
Performance Stability
in 

.NET 6



About me

• In Microsoft since 2009

• Loves Compiler domain and performance 
investigations

• Part of JIT team of .NET Runtime

• Prior member of Javascript Engine “Chakra” 
team

• Collaborator of nodejs/node and 
nodejs/node-chakracore

• https://kunalspathak.github.io/

• @KuXMLP 

https://kunalspathak.github.io/


Imagine…



Agenda

• Triaging perf issues

• Deep dive on Code alignment

• Data alignment

• Other tooling improvements



Triaging perf issues



Process

• 1000+ libraries and runtime micro benchmarks 
• Windows x86/x64/arm64, Ubuntu x64/arm64
• Ran 10+ times a day on batched commits
• Results aggregated and stored in a database
• Offline analysis of result to identify regressions/improvements
• Issues are filed in dotnet/perf-autofiling-issues
• v-team triage issues once in a week

• Verify if it is a real issue
• Narrow down the change that caused it

• Real issues are transferred to dotnet/runtime

https://github.com/dotnet/performance/tree/main/src/benchmarks/micro

https://github.com/dotnet/performance/tree/main/src/benchmarks/micro


Auto-filed issues

https://github.com/dotnet/perf-autofiling-issues/issues

https://github.com/dotnet/perf-autofiling-issues/issues


Easy to triage issues

https://github.com/dotnet/runtime/issues/56020 https://github.com/dotnet/perf-autofiling-issues/issues/517

https://github.com/dotnet/runtime/issues/56020
https://github.com/dotnet/perf-autofiling-issues/issues/517


Demo



Difficult to triage

https://pvscmdupload.blob.core.windows.net/reports/allTestHistory/refs/heads/main_x64_Windows%2010.0.18362/System.Memory.Span(Int32).SequenceEqual(Size%3a%20512).html
https://pvscmdupload.blob.core.windows.net/reports/allTestHistory/refs/heads/main_arm64_ubuntu%2018.04/PerfLabTests.CastingPerf.IFooObjIsIFoo.html

https://pvscmdupload.blob.core.windows.net/reports/allTestHistory/refs/heads/main_x64_Windows%2010.0.18362/System.Memory.Span(Int32).SequenceEqual(Size%3a%20512).html
https://pvscmdupload.blob.core.windows.net/reports/allTestHistory/refs/heads/main_arm64_ubuntu%2018.04/PerfLabTests.CastingPerf.IFooObjIsIFoo.html


Improvements in .NET 6

• Replaced https://github.com/DrewScoggins/performance-2 with 
https://github.com/dotnet/perf-autofiling-issues

• Statistical analysis improvements by Drew

• Microsoft Edge team’s regression analyzer

• ML analyzer

https://github.com/DrewScoggins/performance-2
https://github.com/dotnet/perf-autofiling-issues


TODOs for .NET 7

• Eliminate false positives and noisy issues

• Integrate ML/Edge analyzer to flag real issues

• Re-bucketize the issues
• All benchmarks affected by given commit range has a single issue

• Ambitious: Auto pilot mode



Code alignment



Assembly code on the way…



Computer Architecture 101

https://www.youtube.com/watch?v=IX16gcX4vDQ&ab_channel=LLVM

https://www.youtube.com/watch?v=IX16gcX4vDQ&ab_channel=LLVM


Alignment

• CISC (Intel/AMD)

• RISC (Arm)

• Synonyms: Padding, NOPs, align instructions
• 16B: (address % 16) == 0



Method alignment in .NET 5

• Only for Windows x86/x64, and Ubuntu x64

• Methods having loops starts at 32B boundary

• Hot Ngen code starts at 16B boundary

• Smaller (< 16 bytes) JITed methods starts at 16B boundary

• Else:
• Methods on x86 starts at 4B boundary
• Methods on x64 starts at 8B boundary

https://github.com/dotnet/runtime/pull/2249
https://github.com/dotnet/runtime/pull/42909

https://github.com/dotnet/runtime/pull/2249
https://github.com/dotnet/runtime/pull/42909


Loop alignment in .NET 6

• Identify hot inner most loop(s) 
• Add NOP instructions to align 

the loop code



Loop selection

• Align only non-nested loops

• Expensive to align every loop

• Developer controls alignment
• LLVM: “-align-all-*”
• GCC: “-falign-loops”

COMPlus_JitAlignLoopMinBlockWeight



No alignment – Loops with calls

• Alignment reduces code fetches

• Method call swaps caller code 
with callee code

• Alignment cannot benefit such 
loops

• For inlined calls, continue loop 
alignment



No alignment – Cloned loops



No alignment – Unrolled loops



Loop size matters!

