Russia:

● 40+ products for 2 000 000 clients

● 1000+ engineers in 70 teams

kontur.ru
4

https://kontur.ru


Kontur

The largest .NET product company in Russia:

● 40+ products for 2 000 000 clients

● 1000+ engineers in 70 teams

● 5000+ microservice replicas under load

● 800+ analysed post-mortems over last two years

kontur.ru
5

https://kontur.ru


6



7



8



9



10



Intro
Surviving overload
Fault-tolerant servers
Smart clients
Takeaways

11



Server

An HTTP backend, which

● serves client requests

● responds with HTTP 200 status codes

● consumes resources: CPU, memory, I/O, etc.

12



13



14



Overload effects

Clients would experience:

● increased response latency

● HTTP 500 error codes

● timed-out connections

● rejected connections

● application crash

15



Resource utilization

High is good: there’s a bottleneck

Low is bad: review the code and environment

16



Resource underutilization

Check:

● resource contention — e.g., lock contention

17



Resource underutilization

Check:

● resource contention — e.g., lock contention

● shared objects — e.g., thread and connection pools

18



Resource underutilization

Check:

● resource contention — e.g., lock contention

● shared objects — e.g., thread and connection pools

● synchronous operations — e.g., network and disk I/O

19



Resource underutilization

Check:

● resource contention — e.g., lock contention

● shared objects — e.g., thread and connection pools

● synchronous operations — e.g., network and disk I/O

● runtime configuration — e.g., GC settings

20



21



Resource overutilization

Await for high CPU consumption:

● most tasks are CPU-bound*

● other resources can be over-provisioned*

● with GC, memory pressure → CPU consumption

* It depends.
22



Resource limit

CPU consumption is better than RPS.

Beware of:

● heterogeneous requests

23



Resource limit

CPU consumption is better than RPS.

Beware of:

● heterogeneous requests

● heterogeneous replicas

24



Resource limit

CPU consumption is better than RPS.

Beware of:

● heterogeneous requests

● heterogeneous replicas

● heterogeneous environments — e.g., staging

25



Resource limit

CPU consumption is better than RPS.

Beware of:

● heterogeneous requests

● heterogeneous replicas

● heterogeneous environments — e.g., staging

● co-hosted applications — e.g., other processes

26



Resource limit

CPU consumption is better than RPS.

Beware of:

● heterogeneous requests

● heterogeneous replicas

● heterogeneous environments — e.g., staging

● co-hosted applications — e.g., other processes

● unusual operation modes — e.g., startup, GC cleanup
27



Fault-tolerant server

An HTTP backend, which

● measures resource utilization

● serves degraded responses, if applicable

● reliably responds with HTTP 429 error codes

httpstatuses.com/429
28

https://httpstatuses.com/429


29



Intro
Surviving overload
Fault-tolerant servers
Smart clients
Takeaways

30



31



Smoothing the load 

Beware of uneven load.

Use a task queue.

32



33



Smoothing the load

Beware of uneven load.

Use a task queue, which is

● limited in capacity

Reject the remaining requests.
34



35



Smoothing the load

Beware of uneven load.

Use a task queue, which is

● limited in capacity

● limited in task TTL

Reject the remaining requests.
36



37



Smoothing the load

Beware of uneven load.

Use a task queue, which is

● limited in capacity

● limited in task TTL

● LIFO rather than FIFO

Reject the remaining requests.
38



Request criticality

Beware of different business scenarios.

Use request priorities:

● set by the impact on users

● use 2–4 levels — e.g., low, normal, critical

● apply quotas per level — e.g., drop low-level tasks

39



40



41



42



Load quotas

Beware of heterogeneous clients.

Use per-client quotas:

● identify clients by revocable API keys

● measure per-client load

● apply quotas per client — e.g., drop non-SLA tasks

43



Fault-tolerant server

Ready for:

● uneven load

● business scenarios

● heterogeneous clients

May still fail to survive overload.

44



Fault-tolerant cluster

Cluster of server replicas:

● provides more capacity than a single replica

● provides backup if a replica fails — for any reason

Use 3+ replicas in a cluster. If one replica fails,

there’s still more than 50 % of capacity

45



Intro
Surviving overload
Fault-tolerant servers
Smart clients
Takeaways

46



Load balancing

Distribute requests between replicas.

