
Building an educational game 
with .NET Core and Unity

Johnny Hooyberghs

@djohnnieke johnny.hooyberghs@involved-it.be1



Who am I

• Johnny Hooyberghs

• @djohnnieke

• github.com/Djohnnie

2

www.involved-it.be

http://www.involved-it.be/


What and Why

3



Why did I make this game?

• Gamification to teach basic C# knowledge in school

• Learn the Unity Game Engine

• Play with the Microsoft Compiler Platform (Roslyn)

• Play with .NET Core 3

• Play with Azure DevOps Pipelines, Docker and Kubernetes

• Use Test Driven Development

4



What is CSharpWars?

• Robots on arena (15x15)

• Robots take turns (every two seconds, simultaniously)

• Robots can move around the grid

• Robots can attack other robots

• Robots can see part of the arena

• A turn is scripted using C# and all scripts will run every two seconds

• A robot has a limited amount of health and stamina

5



Let’s play!

• Register as a player

• Select a pre-defined script

• Create your robot

• Watch him struggle!

https://api.djohnnie.be:8802/

6

https://api.djohnnie.be:8802/


Architecture

7



What about the architecture?

• The Unity game engine for the arena frontend

• I wanted a full 3D experience

• I don’t need a full game experience, just a visualization of the battle

• I can fetch the game state every two seconds from an HTTP backend

• I can learn Unity!

8



What about the architecture?

• ASP.NET Core for the backend

• An ASP.NET Core WebApi HTTP API for Unity requests

• An ASP.NET Core MVC for the demo website

• An ASP.NET Core gRPC service for the validation service

• I can learn gRPC!

9



What about the architecture?

• .NET Core Worker Service for the processing middleware

• Worker service template for Windows Services, Linux Daemons
or docker containers

• The Microsoft Compiler platform for C# compilation and
execution at run-time

• I can learn Roslyn!

10



Frontend
HTTP API

WebApp

Validator

Database

Processor

11



Let’s see some code!

12



What did I learn?

13



Unity!

14



15



16



17



18



What did I learn in Unity?

• Unity = C#

• I can use my current knowledge

• I can use external assemblies and libraries (NuGet, …) but no direct support 
for NuGet

• Unity uses the Mono runtime, so no .NET Core

• Unity also provides the option to compile to native using IL2CPP

19



What did I learn in Unity?

• Modular workflow based on GameObjects

• I had to get used to the workflow, but I am getting used to it

• Lot’s of flexibility makes it easy and hard at the same time

• Unity has a wide range of support for 3d models (meshes), even Sketchup

• There is community support for dependency injection (ADIC, Extenject, …)

20



What did I learn in Unity?

• Platform independent

• Support for a number of platforms thanks to the Mono runtime

• Support for even more platforms thanks to IL2CPP

21



What did I learn in .NET Core?

• Using .NET Core with Docker containers is extremely easy

• .NET Core is more performant than .NET Framework

22



What did I learn in gRPC?

• For service to service communication, it is perfect and easy to use
with support for async streams

• Better performance thanks to smaller payload size (binary)

• Only experimental support for Unity

23



What did I learn in Roslyn?

• Using the Microsoft Compiler Platform is easier than expected

• Keeping memory usage low is a bit of a search

• Infinite loops are not easy to detect

• Running scripts cannot be cancelled
• Use the validator service to check the scripts without damaging the

processing middleware

• Hosting the validator and middleware processor inside a docker container 
makes it easy to quickly restart

24



Thank You
johnny.hooyberghs@involved-it.be

@djohnnieke

https://github.com/Djohnnie/CSharpWars


