
How random is Random?
Pitfalls of Random in .NET 6

Stan Drapkin

October 2021

[dotnext2021] © Stan Drapkin 2

Who am I?

Stan Drapkin – sdrapkin@sdprime.com

● Senior Director - Cloud Technologist - EPAM Systems Inc.
● 20 years of .NET experience
● Specialize in .NET, SQL Server, Security, Cryptography, Cloud
● OSS library author – github.com/sdrapkin
● Book author

○ Security Driven .NET (2014)
○ Application Security in .NET, Succinctly (2017)

● Conference speaker

Opinions expressed are my own

[dotnext2021] © Stan Drapkin 3

Random History 2001~2021

● .NET is 20 years old, and so is System.Random (SR)
● SR is a core feature of .NET, like all other members of “System” namespace

[dotnext2021] © Stan Drapkin 4

Random History 2001~2021

● .NET is 20 years old, and so is System.Random (SR)
● SR is a core feature of .NET, like all other members of “System” namespace
● SR has 2 constructors:

○ Random() => non-reproducible output (“random” seed)
○ Random(int Seed) => reproducible output (stable output per seed)

[dotnext2021] © Stan Drapkin 5

Random History 2001~2021

● .NET is 20 years old, and so is System.Random (SR)
● SR is a core feature of .NET, like all other members of “System” namespace
● SR has 2 constructors:

○ Random() => non-reproducible output (“random” seed)
○ Random(int Seed) => reproducible output (stable output per seed)

● SR docs have added the following, many years later:

“Random objects in processes running under different versions of the .NET Framework may
return different series of random numbers even if they're instantiated with identical seed values.”

[dotnext2021] © Stan Drapkin 6

Random History 2001~2021

● .NET is 20 years old, and so is System.Random (SR)
● SR is a core feature of .NET, like all other members of “System” namespace
● SR has 2 constructors:

○ Random() => non-reproducible output (“random” seed)
○ Random(int Seed) => reproducible output (stable output per seed)

● SR docs have added the following, many years later:

“Random objects in processes running under different versions of the .NET Framework may
return different series of random numbers even if they're instantiated with identical seed values.”

● A lot of .NET code already relied on reproducible seeded SR values
● It was often bad code, but users don’t like to be told they are the problem

[dotnext2021] © Stan Drapkin 7

Random History 2001~2021

● SR actually broke seeded stability from .NET 1.1 to .NET 3.5+
● Folks complained…

[dotnext2021] © Stan Drapkin 8

Random History 2001~2021

● SR actually broke seeded stability from .NET 1.1 to .NET 3.5+
● Folks complained…
● Then got used to the new seeded output… (no one RTFM, of course)
● Then wrote 100x more code relying on and cementing the .NET 3.5 algorithm

[dotnext2021] © Stan Drapkin 9

Random History 2001~2021

● SR actually broke seeded stability from .NET 1.1 to .NET 3.5+
● Folks complained…
● Then got used to the new seeded output… (no one RTFM, of course)
● Then wrote 100x more code relying on and cementing the .NET 3.5 algorithm

This is where we are today. 2 constructors split SR into 2 worlds:
1. Random() => MS is free to create/improve “randomness” however it wants
2. Random(int Seed) => FOREVER stuck with 20-year-old implementation

[dotnext2021] © Stan Drapkin 10

Random History 2001~2021

● SR actually broke seeded stability from .NET 1.1 to .NET 3.5+
● Folks complained…
● Then got used to the new seeded output… (no one RTFM, of course)
● Then wrote 100x more code relying on and cementing the .NET 3.5 algorithm

This is where we are today. 2 constructors split SR into 2 worlds:
1. Random() => MS is free to create/improve “randomness” however it wants
2. Random(int Seed) => FOREVER stuck with 20-year-old implementation

● Stability is a feature: MS chose seeded stability over correctness
● But what’s wrong with existing System.Random? DEMO TIME

new System.Random() for .NET 6 ?

we need an algorithm…

[dotnext2021] © Stan Drapkin 12

Obligatory – xkcd random

[dotnext2021] © Stan Drapkin 13

Obligatory – xkcd random

LET’S SCIENCE THE ____ OUT OF THIS…

[dotnext2021] © Stan Drapkin 14

Obligatory – xkcd random

Linear Congruential Generator (LCG):

Xi+1 = (A * Xi + C) mod M i = 0, 1, 2, …

LET’S SCIENCE THE ____ OUT OF THIS…

[dotnext2021] © Stan Drapkin 15

Obligatory – xkcd random

Linear Congruential Generator (LCG):

