
1

NuGet beyond Hello World
Maarten Balliauw
@maartenballiauw



3

Who am I?

Maarten Balliauw

Antwerp, Belgium

Developer Advocate, JetBrains

Founder, MyGet

AZUG

Focus on web
ASP.NET MVC, Azure, SignalR, ...
Former MVP Azure & ASPInsider

Big passion: Azure

http://blog.maartenballiauw.be

@maartenballiauw

http://www.azug.be/


4

Agenda

Introduction

Maturing NuGet (conventions)

Beyond package dependencies

Extending tools

Using client SDK

Server API



5

Introduction



6

NuGet?

Project started in 2011 to make dependency management easier & better

Several things

Repositories
Public repository at www.nuget.org

Private repositories everywhere (www.myget.org ☺)

Clients & tools
NuGet.exe, Visual Studio, Rider, Xamarin Studio, Paket, …

dotnet CLI tools

Conventions

http://www.nuget.org/
http://www.myget.org/


7

NuGet evolution

Others have been doing package management for decades

Perl (CPAN.org)

Linux (RPM/YUM/APT-GET/...)

PHP (PEAR, Composer)

Node (npm)

Ruby (Gems)

We can learn a great deal from these! (and we did, with .NET Core)



8

Learnings

Every project is a package

Clearly identifyable

Proper Semantic Versioning

Tooling makes it easy to package

Every project becomes discoverable

Nice description, release notes, ...

Add it to a private feed so developers can find it

Dependencies stay out of source control

Dependencies are versioned



9

Maturing NuGet



10

Package producers are 
responsible for consumers.
- Maarten Balliauw



11

It’s easy to break the world…

NPM and left-pad http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/

Package removed…

Switch to .NET 4.6.1, can’t start application https://github.com/dotnet/announcements/issues/6

Because of change in behaviour (new Exception type thrown)

Public method signature changed

Conventions!

http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/
https://github.com/dotnet/announcements/issues/6


12

Don’t break the world!

Never delete a package (unless it’s unused)
https://docs.microsoft.com/en-us/nuget/policies/deleting-packages

Versioning = specify intent

Detect public API changes

Use semantic versioning

Targeting = specify what is supported

Metadata and symbols = troubleshooting help

https://docs.microsoft.com/en-us/nuget/policies/deleting-packages


13

Versioning



14

Use semantic versioning to state intent

<major>.<minor>.<patch>-<prerelease>+<metadata>

Increment major on breaking change

Increment minor on new feature

Increment patch for bugfixes

Prerelease means it’s not stable yet

Metadata can annotate build info (not supported on NuGet.org yet)

http://semver.org/

http://semver.org/


15

State intent & acceptable changes

Semantic versioning states intent
Did we break something?
Do you need this update? (feature/bugfix)
Are we on scary territory? (prerelease)

Helps consumers specify dependency ranges
1.0 = 1.0 ≤ x
(,1.0] = x ≤ 1.0
(,1.0) = x < 1.0
[1.0] = x == 1.0
(1.0,) = 1.0 < x
(1.0,2.0) = 1.0 < x < 2.0
[1.0,2.0] = 1.0 ≤ x ≤ 2.0
1.0-* = give me all prereleases in 1.0 ≤ x ≤ 1.1



16

Use the tools

API Comparer

Compare public API surface and detect breaking API’s

https://github.com/ParticularLabs/APIComparer

Example: http://apicomparer.particular.net/compare/rabbitmq.client/3.4.3...3.5.0

GitVersion

Auto-generate package version number based on Git info

https://github.com/GitTools/GitVersion

https://github.com/ParticularLabs/APIComparer
http://apicomparer.particular.net/compare/rabbitmq.client/3.4.3...3.5.0
https://github.com/GitTools/GitVersion


17

Targeting



18

Frameworks and versions

.NET has so many frameworks!

