

Programming Quantum Computers in .NET using Q#

Rolf Huisman Software Development Enablement Engineer Rolf.Huisman@InfoSupport.com @rlrhuisman

Agenda

Why do you need it ? What is it? How can I program it ?

How would a Quantum Computer improve your life ?

Internet Of Stuffed Animals (IOSA)

Stuffed animal problem

Attic

Bedroom

Living Room

Stuffed animal problem

Attic

Search Path Optimization

Living Room

Same problem as other fields

Picture by Geralt / CC0 Creative Commons

Traveling Salesman problem

NP Hard

Add more hardware

No problem,

Can scale using cloud providers

Right ?

The power of exponents

O(2n*2ⁿ)

Using 1000 machines, only makes it 1000 times quicker,

if you're lucky

o	••	0 0 0 0	:::				128
256	512	1024	2048	4096	8192	16384	32768
65K	131K	262K	524K	1M	2M	4M	8M
16M	33M	67M	134M	268M	536M	1G	26
46	8G	17G	34G	68G	137G	274G	549G
	P						

And there are more fields that have this issue

Artificial Intelligence

Weather Prediction

DNA Simulations

New plan Quantum computing The computer that uses Qubits

New plan

- Quantum computing
- The computer that uses Qubits

Qubit can take value |0>, |1>, or **both at once**, a phenomenon known as **superposition**

A Computer with N Qubits, can be in a superposition of 2ⁿ logical states.

Speed

A Computer with N Qubits, can be in a superposition of 2ⁿ logical states.

So can work with these at the same time.

Multi-Billion Investments

What does a Quantum Computer look like ?

Pictures by Lars Plougmann / CC BY-SA 2.0

IBM Q

 Backend: QS1_1 (20 Qubits) 	ACTIVE AVAILABLE TO HUBS, PARTNERS, AND HI					
9 -9-9 9-79		QO	Q1	Q2	Q3	
	Frequency (CHu)	4.84	448	4.86	5.0	
0-0-0	T1 (ps)	71.96	61.08	73.91	68.	
	T2 (ps)	33.97	28.54	25.02	-36.	
	Gate error (10 ⁻¹)	2.01	2.56	6.64	7.2	
	Readout error (10 ⁻¹)	7.70	27.80	19.60	20.4	
	MultiQubit gate error (10-7)	CH0_1 2.67	CKL_0 2.67	602,1 3.34	CK3 7.01	
0-0-0-0		CHD_5	CK1_2	CH216	71	
Last Calibration: 2018-03-01 20:24:56			00.6	02.7		
			3,90	4.20		
			CK1_7			
Backend: ibmgx5 (16 0abits)					-	
		QO	Q1	Q2	Q3	
	Frequency (SHc)	5.26	5.40	5.28	5.0	
	T1 (rd)	39.30	36.40	42.30	51.	
	12 (90	34.00	59.90	.ə.r.,ıq	- 1 -1-1	
Last Calibration: 2018-03-01 13:35:31	Gate error (10 5)	2.17	3.36	3.66	1.6	
Fridge Temperature: 0.0133661 K	Readout error (10 ⁻¹)	6.32	6.17	3.91	6.8	
More details	MultiDubit date error (UP.7)		CX1_0	602,3		
			5.00	2.41	0.0	
			419		4.3	

https://quantumexperience.ng.bluemix.net

MERS OF THE ISH O NETWORK

78.55

1.95

1.90

Q6 4.89 87.03

38:12

14.90

CHA_1 3.90 CHA_2 7.05

CX6_11 3.67

06

5.31 50.50

47.50 80.40

CHS_4 CX6_5

1.81

CKS_T

CH6_11

CKS_10 CK6_5 2.34 2.72

CH5_11 CH6_7 2.75 3.67 CH6_10

AVAILABLE ON GIVENT

05

3.63

\$ 55

54.20

6.60

"Quantum Accelerator card"

QC Picture by by Lars Plougmann / CC BY-SA 2.0 Card Picture by Dave Fischer / CC BY-SA 3.0

The Qubit in more detail

Bloch Sphere

Picture by IBM / Licensed Use

The Qubit in more detail

Bloch Sphere

Picture by IBM / Licensed Use

M (Measurement Gate)

