
API Gateway made 
easy with Ocelot and 
Containers
Roberto Freato – Consultant / Author / Solution Architect



Building APIs

 «we already have an API, just expose it to the public»
 no, protect it behind a revese proxy to plug additional logic before 

clients reach it

 «we are developing a new API, think about it as it would be the 
most complete and broader one»

 no, with the assumption it would change frequently in the (even 
short-term) future

 «we split our platform into several micro-services/apis, but with 
common libraries and common design patterns»

 no, each service will follow its own guidelines to be completely 
independent

 «in case we need a new API, we will upgrade the existing clients to 
use the new version»

 no, we will create a new version keeping the client un-aware of it



Common 
Features

 Reverse proxy – Routing

 Logging, Monitoring and Analytics

 Errors management

 Documentation and API Portal

 Traffic Management

 Authentication

 UI Composition / Aggregation

 Transformation

 API Lifecycle / environments

 Caching and acceleration



API Gateways

 Commercial products:
 Apigee (Google)

 Layer 7 (CA Api Gateway)

 WSO2

 MuleSoft

 AWS API Gateway

 Azure API Management

 Axway

 Open source alternatives



Ocelot
.NET Core API Gateway

https://github.com/ThreeMammals/Ocelot

https://github.com/ThreeMammals/Ocelot


Getting started
Scenario presentation and basic route-only implementation



Learned

 Ocelot delivered as NuGet package

 Needs:
 «ocelot.json» configuration file

 Basic declarations

 Basic route

 Redirection issues



Proxying APIs
Proxying Customers and Sales api with version-aware paths



Learned
 Versioning with url prefix (alternatives?)

 SSL termination is good

 Routes can be overlapping (with priorities)



ViewModel 
composition
Aggregate requests and project the client-optimized model



Learned
 Define dedicated paths for aggregation

 Use custom aggregation functions

 Minor fixes with headers transformation



Throttling
Traffic limiting under certain conditions



Learned
 Very basic throttling features

 Client-dependent feature (header)

 Relate to Authorization header (with limitations)



Extension
Extend Ocelot from outside (without pull requests)



Learned
 Simple DI-based configuration extension

 Makes the API Gateway stateless

 Not so easy to extend/modify the pipeline



Containerization
Azure App Service for Containers - PaaS



Staging/Production
Using the Gateway to discriminate environments



Learned

 Integrated with fully-managed Container Registry

 Shared, managed machine pool 

 Single or multiple container support (with limitations)

 Integration of App Service with custom DNS 

 Ocelot host-header-based routing



API Gateway made 
easy with Ocelot and 
Containers
Roberto Freato – Consultant / Author / Solution Architect