.NET framework, .NET Core, Xamarin, Tizen, Micro Framework

Windows Phone 

Nice list in NuGet repo: FrameworkConstants.cs

Our NuGet package may not (want to) support them all

Be specific about targeting – state platform support

Target one or multiple

https://github.com/NuGet/NuGet.Client/blob/dev/src/NuGet.Core/NuGet.Frameworks/FrameworkConstants.cs#L76


19

Multi-targeting
demo



20

.NET Standard

Multi-targeting can be exhausting (add and test all TFM configurations)

Just select one TFM: a .NET Standard version

.NET Standard to the rescue! https://github.com/dotnet/standard

Defines API’s a platform should implement as a minimum

Specification describing supported features (not platforms)

Higher version: more fx features exposed to your library

Lower version: less features but more platforms supported

https://docs.microsoft.com/en-us/dotnet/articles/standard/library

https://github.com/dotnet/standard
https://docs.microsoft.com/en-us/dotnet/articles/standard/library


21

Metadata & symbols



22

Metadata

Make it easy for people to find:

Description

Release notes

Project site

License info

...

(also shown in IDE)



23

Symbols

Help people troubleshoot!

Their own code by understanding yours

Your code (better issues logged / PR)

Publish package symbols

Symbols packages – IncludeSource & IncludeSymbols
Needs symbol server like SymbolSource.org / MyGet.org / …

Portable PDB (symbols + sources embedded) – tools like GitLink / SourceLink
Just works™ - at least in theory

https://github.com/ctaggart/SourceLink


24

Metadata and symbols
demo



25

Beyond project 
dependencies



26

NuGet

More than just a package manager

Extensibility (dotnet CLI)

NuGet is… a protocol!

API for transferring metadata and binaries
Server API

Client-side libraries

Versioning system built-in



27

Extending dotnet CLI



28

Extending dotnet CLI

Why?

Examples:
dotnet nuget – the NuGet command line, integrated

dotnet ef – Entity Framework command line tools

Create tools your team/customers can use
dotnet protobuf – Companion tool for creating protobuf models

After this talk, go and build for me ☺
dotnet outdated – Scan and show outdated package references

dotnet mirror – Mirror referenced packages to a local folder

dotnet nuke – Clear all NuGet cache locations



29

Extending dotnet CLI

How?

Create a console application

Name it dotnet-<something>

Package it with <PackageType>DotnetCliTool</PackageType>

Install as a CLI tool (or in %PATH%)

https://github.com/dotnet/docs/blob/master/docs/core/tools/extensibility.md

https://github.com/dotnet/docs/blob/master/docs/core/tools/extensibility.md


30

Extending dotnet CLI
demo

https://github.com/maartenba/dotnetcli-init



31

Client SDK



32

Consuming NuGet programatically

Why?

Find package metadata

Download and extract package

Custom build task, custom tool used in CI, …

Distribute applications / plugins as NuGet packages
Transport and versioning come free!

NuGet Package Explorer, R# extension manager, Chocolatey, Octopus Deploy, Seq, CMS like 
EPIserver, SiteCore, Orchard, …

https://chocolatey.org/docs/getting-started#what-are-chocolatey-packages
https://octopus.com/docs/packaging-applications/supported-packages
http://docs.getseq.net/docs/installing-seq-apps


33

Consuming NuGet programatically

How?

Old world: NuGet.Core

New world: NuGet v3 client
Series of packages, NuGet.PackageManagement being the main package

Open-source on GitHub

Dave Glick has a good series (part 1, part 2, part 3)

https://www.nuget.org/packages/NuGet.Core/
https://www.nuget.org/packages/NuGet.PackageManagement
https://github.com/NuGet/NuGet.Client
https://daveaglick.com/posts/exploring-the-nuget-v3-libraries-part-1
https://daveaglick.com/posts/exploring-the-nuget-v3-libraries-part-2
https://daveaglick.com/posts/exploring-the-nuget-v3-libraries-part-3


34

Packages to install

NuGet.PackageManagement
Overall management of packages, sources, …

NuGet.Protocol.Core.v2
V2 protocol client (OData)

NuGet.Protocol.Core.v3
V3 protocol client (JSON and randomness)

NuGet.ProjectManagement
Project system (inside IDE and inside file system)

NuGet.Packaging
Read and write .nuspec and .nupkg

NuGet.Versioning
Implements working with versions and ranges

NuGet.Commands (optional)
Command-line commens (spec, pack, publish, ...) implemented as static classes mostly