Use round-robin.

47



48



49



Load balancing

Distribute requests between replicas.

Use round-robin:

● simple — i.e., stateless

Distributes load unevenly.

50



51



52



Load balancing

Distribute requests between replicas.

Use round-robin:

● simple — i.e., stateless

● least-loaded — i.e., tracking active requests

Client has limited view of replica states.

Prone to traffic sinkholing.
53



54



55



Load balancing

Distribute requests between replicas.

Use round-robin:

● simple — i.e., stateless

● least-loaded — i.e., tracking active requests

● weighted — i.e., tracking real-time replica capacity

56



Request Submission

Choose a strategy for each request. Send to:

● a single replica

57



58



Request Submission

Choose a strategy for each request. Send to:

● a single replica

● multiple replicas, sequentially

59



60



Request Submission

Choose a strategy for each request. Send to:

● a single replica

● multiple replicas, sequentially

● multiple replicas, concurrently

61



62



Request Submission

Choose a strategy for each request. Send to:

● a single replica

● multiple replicas, sequentially

● multiple replicas, concurrently

● multiple replicas, concurrently and adaptively

63



Request Retrial

Choose a strategy for each failed request:

● set the limit — e.g, 1–3 attempts

● use linear or exponential backoff

● use jitter

64



Overloaded cluster

Request strategies and retrials:

● multiply load ×3* on an overloaded cluster

● multiply load ×3N on an overloaded N-tier system,

and lead to cascading failure

(10–20 % of overloaded replicas are okay.)

* Depends on concurrency level and retrial limit.
65



66



Load multiplication factor

Don’t retry requests automatically:

● on all replicas — e.g., use replica subsetting

● when server asked to — e.g., via an HTTP header

● when non-critical — e.g., a user can retry manually

67



Load multiplication factor

Propagate metadata through system tiers:

● request priorities

● request timeouts

68



Adaptive replica subsetting

Limit replicas available for retrial.

Track the factor K = sent requests / used replicas.

69



Adaptive replica subsetting

Limit replicas available for retrial.

Track the factor K = sent requests / used replicas:

● if K ~= 1, everything is okay

● if K > 1, some replicas are overloaded

● if K >= Kcritical, a client doesn’t retry requests

Compare 35 = 243 vs. 1.35 = 3.7*
* Threshold of 1.3 allows for 8 healthy and 2 overloaded replicas in a cluster.

70



Adaptive request throttling

Limit the probability of request submission.

Track the factor K = requests / accepts.

71



Adaptive request throttling

Limit the probability of request submission.

Track the factor K = requests / accepts.

Calculate request rejection probability:

● if K ~= 1, everything is okay

● if K > 1, some replicas are overloaded

● if K >= Kcritical, a client drops requests with Preject
72



Intro
Surviving overload
Fault-tolerant servers
Smart clients
Takeaways

73



Test your system

● Test a single server replica under load

● Test the cluster and its client

● Test unstable cluster configurations

● Test the system as a whole

Then make it survive the overload.

74



Read the SRE book

Chapters 19–22

on load balancing

and handling overload

landing.google.com/sre/books
75

https://landing.google.com/sre/books/


76



Have a look at Vostok

Vostok is a toolbox for production-ready

and fault-tolerant .NET microservices.

Have a look at:

● sys.metrics

● clusterclient

● throttling

github.com/vostok
77

https://github.com/vostok


Have a look at Vostok

“Collecting telemetry from .NET microservices” —

Alexey Kirpichnikov @ CodeFest 2017

“Microservice interaction with HTTP/2” —

Evgeny Zhirov @ DotNext 2018

78

https://www.youtube.com/watch?v=fnVkUQ_aEEg
https://youtu.be/QgK6-8zCnQM


79



Have a look at Moira

Moira is a real time alerting system

based on Graphite data.

Collect metrics and respond to alerts.

“What we learned making Moira” —

Alexey Kirpichnikov @ HighLoad++ 2018

github.com/moira-alert
80

https://youtu.be/hkcOmILykas?t=18234
https://github.com/moira-alert


● tech.kontur.ru — more open source 

● t.me/KonturTech — news and events

● t.me/igorlukanin — ping me!

Thank you!

81

https://tech.kontur.ru
https://t.me/KonturTech
https://t.me/igorlukanin