Picture by IBM / Licensed Use

X Gate (Not)

Picture by IBM / Licensed Use

H Gate (Hadamard)

Picture by IBM / Licensed Use

One Qubit Gates

- X-Gate (Bit-flip, Not Gate) Y-Gate
- Z-Gate (Phase flip)

H-Gate (Hadamard, Creates Superposition) S-Gate, T-Gate (Phase shift)

Multiple Qubit Gates CNOT (Controlled Not Gate)

Multiple Qubit Gates

CNOT (Controlled Not Gate)

Multiple Qubit Gates

CNOT (Controlled Not Gate)

Multiple Qubit Gates CNOT (Controlled Not Gate)

Multiple Qubit Gates CNOT (Controlled Not Gate)

How can I program for this ?

Microsoft Q#

Revealed at Ignite 2017 Microsoft Quantum (former Station Q) Previously known as F# extension LIQUi >

Microsoft Quantum labs and locations

Santa Barbara

Microsoft Q#

	21.11						1	×
	Recent	JNET F	amework 4.6.1 •	Sort by: Default	• # E	Search (Ctri+E)		p.
	Installed	1	Console App (NET	Framework)	Visual C#	Type: Visual C#		
-	Wisual C Windows Classic Desktop Web	-			Visual C#	A project for testing qui		ons.
teb	.NET Core	- 2511	Class Library (NET I	Framework)	Visual C#			
	Cloud Extensibility	9	ASP.NET Core Web		Visual C#			
	Test		ASP NET Web Appli	lication (JNET Framework)	Visual C#			
1	Visual F# COL Secure	5î	Shared Project		Visual C#			
0;	R b Bathan	-	Class Library (Legac		Visual C#			
t. Iri	 Python Other Project Types 	0	Azure Cloud Service	e	Visual C#			
.1e *	Online	0	Q# Application		Visual C#			
		0	Q# Library		Visual C#			
	Not finding what you are looking for? Open Visual Studio Installer	ð	Q# Test Project		Visual C#			

DEMO

Grover (and other amplifications)

Grover execution: informally \sqrt{states}

ReflectionOracle user defined type

Namespace: Microsoft.Quantum.Canon

Represents a reflection oracle O, where the inputs are

- The phase φ by which to rotate the reflected subspace.
- The qubit register on which to perform the given reflection.

newtype ReflectionOracle = ((Double, Qubit[]) => () : Adjoint, Controlled);

AmpAmpByOracle function

Namespace: Microsoft.Quantum.Canon

Standard Amplitude Amplification algorithm

Q#

OF

function AmpAmpByOracle (nIterations : Int, stateOracle : StateOracle, idxFlagQubit : Int) : (Qubit[] => () : Adjoint, Controlled)

Copy Copy

Dy Copy

Reversing on the real device Real vs Simulated for x + y = 1

Quantum State: Computation Basis

Stuffed animal problem

Attic

Bedroom

Living Room

Using the gates to describe

Optimized Traveling Salesman Problem 5 Cities:

RpI:-0.238	-								Rp22.0.048	Pp22.0.048	Ry22.0.048	- Rp22.0.048	- Ry22.0.048	Haman	- RpZ-0.03453	- RpX:-0.258	7-
RpI:-0.258							Ry22.0.048	PpZZ-0.048	Rp22-0.048		Rp22.0.048	-		Rp22.0.048	- RpZ-0.03395	- RpX:-0.258	7-
RpI:-0.238	0					Ry22.0.048	Ap22.0.048		Rp22.0.048	-		Rp22-0.048	- Ap2Z-0.048	RpZ-0.03327	ApX:-0.258		-
RpX:-0.238					Rp22.0.048	Ry22.0.048		Pp22.0.048		APRZ.0.048	Ry22.0.048	Rp22.0.048	RyZ:-0.03521	- RoX -0.258]		_
RpX:-0.238					Pp22.0.048	Ry22.0.048	- Ry22.0.048	-	Rp22.0.048		Ry22.0.048	RpZ:-0.036	- BpX-0.238		94		-
RpX:-0.238				Ry22.0.048	- Rozz.0.048	H		APTE O Del	Rp22.0.048	Pp22.0.048	RpZ:-0.01529	RpX:-0.258					-
Rp.E:-0.238		3 1 3	Rp22.0.048	Ap22.0.048	<u> </u>	Ap22.0.048	Ap22.0.048	Pp72:0.048	Rp22.0.048	- RpZ-0.0348	ApX:-0.258						
RpX:-0.258		Rp22:0.048			Rp22-0.048	Rp22.0.048	- Ry22.0.048	Rp22:0.048	RpZ-0.03432	- RpX-0.258							
RpX:-0.258			MART O DAG	Ry22.0.048	Rp22-0.048	Ry22.0.048	- Ry22.0.048	RpZ-0.03495	RpX:-0.238								_
RpX:-0.238	Apr5.0.048	Rp22.0.048	8422.0.048	Ry22.0.048	Rp22-0.048	Ry22.0.048	RpZ-0.03438	ApX:-0.238									-