Xi+1 = (A * Xi + C) mod M i = 0, 1, 2, …
Xi+1 = (1 * Xi + 0) mod 5 X0 = 4

M = modulus = 5 (M > 0)
C = increment = 0 (C < M)
A = multiplier = 1 (A < M)
X0 = first value = 4

LET’S SCIENCE THE ____ OUT OF THIS…

[dotnext2021] © Stan Drapkin 16

Obligatory – xkcd random

● Super fast! (benchmark crashed dividing by 0)
● Vectorization friendly (SSE/AVX/SIMD)
● Tiny 32-bit global state, no per-instance state
● Thread-safe!
● Equidistributed in every dimension, no gaps
● Covers its entire output range
● No run-ups or run-downs
● All output permutations are equally likely
● Precise mathematically-proven period
● Nothing-up-my-sleeve design
● Well implemented & documented
● Consistent on all .NET runtimes and CPU arch.
● Public domain, patent-free (I hope)

What’s not to like? It’s very fast, might be good enough...

Linear Congruential Generator (LCG):

Xi+1 = (A * Xi + C) mod M i = 0, 1, 2, …
Xi+1 = (1 * Xi + 0) mod 5 X0 = 4

M = modulus = 5 (M > 0)
C = increment = 0 (C < M)
A = multiplier = 1 (A < M)
X0 = first value = 4

Random() in .NET 6

[dotnext2021] © Stan Drapkin 18

.NET 6 changes to Random

PR #47085, PR #50297 from Stephen Toub, one of key .NET team engineers:

● Changes the algorithm used by new Random() to be smaller and faster
● Adds Random.Shared thread-safe instance that can be used from any thread

https://github.com/dotnet/runtime/pull/47085
https://github.com/dotnet/runtime/pull/50297

[dotnext2021] © Stan Drapkin 19

.NET 6 changes to Random

PR #47085, PR #50297 from Stephen Toub, one of key .NET team engineers:

● Changes the algorithm used by new Random() to be smaller and faster
● Adds Random.Shared thread-safe instance that can be used from any thread
● Adds:

○ long NextInt64() // [0 … long.MaxValue)
○ long NextInt64(max) // [0 … max)
○ long NextInt64(min, max) // [min … max)
○ float NextSingle() // [0.0f … 1.0f)

https://github.com/dotnet/runtime/pull/47085
https://github.com/dotnet/runtime/pull/50297

[dotnext2021] © Stan Drapkin 20

.NET 6 blog: changes to Random

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-6/

Stephen Toub, Partner Software Engineer on .NET team:

“...over the years we’ve been hesitant to change Random‘s implementation for fear
of changing the numerical sequence yielded if someone provided a fixed seed to
Random‘s constructor (which is common); now in .NET 6, just as for derived types,
we fall back to the old implementation if a seed is supplied, otherwise preferring
the new algorithm. This sets us up for the future where we can freely change and
evolve the algorithm used by new Random() as better approaches appear.”

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-6/

[dotnext2021] © Stan Drapkin 21

.NET 6 blog: changes to Random

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-6/

Stephen Toub, Partner Software Engineer on .NET team:

“Until .NET 6, Random employed the same algorithm it had been using for the last
2 decades, a variant of Knuth’s alg that dates back to the 1980s. That served .NET
well, but it was time for an upgrade. A myriad number of pseudo-random
algorithms have emerged, and for .NET 6 we picked the xoshiro** family, using
xoshiro128** on 32-bit and xoshiro256** on 64-bit. These algorithms were
introduced by Blackman and Vigna in 2018, are very fast, and yield good enough
pseudo-randomness for Random‘s needs.
For cryptographically-secure rng, SSC.RNG should be used instead.”

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-6/

[dotnext2021] © Stan Drapkin 22

.NET 6 Github: changes to Random

Dan Moseley, Group Manager for .NET libraries team, on xoshiro256**:

“...it looks like we didn't really do a "survey" of the PRNG options…
Since we aren't implementing a seeded API here, which we can always change
later, perhaps that doesn't matter very much so long as we're reasonably confident
that it's not "worse" since folks seem to be mostly wanting more performance and
asking for more randomness.”

“xoshiro256** implementation is super simple so unless we discover a significant
flaw I think we should go ahead and use it and lock in the sweet perf gain. Then
we can always change later.”

[dotnext2021] © Stan Drapkin 23

What is xoshiroNNN** family of algorithms?

● NNN-bit state: ulong[] s; // 4 ulong values for 256bit; 4 uint values for 128bit

[dotnext2021] © Stan Drapkin 24

What is xoshiroNNN** family of algorithms?