35

NuGet, via C#
demo



36

A few things to know…

All operations performed via resources (e.g. PackageSearchResource, 
ListCommandResource, …)

All operations performed against a project

Folder (note: only supports installing as there is no tracking)

PackagesConfig

MSBuild

Your own implementation

Package manager orchestrates all operations

Package repository holds packages (can be remote or local)



37

SearchPortal
demo



38

Server API



39

NuGet talks to a repository

Can be on disk/network share

Or remote over HTTP(S)

2* API’s

V2 – OData based (used by pretty much all NuGet servers out there)

V3 – JSON based (available on NuGet.org and MyGet.org)

* This is a lie…



40

V2 Protocol

OData, started as “OData-to-LINQ-to-Entities” (V1 protocol)

Optimizations added to reduce # of random DB queries (VS2013+ & NuGet 2.x)

Search – Package manager list/search

FindPackagesById – Package restore (Does it exist? Where to download?)

GetUpdates – Package manager updates

https://www.nuget.org/api/v2 (code in https://github.com/NuGet/NuGetGallery)

https://www.nuget.org/api/v2
https://github.com/NuGet/NuGetGallery


41

V3 Protocol

JSON based

More of a “resource provider” (see client SDK) of various endpoints per purpose

Catalog (NuGet.org only) – append-only event log

Registrations – latest incarnation of a package

Flat container - .NET Core package restore (and VS autocompletion)

Report abuse URL template

Statistics

…

https://api.nuget.org/v3/index.json (code in https://github.com/NuGet/NuGet.Services.Metadata) 

https://api.nuget.org/v3/index.json
https://github.com/NuGet/NuGet.Services.Metadata


42

V3 Protocol is… interesting

Service index points to resources
@id, @type (versioned), comment

Client should load-balance on @type occurrences
NuGet.org does this to perform search etc.: RetryingHttpClientWrapper
(also has a request queue)

Many views on the same data

Specific to a scenario in the client
Some compute based, some storage based
Search, autocomplete -> compute
Registrations, flatcontainer -> storage
Catalog -> NuGet.org internal use

https://github.com/NuGet/NuGetGallery/blob/27869a9f2bd453d87c061b2ad491314d9f273eea/src/NuGet.Services.Search.Client/Client/RetryingHttpClientWrapper.cs#L107


43

Server API
demo



44

How does it fit together?

User uploads to NuGet.org

Data added to database

Data added to catalog (append-only data stream)

Various jobs run over catalog using a cursor
Registrations (last state of a package/version), reference catalog entry

Flatcontainer (fast restores)

Search index (search, autocomplete, NuGet Gallery search)



45

How does it fit together?

User uploads to NuGet.org

Data added to database

Data added to catalog (append-only data stream)

Various jobs run over catalog using a cursor
Registrations (last state of a package/version), reference catalog entry

Flatcontainer (fast restores)

Search index (search, autocomplete, NuGet Gallery search)



46

NuGet.org catalog
demo



47

Catalog data

Updates (add/update)

Deletes

Chronological
Can continue where left off
Can restore NuGet.org to a given point in time

Why use it?
Mirror locally
Send notifications when certain packages changed
Build own index, build own datastore based on data
E.g. https://packagesearch.azurewebsites.net/
…

https://packagesearch.azurewebsites.net/


48

Other extensibility 
points



49

Other extensibility points

NuGet Credential Provider

https://docs.microsoft.com/en-us/nuget/api/nuget-exe-credential-providers

NuGet package download

https://github.com/NuGet/Home/wiki/NuGet-Package-Download-Plugin

https://docs.microsoft.com/en-us/nuget/api/nuget-exe-credential-providers
https://github.com/NuGet/Home/wiki/NuGet-Package-Download-Plugin


50

Conclusion



51

Conclusion

Go out and create packages!

Follow conventions, help your consumers, help mature NuGet

Versioning

Targeting

Symbols

Consider NuGet not only as package dependencies but as a protocol

Tooling extensibility

Protocol for metadata and versioning



52

Thank you!

Need training, coaching, mentoring, performance analysis?
Hire me! https://blog.maartenballiauw.be/hire-me.html 

http://blog.maartenballiauw.be

@maartenballiauw