Details: Phys. Rev. A **95**, 032323 – Published 22 March 2017

Oracle Function

(8) 11>

One Stair

Oracle (State)

Two Stairs

Many hours and code lines later

	Traditional	Quantum
Naive	O(<i>n</i> !)	$O(\sqrt{n!})$
With effort	O(2n*2 ⁿ)	$O((\sqrt{n})!)$

Stuffed animal solution

Attic

Bedroom

Living Room

Picture by Rolf Huisman / CC0 Creative Commons

Low-Tech Solution

Conclusions

Quantum Computing

- 1. Its not simple
- 2. But its powerful
- 3. It will change the world
- 4. Is currently unstable
- 5. Is cool to program for
- 6. One can use existing tooling
- 7. And it works on real hardware \odot

So be part of the quantum future !

Questions ?

Rolf Huisman Rolf.Huisman@infosupport.com @rlrhuisman

Microsoft Q# (Operators)

Microsoft Q# (Driver)

N	Quantur	nMiner - Microsoft Visual Studio
File	Edit	View Project Build Debug Team Tools Test R Tools Analyze
2.		
2	.01	To + a a a Debug + Any CPO + Runner
Ī	Tests.qs	Operation.gs Driver.cs + X IbmQx5.cs
B	C# Runne	r
×	1	Dusing Microsoft Quantum Simulation Core:
ē	2	using Microsoft Quantum Simulation Simulators:
at E	3	using System:
Đ.	4	Losing Systemy
ore	5	- namespace Quantum, Runner
	6	1
		0 references Rolf Huisman, 1 hour ago 1 author, 4 changes
	7	public class Driver
	8	{
		O references Rolf Huisman, 1 hour ago 1 author, 4 changes
	9	<pre>static void Main(string[] args)</pre>
	10	
	11	<pre>//var sim = new IbmQx5();</pre>
	12	<pre>using (var sim = new QuantumSimulator())</pre>
	13	
	14	= for (Int 1 = 0; 1 < 1000; 1++)
	15	une casult - Madamas Dum(sim) Pasults
	17	Console Writeline(result):
	18	console.writeLine(result);
	19	
	20	Console Read ine():
	21	}
	22	
	23	

Microsoft Q# (Emulated Run)

Tests.qs	Operation.qs	Driver.cs # + × IbmQx5.cs #
C Runner		
1	Eusing Microsoft	.Quantum.Simulation.Core;
2	using Microsoft	.Quantum.Simulation.Simulators;
3	using System;	
4	SIG PORTO CONSTRUCTION	
5	Enamespace Quant	um.Runner
6	{	C:\Program Files\dotnet\dotnet eve
1.1	O references P	olf Hulan
7	public class	s Drilone
8	1 Australia	One
9	E static	void t
10	1	Zero
11	1/1	one sila
12	E usi	
13	1	Zero
14		for Zano
15		Zero
16		2000
17		One
18		} Zero
19	}	One
20	Con	sole. One
21	}	One
100 % +		Zero
Autos		Zero
history		Zero
Name		Zero
		Zero
		One
		One
		Zero
		Zero
		One
		One
		One
		Zero
		-