● NNN-bit state: ulong[] s; // 4 ulong values for 256bit; 4 uint values for 128bit
● xoshiro = xo/shi/ro = XOR (^), SHIFT (<<), ROTATE

[dotnext2021] © Stan Drapkin 25

What is xoshiroNNN** family of algorithms?

● NNN-bit state: ulong[] s; // 4 ulong values for 256bit; 4 uint values for 128bit
● xoshiro = xo/shi/ro = XOR (^), SHIFT (<<), ROTATE
● ROTATE (left) is: ulong Rotl(ulong v, int c) => (v << c) | (v >> (64 – c));

[dotnext2021] © Stan Drapkin 26

What is xoshiroNNN** family of algorithms?

● NNN-bit state: ulong[] s; // 4 ulong values for 256bit; 4 uint values for 128bit
● xoshiro = xo/shi/ro = XOR (^), SHIFT (<<), ROTATE
● ROTATE (left) is: ulong Rotl(ulong v, int c) => (v << c) | (v >> (64 – c));
● xoshiro is made of 2 parts: a Linear Engine (LE), and a Scrambler (SC)

○ LE: cycles through internal state s
○ SC: modifies LE output before returning it (pure fn, does not alter state)

○ tries to make output less statistically biased

[dotnext2021] © Stan Drapkin 27

What is xoshiroNNN** family of algorithms?

● NNN-bit state: ulong[] s; // 4 ulong values for 256bit; 4 uint values for 128bit
● xoshiro = xo/shi/ro = XOR (^), SHIFT (<<), ROTATE
● ROTATE (left) is: ulong Rotl(ulong v, int c) => (v << c) | (v >> (64 – c));
● xoshiro is made of 2 parts: a Linear Engine (LE), and a Scrambler (SC)

○ LE: cycles through internal state s
○ SC: modifies LE output before returning it (pure fn, does not alter state)

○ tries to make output less statistically biased
● 3 xoshiro Scramblers are defined: +, ++, and **

○ ulong Scrambler_Plus(ulong[] s) => s[0] + s[3];
○ ulong Scrambler_PlusPlus(ulong[] s) => Rotl(s[0] + s[3], 7) + s[0];
○ ulong Scrambler_StarStar(ulong[] s) => Rotl(s[1] * 5, 7) * 9;

[dotnext2021] © Stan Drapkin 28

What is xoshiro Linear Engine (LE)?

void Xoshiro_LE(ulong[] s) // s is 4-value state; xoshiro256 is shown here
{

ulong temp = s[1] << 17; // “17” is a magic constant A
s[2] ^= s[0];
s[3] ^= s[1];
s[1] ^= s[2];
s[0] ^= s[3];
s[2] ^= temp;
s[3] = Rotl(s[3], 45); // “45” is a magic constant B

}

[dotnext2021] © Stan Drapkin 29

What is xoshiro256** algorithm? LE + Scrambler

// Step-0a: state s is set to a random 256-bit seed value (4 random ulong’s)
// Step-0b: if s is all-zeroes, GOTO Step-0a (highly unlikely)

[dotnext2021] © Stan Drapkin 30

What is xoshiro256** algorithm? LE + Scrambler

// Step-0a: state s is set to a random 256-bit seed value (4 random ulong’s)
// Step-0b: if s is all-zeroes, GOTO Step-0a (highly unlikely)

ulong Xoshiro_StarStar(ulong[] s)
{

ulong next = Scrambler_StarStar(s); // pure fn of current state
Xoshiro_LE(s); // cycles state
return next;

}

[dotnext2021] © Stan Drapkin 31

Zeroland

// Step-0a: state s is set to a random 256-bit seed value (4 random ulong’s)
// Step-0b: if s is all-zeroes, GOTO Step-0a (highly unlikely)

So as long as state is not all-zeros, xoshiro always works, right? No! 😧

[dotnext2021] © Stan Drapkin 32

Zeroland

// Step-0a: state s is set to a random 256-bit seed value (4 random ulong’s)
// Step-0b: if s is all-zeroes, GOTO Step-0a (highly unlikely)

So as long as state is not all-zeros, xoshiro always works, right? No! 😧

Zeroland:
● Any state with only a few 1-bits or 0-bits (includes all-0 and all-1 states)
● Linear generators like xoshiro take a long time to escape Zeroland

○ ie. start generating equi-likely 0/1 bits again

[dotnext2021] © Stan Drapkin 33

Zeroland

// Step-0a: state s is set to a random 256-bit seed value (4 random ulong’s)
// Step-0b: if s is all-zeroes, GOTO Step-0a (highly unlikely)

So as long as state is not all-zeros, xoshiro always works, right? No! 😧

Zeroland:
● Any state with only a few 1-bits or 0-bits (includes all-0 and all-1 states)
● Linear generators like xoshiro take a long time to escape Zeroland

○ ie. start generating equi-likely 0/1 bits again
● Xoshiro escapes Zeroland faster than most, but still suffers from it
● Idea #1: randomize state to make Zeroland highly unlikely (ex. 256-bit state)
● Idea #2: cycle state a few times after seeding (ex. 16 times) prior to use

[dotnext2021] © Stan Drapkin 34

Cryptographically Secure rng (csrng)

xoshiro requires randomness to generate randomness: where does it get it?
● System.Security.Cryptography.RandomNumberGenerator.Fill(ulong[] s)

Recall this advice?

”For cryptographically-secure rng, SSC.RNG should be used instead.”

[dotnext2021] © Stan Drapkin 35

Cryptographically Secure rng (csrng)

xoshiro requires randomness to generate randomness: where does it get it?
● System.Security.Cryptography.RandomNumberGenerator.Fill(ulong[] s)

Recall this advice?

”For cryptographically-secure rng, SSC.RNG should be used instead.”

What is “cryptographically-secure rng”?

1. Produces statistically-valid random output (ie. passes randomness tests)
2. Full knowledge of the algorithm (even xkcd passes this one)
3.
4.

[dotnext2021] © Stan Drapkin 36

Cryptographically Secure rng (csrng)

xoshiro requires randomness to generate randomness: where does it get it?
● System.Security.Cryptography.RandomNumberGenerator.Fill(ulong[] s)

Recall this advice?

”For cryptographically-secure rng, SSC.RNG should be used instead.”

What is “cryptographically-secure rng”?

1. Produces statistically-valid random output (ie. passes randomness tests)
2. Full knowledge of the algorithm (even xkcd passes this one)
3. Cannot predict future output from any/all prior outputs (without current state)
4.

[dotnext2021] © Stan Drapkin 37

Cryptographically Secure rng (csrng)

xoshiro requires randomness to generate randomness: where does it get it?
● System.Security.Cryptography.RandomNumberGenerator.Fill(ulong[] s)

Recall this advice?

”For cryptographically-secure rng, SSC.RNG should be used instead.”

What is “cryptographically-secure rng”?

1. Produces statistically-valid random output (ie. passes randomness tests)
2. Full knowledge of the algorithm (even xkcd passes this one)
3. Cannot predict future output from any/all prior outputs (without current state)
4. Cannot recover past output from current state (future output will be known)

[dotnext2021] © Stan Drapkin 38

xoshiro256** is predictable (like the old 1980 Random)

xoshiro is trivially predictable: given only 4 xoshiro outputs, we can:
● Derive all prior outputs
● Predict all future outputs

[dotnext2021] © Stan Drapkin 39

xoshiro256** is predictable (like the old 1980 Random)

xoshiro is trivially predictable: given only 4 xoshiro outputs, we can:
● Derive all prior outputs
● Predict all future outputs

Any flavor of System.Random() is predictable and not cryptographically secure.
Is predictable Random() a problem? Yes. Even if you don’t do “cryptography”? Yes.

[dotnext2021] © Stan Drapkin 40

xoshiro256** is predictable (like the old 1980 Random)

xoshiro is trivially predictable: given only 4 xoshiro outputs, we can:
● Derive all prior outputs
● Predict all future outputs

Any flavor of System.Random() is predictable and not cryptographically secure.
Is predictable Random() a problem? Yes. Even if you don’t do “cryptography”? Yes.

Are any of these “cryptography”?
● Randomized hashing, sorting, shuffling, sampling, kth-ordered, primality tests

Ex. you use Random() to pick a pivot for a random-pivot quicksort
● O(n*log(n)) expected, but O(n2) if attacker can predict the pivot & affect input

[dotnext2021] © Stan Drapkin 41

xoshiro256** is predictable (like the old 1980 Random)

xoshiro is trivially predictable: given only 4 xoshiro outputs, we can:
● Derive all prior outputs
● Predict all future outputs

Any flavor of System.Random() is predictable and not cryptographically secure.
Is predictable Random() a problem? Yes. Even if you don’t do “cryptography”? Yes.

Are any of these “cryptography”?
● Randomized hashing, sorting, shuffling, sampling, kth-ordered, primality tests

Ex. you use Random() to pick a pivot for a random-pivot quicksort
● O(n*log(n)) expected, but O(n2) if attacker can predict the pivot & affect input

It’s not about “cryptography” – it’s about security and correctness
● Any randomized algorithm with external inputs is potentially vulnerable

[dotnext2021] © Stan Drapkin 42

Superior randomness vs Inferior randomness

xoshiro-based Random() initializes from RandomNumberGenerator (RNG)
● RNG provides superior randomness, but is only used to seed xoshiro
● Why not use RNG for all randomness? Ie. why even bother with xoshiro?