Microsoft Q# (Unit Test)

QuantumMiner - Microsoft Visu File Edit View Project Bulk	ial Studio d Debug Team Tools Teit R Tools Analyze Window Help
0-0 8-0 8-0	- C - Debug - Any CPU - Runner Runner - 🗯 👘 🐄 🐄 🤫 🐄
Text Explorer • • • • × • Itt • 曰 Search P • Run All Run. • Paylist: All I • Passed Tests (2) • AllocateQubitTest 18 ms • HadamarTest 87 ms	<pre>Testags * X Operation.gs Onveros RumQuS.cs i namespace Quantum.RummerTest 2 () 3</pre>

Microsoft Q# (VSTS Build)

🗘 Crypto 🗸 Das	hboards Code Work Build and Release Test Will 🔘					
Builds Releases Packages Library	Task Groups Deployment Groups*					
Build 20180228.1	Cryptominer / Build 20180228.1 / Phase 1					
Phase 1	🖋 Edit build definition 🛛 Cancel 😸 Queue new build. 🔹 🔒 Eliminitat at logs as op					
🗸 ivitalize Agent	Build Started					
✓ Initialize Job ✓ Get sources	Phase 1 A Running for 113 seconds (Hosted Agent)					
V Use Nuclet 4.4.1	Console Timeline Code coverage* Tests					
Nuclet restore	Linger and Lowell Line, and you the distance any timelity you have in this					
@ Build solution	state without impacting any branches by performing monther checkout. If you want to create a new branch to retain commits you create, you may do to (new or later) by using -b with the checkout command again. Example: git checkout -b come branch-name: #000 is new at Mikebol And project files.					
& Test Assemblies						
& Publish symbols path						
🔗 Publish Artifact						
🧬 Port Icb Cleanup	Starting: Use Nutet 4.4.1					
	Task : Nulet Tool Installer Description : Acquires a specific version of Nulet from the internet or the tools cache and adds it to the FAIM. Use this step to c Version : Ficrosoft Corporation Selp : [More Information](https://go.microsoft.com/Fulime//limid=852538)					
	Dewloading: https://dist.muget.org/win-x00-communilize/v4.4.1/muget.exe Caching Soci: Mudet 4.4.1 x04 Using Version: 4.4.1 Found tool in cache: NuGet 4.4.1 x04 Using tool path: D:va_toolVMudet:4.4.1\x04 Propending PATH environment variable with directory: D:va_toolVMudet:4.4.1\x04					
	Finishing: Due Nudet 4.4.1 Starting: Nudet restore					

Microsoft Q# (VSTS Test)

Cryptominer / Build 20180228.3	
P Edit Suid Administra 😸 Queue new Suid. * 🚊 Devented al tops in siz 🔒 Result Indefentery 🍸 Release	-
Duild succeeded	
Build 20180228.3 R Ran for 3.3 minutes (Hosted VS2017), completed 2.2 minutes ago	
ummary Tenetine Code coverage* Tests	
Build details Onfortion Organisme settl Source Sour	Test Results Test Results Table tests Pass percentage Run duration Image: State of the sta
Directory Gruit/Tur' is empty Nothing will be added to build artiflect drop: Associated changes No changes associated with this build.	Deployments
Work items linked to associated changes	

Production (IBM Q)

Backend: QS1_1 (20 Qubiti)