[dotnext2021] © Stan Drapkin 43

Superior randomness vs Inferior randomness

xoshiro-based Random() initializes from RandomNumberGenerator (RNG)
● RNG provides superior randomness, but is only used to seed xoshiro
● Why not use RNG for all randomness? Ie. why even bother with xoshiro?

#1 reason not to use csrng: inferior performance (inferior to what? xkcd?)
...but what if performance is fast enough?

#2

#3

[dotnext2021] © Stan Drapkin 44

Superior randomness vs Inferior randomness

xoshiro-based Random() initializes from RandomNumberGenerator (RNG)
● RNG provides superior randomness, but is only used to seed xoshiro
● Why not use RNG for all randomness? Ie. why even bother with xoshiro?

#1 reason not to use csrng: inferior performance (inferior to what? xkcd?)
...but what if performance is fast enough?

#2 reason not to use csrng: it does not have Random API
...but that can be easily fixed – we’re free to subclass & override Random API

#3

[dotnext2021] © Stan Drapkin 45

Superior randomness vs Inferior randomness

xoshiro-based Random() initializes from RandomNumberGenerator (RNG)
● RNG provides superior randomness, but is only used to seed xoshiro
● Why not use RNG for all randomness? Ie. why even bother with xoshiro?

#1 reason not to use csrng: inferior performance (inferior to what? xkcd?)
...but what if performance is fast enough?

#2 reason not to use csrng: it does not have Random API
...but that can be easily fixed – we’re free to subclass & override Random API

#3 reason not to use csrng:
...there is no reason #3

[dotnext2021] © Stan Drapkin 46

Superior randomness vs Inferior randomness

xoshiro-based Random() initializes from RandomNumberGenerator (RNG)
● RNG provides superior randomness, but is only used to seed xoshiro
● Why not use RNG for all randomness? Ie. why even bother with xoshiro?

#1 reason not to use csrng: inferior performance (inferior to what? xkcd?)
...but what if performance is fast enough?

#2 reason not to use csrng: it does not have Random API
...but that can be easily fixed – we’re free to subclass & override Random API

#3 reason not to use csrng:
...there is no reason #3 Perhaps we could fix #1 and #2

[dotnext2021] © Stan Drapkin 47

1980~2021: what else has changed?

● Cryptographic primitives are HW-accelerated in most CPUs
○ Superior randomness is cheap in 2021

● Most CPU chips have multiple Cores (multiple CPUs) → scale & throughput

[dotnext2021] © Stan Drapkin 48

1980~2021: what else has changed?

● Cryptographic primitives are HW-accelerated in most CPUs
○ Superior randomness is cheap in 2021

● Most CPU chips have multiple Cores (multiple CPUs) → scale & throughput
● State-buffer size is rarely a concern

○ Smartphones & PCs count memory in GiB
○ Servers count memory in GiB and TiB
○ OS threads come with 1~2 MiB of stack

[dotnext2021] © Stan Drapkin 49

1980~2021: what else has changed?

● Cryptographic primitives are HW-accelerated in most CPUs
○ Superior randomness is cheap in 2021

● Most CPU chips have multiple Cores (multiple CPUs) → scale & throughput
● State-buffer size is rarely a concern

○ Smartphones & PCs count memory in GiB
○ Servers count memory in GiB and TiB
○ OS threads come with 1~2 MiB of stack

Random and RNG are already on a collision/merger course:
● Random got thread-safe .Shared per-thread state, and now seeds from RNG
● RNG got .GetInt32(max) and .GetInt32(min, max) methods from Random

[dotnext2021] © Stan Drapkin 50

1980~2021: what else has changed?

● Cryptographic primitives are HW-accelerated in most CPUs
○ Superior randomness is cheap in 2021

● Most CPU chips have multiple Cores (multiple CPUs) → scale & throughput
● State-buffer size is rarely a concern

○ Smartphones & PCs count memory in GiB
○ Servers count memory in GiB and TiB
○ OS threads come with 1~2 MiB of stack

Random and RNG are already on a collision/merger course:
● Random got thread-safe .Shared per-thread state, and now seeds from RNG
● RNG got .GetInt32(max) and .GetInt32(min, max) methods from Random

Can we make a randomness-provider wishlist 2021?

[dotnext2021] © Stan Drapkin 51

Randomness provider wishlist 2021

1. Drop-in replacement for Random (subclasses System.Random)

[dotnext2021] © Stan Drapkin 52

Randomness provider wishlist 2021

1. Drop-in replacement for Random (subclasses System.Random)
2. Cryptographically-strong randomness only (superior-quality randomness)

○ meets all cs-rng criteria (backtrack resistant, state-leak resistant, etc.)

[dotnext2021] © Stan Drapkin 53

Randomness provider wishlist 2021

1. Drop-in replacement for Random (subclasses System.Random)
2. Cryptographically-strong randomness only (superior-quality randomness)

○ meets all cs-rng criteria (backtrack resistant, state-leak resistant, etc.)
3. 100% Thread-safe (every API)

[dotnext2021] © Stan Drapkin 54

Randomness provider wishlist 2021

1. Drop-in replacement for Random (subclasses System.Random)
2. Cryptographically-strong randomness only (superior-quality randomness)

○ meets all cs-rng criteria (backtrack resistant, state-leak resistant, etc.)
3. 100% Thread-safe (every API)
4. Fast enough (as default choice for 99% of all typical randomness needs)

○ perf scales per-CPU/Core (ie. thread-safety is not via 1-lock contention)

[dotnext2021] © Stan Drapkin 55

Randomness provider wishlist 2021

1. Drop-in replacement for Random (subclasses System.Random)
2. Cryptographically-strong randomness only (superior-quality randomness)

○ meets all cs-rng criteria (backtrack resistant, state-leak resistant, etc.)
3. 100% Thread-safe (every API)
4. Fast enough (as default choice for 99% of all typical randomness needs)

○ perf scales per-CPU/Core (ie. thread-safety is not via 1-lock contention)
5. Unseeded and seeded

○ seeded is guaranteed to be reproducible (on every CPU/platform)
○ seeded state is 256 bits (ex. “shuffle a deck of 52 cards” is 2226 shuffles)

[dotnext2021] © Stan Drapkin 56

Randomness provider wishlist 2021

1. Drop-in replacement for Random (subclasses System.Random)
2. Cryptographically-strong randomness only (superior-quality randomness)

○ meets all cs-rng criteria (backtrack resistant, state-leak resistant, etc.)
3. 100% Thread-safe (every API)
4. Fast enough (as default choice for 99% of all typical randomness needs)

○ perf scales per-CPU/Core (ie. thread-safety is not via 1-lock contention)
5. Unseeded and seeded

○ seeded is guaranteed to be reproducible (on every CPU/platform)
○ seeded state is 256 bits (ex. “shuffle a deck of 52 cards” is 2226 shuffles)

Can it be built?
Would it be fast enough?

[dotnext2021] © Stan Drapkin 57

Randomness provider wishlist 2021

1. Drop-in replacement for Random (subclasses System.Random)
2. Cryptographically-strong randomness only (superior-quality randomness)

○ meets all cs-rng criteria (backtrack resistant, state-leak resistant, etc.)
3. 100% Thread-safe (every API)
4. Fast enough (as default choice for 99% of all typical randomness needs)

○ perf scales per-CPU/Core (ie. thread-safety is not via 1-lock contention)
5. Unseeded and seeded

○ seeded is guaranteed to be reproducible (on every CPU/platform)
○ seeded state is 256 bits (ex. “shuffle a deck of 52 cards” is 2226 shuffles)

Can it be built?
Would it be fast enough?

System.Random:
● Convenient API
● High Performance

SSC.RNG:
● Superior Randomness
● Thread Safety

[dotnext2021] © Stan Drapkin 58

CryptoRandom – modern replacement for Random & RNG

Can it be built?

● CryptoRandom .NET library (Nuget: “CryptoRandom”)
● Implements everything on the wishlist
● Uses tiny per-Core state buffers (<0.8% of 1Mb)

https://github.com/sdrapkin/SecurityDriven.Core

[dotnext2021] © Stan Drapkin 59

CryptoRandom – modern replacement for Random & RNG

Can it be built?

● CryptoRandom .NET library (Nuget: “CryptoRandom”)
● Implements everything on the wishlist
● Uses tiny per-Core state buffers (<0.8% of 1Mb)

Is it fast enough?

● byte throughput
● call throughput

https://github.com/sdrapkin/SecurityDriven.Core

[dotnext2021] © Stan Drapkin 60

…but what is “fast enough”?

● Fastest Local Devices 2021:
○ Thunderbolt 3: ~5.0 GBps
○ USB 3.2: ~2.0 GBps
○ 10G Ethernet: ~1.2 GBps
○ 25G Ethernet: ~3.1 GBps
○ Fastest SSD drives: ~3.1 GBps (https://ssd.userbenchmark.com/)

https://ssd.userbenchmark.com/

[dotnext2021] © Stan Drapkin 61

…but what is “fast enough”?