	QO	Q1	Q2	Q3	Q4	Q5	Q6
Frequency (CHu)	4.84	4.48	4.86	5.03	5.01	4991	4.89
T2 (µs)	33.97	28154	25.02	36.77	28.43	\$1,32	38.12
Gate error (10 ⁻¹)	2.01	2.54	6.64	7.27	1.96	1.95	1.96
Readout error (10")	7,70	27,80	19.60	20.65	9.55	8.90	14.90
fultiQubit gate error (10-7)	CH0_1 2.67	CK1_0 2.67	3.34	7.06	7.06	CR5_0 1.73	3.90
	CHD_5 1.73	6X1,2 7.64	CH2_6 7.86	603,9 7.33	6.95	2.72	CX6_2 7.05
		00114	002,7		00429	CK5_10	016_5
		3070	4.20		3.54	2124	2.12
		CALLET				2.75	3.67
		0.14					
							C06,10 3.11
		2.74					046_31 3.11 046_31 3.67
				EACTION		DARLE OF	046_3 3.11 046_3 3.67
	QQ	01	Q2	03	Q4	Q5	044_31 3.11 044_11 3.67 001940
Frequency (DHz)	Q0 5.26	Q1 5.40	Q2 5.28	Q3 5.00	Q4 4.10	Q5 5.15	044_3 3.11 044_1 3.67 (01940 0 0 5.31
Frequency (1040) T1 (pi) T2 (pi)	Q0 5.26 39.30 34.50	Q1 5.40 35.40 53.60	Q2 5.28 42.30 57.70	Q3 5.08 51.80 73.50	Q4 4.98 53.30 54.20	Q5 5.15 43.50 47.50	Q6 5.31 Q6 5.31 50.50 90.40
Frequency (DHu) T1 (µ) T2 (µ)	Q0 5.26 39.30 34.60	Q1 5.40 35.40 55.60	Q2 5.28 42.30 57.70	Q3 5.08 51.80 73.50	Q4 33.30 54.20	Q5 5.15 43.50 47.50	CK4_1 3.11 CK4_1 3.67 Q6 5.31 50.50 80.40
Frequency (BHs) T1 (µ) T2 (µ) T2 (µ) Gate error (10 ⁻¹) Readout error (10 ⁻¹)	Q0 5.26 39.30 34.60 2.17 6.32	Q1 5.40 35.40 53.60 3.36 6.17	Q2 5.28 42.30 57.70 3.46 3.91	Q3 5.08 51.80 73.50 1.60 6.82	Q4 4.98 53.39 54.20 1.35 6.60	Q5 5.15 43.50 47.50 2.43 5.35	CX4_1 3.11 CX4_1 3.67 Q6 5.31 50.50 50.40 1.81 4.42
Frequency (UHs) T1 (ps) T2 (ps) Gate error (10 ⁻¹) Readout error (10 ⁻¹) Autojubit gate error (10 ⁻¹)	Q0 5.26 39.30 34.60 2.17 6.32	Q1 5.40 35.40 53.60 3.36 6.17 CKL 0 5.00	Q2 5.28 42.30 57.70 3.46 3.91 cm2_3 3.47	Q3 5.08 51.80 73.50 1.60 6.82 cc1,4 3.26	Q4 4.98 33.30 54.20 1.35 6.60	Q5 5.15 43.50 47.50 3.43 5.35 cx3.4 5.57	CK4_1 3.11 CK4_1 3.67 Q6 5.31 50.50 00.40 1.81 4.42 CK4_5 5.23
Frequency (UH4) T1 (pa) T2 (pa) T2 (pa) Gate error (10 ⁻¹) Readout error (10 ⁻¹) MultiQubit gate error (10 ⁻¹)	Q0 5.26 39.30 34.60 2.17 6.32	Q1 5.40 35.40 55.60 3.36 6.17 CXL0 5.00 CXL2 4.19	Q2 5.28 42.30 57.70 3.46 3.91 cs2,3 3.47	Q3 5.08 51.80 73.50 1.60 6.82 C03.4 3.26 C03.4 4.37	Q4 4.98 33.30 54.20 1.35 6.60	Q5 5.15 43.50 47.50 3.63 5.35 cas,4 5.57	C04_1 3.11 C04_1 3.67 Q6 5.31 50.50 80.40 1.81 4.42 C04_5 5.23 C04_7 2.90

Backend: ibmqx5 (16 Qubits)

Last Calibration: 2018-03-01 13:35:31 Fridge Temperature: 0.0133661 K

More details

Production (Work in progress)

Operation.qs	Driver.cs = + × IbmQx2.cs =	
C Runner		+ 🔩 Quantum.Runner.Driv
1	⊡using Microsoft.Quantum.Simulation.Core;	
2	using Microsoft.Quantum.Simulation.Simulators;	
3	using System;	
4		C:\Program Files\dotnet\dotnet.exe
5	Enamespace Quantum.Runner	
6	{	QUASM file
	Oreferences Rolf Huisman, Less than 5 minutes ago 1 autho	include delibi.inc;
7	public class Driver	dreg d[2];
8		creg c[5];
0	static upid Main(string[] acrs)	
10	static void hain(scring[] args)	measure q[0] -> c[0]
11	ares = new string[] { "" }:	Processing
12	IOperationFactory factory;	One
13	if (args.Length != 0)	one
14	{	OUASM file
15	<pre>factory = new IbmQx2();</pre>	include "gelib1.inc":
16	}	areg a[5]:
17	else	creg c[5];
18	{	H q[0]
19	factory = new QuantumSimulator	(measure q[0] -> c[0]
20	}	
21	Contraction in the second s	Processing
22	for (int i = 0; i < 10; i++)	One
23	{	and the second se
24	var result = Hadamar.Run(facto	CQUASM file
25	Console.WriteLine(result);	include "gelib1.inc";
26	}	qreg q[5];

Production (Work in progress)

Bitcoin Mining 101

Bitcoin Mining 101

SHA 256

Reduced Adder

x1
Quantum Adder

Quantum Adder

Adder Algorithm

Inverted Adder Algorithm

Reverse Adder

Reset(qubits[1]);
Reset(qubits[2]);

return (a,b, error);

operation ReverseAdder (first: Bool, second: Bool) : (Result, Result, Result) body mutable a = Zero; mutable b = Zero; mutable error = Zero; using (qubits = Qubit[3]) let outA = qubits[0]; //end garbage ? = 2(One, One, Zero) let outB = qubits[1]; //also inB = 2(Zero, Zero, One) let inA = qubits[2]; ? = 2(One, One, Zero) //Data Consc ? = 2(Zero, Zero, One) if(first){ X(outA); } //Invese A to expect the first bit to be one if(second){ X(outB); } //Inverse B to expect the last bit to one = 2(Zero, Zero, One) //Rev // Put waste into superposition for = 1(Zero, One, Zero) H(inA); = 1(One, Zero, Zero) = 1(One, Zero, Zero) //perform addition in reverse CNOT(inA, outB); //XOR with B in out A = 1(Zero, One, Zero) let inB = outB; = 1(Zero, One, Zero) CCNOT(inA, inB, outA); //And a and b in outB = 0(Zero, Zero, Zero) //Read the outputs = 0(Zero, Zero, Zero) set a = M(inA); set b = M(inB); = 0(One, One, One) set error = M(outA); ? = 0(One, One, One) //Cleanup + ? = 0(Zero, Zero, Zero) Reset(qubits[0]);

Reverse Adder

operation ReverseAdder (first: Bool, second: Bool) : (Result, Result, Result) body mutable a = Zero; mutable b = Zero; mutable error = Zero; using (qubits = Qubit[3]) let outA = qubits[0]; //end garbage let outB = qubits[1]; //also inB let inA = qubits[2]; //Data if(first){ X(outA); } //Invese A to expect the first bit to be one if(second){ X(outB); } //Inverse B to expect the last bit to one // Put waste into superposition H(inA); //perform addition in reverse CNOT(inA, outB); //XOR with B in out A let inB = outB; CCNOT(inA, inB, outA); //And a and b in outB //Read the outputs set a = M(inA);

set b = M(inB); set error = M(outA);

//Cleanup

Reset(qubits[0]); Reset(qubits[1]); Reset(qubits[2]);

return (a,b, error);

1	? + ? = 2(One, One, Zero)
}	? + ? = 2(One, One, Zero)
Conso //Rev	
for	? + ? = 1(Zero, One, Zero)
{	? + ? = 1(One, Zero, Zero)
1	? + ? = 1(One, Zero, Zero)
	? + ? = 1(Zero, One, Zero)
	? + ? = 1(Zero, One, Zero)
	? + ? = 0(Zero, Zero, Zero)
	? + ? = 0(Zero, Zero, Zero)
	? + ? = 0(Zero, Zero, Zero)

Reverse Adder

Dirty Adder (Not Reduced)

Tolifo Gate

Adder (Not Reduced)