● Fastest Local Devices 2021:
○ Thunderbolt 3: ~5.0 GBps
○ USB 3.2: ~2.0 GBps
○ 10G Ethernet: ~1.2 GBps
○ 25G Ethernet: ~3.1 GBps
○ Fastest SSD drives: ~3.1 GBps (https://ssd.userbenchmark.com/)

● Fastest durable Cloud Storage 2021:
○ Alibaba ~4.0 GBps
○ Azure: ~2.0 GBps
○ AWS: ~4.0 GBps
○ GCP: ~2.2 GBps

https://ssd.userbenchmark.com/

[dotnext2021] © Stan Drapkin 62

[dotnext2021] © Stan Drapkin 63

[dotnext2021] © Stan Drapkin 64

[dotnext2021] © Stan Drapkin 65

[dotnext2021] © Stan Drapkin 66

● Old Random (.NET <=5): ~0.1 GBps (1 thread, old laptop)
● New Random (.NET 6): ~7 GBps (1 thread, old laptop)
● CryptoRandom: ~3 GBps (1 thread, old laptop)

[dotnext2021] © Stan Drapkin 67

Call throughput of.Next() / .GetInt32()

Multi-threaded call-frequency perf:

● .Next() for Random API, and
● .GetInt32() for RNG

Old Random needs a Lock (.NET<=5).

Random.Shared is .NET 6+ only.

[dotnext2021] © Stan Drapkin 68

Call throughput of.Next() / .GetInt32()

Multi-threaded call-frequency perf:

● .Next() for Random API, and
● .GetInt32() for RNG

Old Random needs a Lock (.NET<=5).

Random.Shared is .NET 6+ only.

[dotnext2021] © Stan Drapkin 69

Call throughput of.Next() / .GetInt32()

Multi-threaded call-frequency perf:

● .Next() for Random API, and
● .GetInt32() for RNG

Old Random needs a Lock (.NET<=5).

Random.Shared is .NET 6+ only.

Is CryptoRandom fast enough? Yes.

6x

17%

[dotnext2021] © Stan Drapkin 70

new .NET 6 Random & CryptoRandom

● .NET 6 Random()/xoshiro256** predictable linear pseudo-random generator:
○ Very fast (xkcd random is even faster 😊)
○ Does not suffer from most of the failures of old Random
○ Not seeded, not for .NET <6, not for secure (most?) uses

[dotnext2021] © Stan Drapkin 71

new .NET 6 Random & CryptoRandom

● .NET 6 Random()/xoshiro256** predictable linear pseudo-random generator:
○ Very fast (xkcd random is even faster 😊)
○ Does not suffer from most of the failures of old Random
○ Not seeded, not for .NET <6, not for secure (most?) uses

● CryptoRandom:
○ Everything on the wishlist – superior secure randomness only
○ Replaces seeded/unseeded Random() and RandomNumberGenerator

[dotnext2021] © Stan Drapkin 72

new .NET 6 Random & CryptoRandom

● .NET 6 Random()/xoshiro256** predictable linear pseudo-random generator:
○ Very fast (xkcd random is even faster 😊)
○ Does not suffer from most of the failures of old Random
○ Not seeded, not for .NET <6, not for secure (most?) uses

● CryptoRandom:
○ Everything on the wishlist – superior secure randomness only
○ Replaces seeded/unseeded Random() and RandomNumberGenerator
○ CR.NextGuid() is ~10x faster vs Guid.NewGuid() on Windows

■ ~30x faster on Linux per-Core (unresolved Github issue for 2 years)

https://github.com/dotnet/runtime/issues/13628

[dotnext2021] © Stan Drapkin 73

new .NET 6 Random & CryptoRandom

● .NET 6 Random()/xoshiro256** predictable linear pseudo-random generator:
○ Very fast (xkcd random is even faster 😊)
○ Does not suffer from most of the failures of old Random
○ Not seeded, not for .NET <6, not for secure (most?) uses

● CryptoRandom:
○ Everything on the wishlist – superior secure randomness only
○ Replaces seeded/unseeded Random() and RandomNumberGenerator
○ CR.NextGuid() is ~10x faster vs Guid.NewGuid() on Windows

■ ~30x faster on Linux per-Core (unresolved Github issue for 2 years)
○ Fast enough for 99% of uses
○ Consider as your new default randomness provider

https://github.com/dotnet/runtime/issues/13628

[dotnext2021] © Stan Drapkin 74

In conclusion

● New xoshiro-based Random() is much better and faster in .NET 6 ✓

[dotnext2021] © Stan Drapkin 75

In conclusion

● New xoshiro-based Random() is much better and faster in .NET 6 ✓
● Random(Seed) is the same old sadness, forever

○ Avoid it if you can
○ No seeded xoshiro in .NET 6 (for good reasons)

[dotnext2021] © Stan Drapkin 76

In conclusion

● New xoshiro-based Random() is much better and faster in .NET 6 ✓
● Random(Seed) is the same old sadness, forever

○ Avoid it if you can
○ No seeded xoshiro in .NET 6 (for good reasons)

● Stop new’ing Random() – use Random.Shared instead in .NET 6+
○ Audit code for “new Random”, change it

[dotnext2021] © Stan Drapkin 77

In conclusion

● New xoshiro-based Random() is much better and faster in .NET 6 ✓
● Random(Seed) is the same old sadness, forever

○ Avoid it if you can
○ No seeded xoshiro in .NET 6 (for good reasons)

● Stop new’ing Random() – use Random.Shared instead in .NET 6+
○ Audit code for “new Random”, change it

● No excuse not to default to superior quality randomness in 2021
○ It’s not “do I need it?” – you always need it, should always start with it
○ Performance can be good enough, but not Randomness:

■ it should either be cryptographically strong, or “avoid it” kind

[dotnext2021] © Stan Drapkin 78

In conclusion

● New xoshiro-based Random() is much better and faster in .NET 6 ✓
● Random(Seed) is the same old sadness, forever

○ Avoid it if you can
○ No seeded xoshiro in .NET 6 (for good reasons)

● Stop new’ing Random() – use Random.Shared instead in .NET 6+
○ Audit code for “new Random”, change it

● No excuse not to default to superior quality randomness in 2021
○ It’s not “do I need it?” – you always need it, should always start with it
○ Performance can be good enough, but not Randomness:

■ it should either be cryptographically strong, or “avoid it” kind
● CryptoRandom is a fast, safe, secure drop-in for Random

[dotnext2021] © Stan Drapkin 79

Links

● Xoshiro generator family – David Blackman and Sebastiano Vigna
○ https://prng.di.unimi.it/
○ https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf

● Exploring Xoshiro Zeroland – Melissa O’Neill
○ https://www.pcg-random.org/posts/xoshiro-repeat-flaws.html

● .NET 6 implementation of Xoshiro
○ https://github.com/dotnet/runtime/blob/main/src/libraries/

System.Private.CoreLib/src/System/Random.Xoshiro256StarStarImpl.cs
● DEF CON 29 – Dan Petro – You’re doing IoT RNG

○ https://www.youtube.com/watch?v=Zuqw0-jZh9Y

https://prng.di.unimi.it/
https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
https://www.pcg-random.org/posts/xoshiro-repeat-flaws.html
https://github.com/dotnet/runtime/blob/main/src/libraries/System.Private.CoreLib/src/System/Random.Xoshiro256StarStarImpl.cs
https://github.com/dotnet/runtime/blob/main/src/libraries/System.Private.CoreLib/src/System/Random.Xoshiro256StarStarImpl.cs
https://www.youtube.com/watch?v=Zuqw0-jZh9Y

[dotnext2021] © Stan Drapkin 80

Thank you!

Questions?
sdrapkin@sdprime.com

github.com/sdrapkin

https://github.com/sdrapkin

Appendix

[dotnext2021] © Stan Drapkin 82

Other .NET 6 changes related to randomness

var r1 = RandomNumberGenerator.Create();
var r2 = RandomNumberGenerator.Create();
object.ReferenceEquals(r1, r2) ?

False in .NET <=5
● new RNG implementation object is created on every call

True in .NET 6
● RandomNumberGenerator.Create() returns a singleton object
● Dispose() is a no-op (calls GC.SuppressFinalize(this))

[dotnext2021] © Stan Drapkin 83

Other .NET 6 changes related to randomness

● Guid.NewGuid() is now guaranteed to contain 122 cryptographically strong
random bits, on all .NET platforms (PR 42770)

● FastGuid .NET library (Nuget: “FastGuid”)
○ creates 128-bit strongly-random Guids
○ 10x faster on Windows vs Guid.NewGuid()
○ 30x faster on non-Windows vs Guid.NewGuid()
○ Scales per-core (ex. 4-core Linux → ~80x faster)

[Host] : .NET 6.0.0 (6.0.21.48005), X64 RyuJIT

Method	Mean	Error	StdDev	Ratio
FastGuid_NewGuid	102.9 ns	0.97 ns	0.81 ns	1.00
Guid_NewGuid	1,101.9 ns	21.76 ns	30.50 ns	10.67

https://github.com/dotnet/runtime/pull/42770/
https://github.com/sdrapkin/SecurityDriven.FastGuid