• Small loops shows most benefits

• Large loops needs several code fetches anyway
• Alignment won’t help prevent or reduce the fetches

• Align loops only if they fit in 3 chunks of 32B i.e. 96 bytes long

COMPlus_JitAlignLoopMaxCodeSize=96



Alignment boundary choices

• Alignment boundary choices = 16B, 32B or 64B

• Recommended boundary by Intel/AMD/Arm = 32B

• Default to 32B alignment boundary*

* Varies for adaptive vs. non-adaptive loop alignment

COMPlus_JitAlignLoopBoundary=32



32B alignment



Drawbacks

• To align code to N-byte boundary, need at most N-1 bytes padding

• Sometimes, more padding added than the loop size

• More code memory is consumed

• Penalty of fetching and decoding NOPs if padding is for deeply nested loop

• aka Non-adaptive loop alignment



Adaptive loop alignment

• Padding amount threshold depends on the loop size
• More padding for small loops
• Less padding for larger loops

• Adjust alignment boundary from 32B -> 16B
• For 32B, if padding needed is large, try to align to 16B
• Instead of bailing out, give one more try to align loop

COMPlus_JitAlignLoopAdaptive=1



Adaptive loop alignment cont.

• 32B boundary • 16B boundary

COMPlus_JitAlignLoopAdaptive=1



32B adaptive alignment



Skip alignment for pre-aligned loops

• Loops that start at 32B boundary



Skip alignment for pre-aligned loops

• Loops that fit in a single 32B block



Skip alignment for pre-aligned loops

• Loop already present in minimum blocks needed



Padding placement

• Currently, placed before the 
loop’s first instruction

• Can be in a blind spot behind an 
unconditional jump

• Can be in a cold block



Padding placement

• Padding can be converted to an 
unconditional jump

• Spread the padding across cold 
blocks



Recap

• Identify hot non-nested loop that needs alignment
• Filtered loops with calls, cloned loops, etc.

• Determine if loop is small enough to benefit from padding
• Determine if the loop is not pre-aligned
• Determine the padding amount to be added
• Add the padding before the loop



[Optional] Nasty details

• During codegen, walk the program tree and calculate instruction sizes 
to find out memory needed to store machine code
• Based on instruction size estimate, we predetermine how much 

padding to add
• Allocate memory from runtime
• During outputting instructions in final memory, we see some are over-

estimated
• Need to add extra NOP to compensate over-estimation such that the 

padding amount is still valid



Impact on Memory cost



Impact on Memory cost



Impact on Performance/Stability

https://pvscmdupload.blob.core.windows.net/reports/allTestHistory%2frefs%2fheads%2fmain_x64_ubuntu%2018.04%2fBenchstone.BenchI.BubbleSort2.Test.html

https://pvscmdupload.blob.core.windows.net/reports/allTestHistory%2frefs%2fheads%2fmain_x64_ubuntu%2018.04%2fBenchstone.BenchI.BubbleSort2.Test.html


Impact on Performance/Stability

https://pvscmdupload.blob.core.windows.net/reports/allTestHistory%2frefs%2fheads%2fmain_x64_ubuntu%2018.04%2fLayout.SearchLoops.LoopReturn.html

https://pvscmdupload.blob.core.windows.net/reports/allTestHistory%2frefs%2fheads%2fmain_x64_ubuntu%2018.04%2fLayout.SearchLoops.LoopReturn.html


Overall comparison



TODOs for .NET 7

• Loop alignment for ReadyToRun code

• Loop alignment for Arm64

• Improve padding placement

https://github.com/dotnet/runtime/issues/43227

https://github.com/dotnet/runtime/issues/43227


Why I love this feature?

• Sounds simple, but had lot of heuristic and design choices

• 200+ benchmark analysis of disassembly code to fine tune the 
algorithm

• Unique feature that no other compilers have!

https://devblogs.microsoft.com/dotnet/loop-alignment-in-net-6/

https://devblogs.microsoft.com/dotnet/loop-alignment-in-net-6/


Data alignment



What is the issue?

• Performance *can* degrade due to unaligned memory access

• Degradation amplifies if access is inside a loop

• MicroBenchmarks allocates data once and access/update it inside 
benchmark code

• Source of performance instability if nothing else changed between 
two runs



Sample benchmark code

https://github.com/dotnet/performance/blob/bb492c8fb9a27c087154cfec522d874bc1e96a1e/src/benchmarks/micro/libraries/System.Collections/Contains/ContainsFalse.cs#L152-L160

https://github.com/dotnet/performance/blob/bb492c8fb9a27c087154cfec522d874bc1e96a1e/src/benchmarks/micro/libraries/System.Collections/Contains/ContainsFalse.cs


Memory randomization

• Allocate random memory in GlobalSetup

• Invoke GlobalSetup after every iteration of benchmark execution

• Verify the histogram of measurement distribution

https://github.com/dotnet/BenchmarkDotNet/pull/1587
https://github.com/dotnet/performance/pull/1587

https://github.com/dotnet/BenchmarkDotNet/pull/1587
https://github.com/dotnet/performance/pull/1587


Sample usage

• Default

• Memory randomization with no 
outlier removed

https://github.com/dotnet/BenchmarkDotNet/pull/1587

https://github.com/dotnet/BenchmarkDotNet/pull/1587


TODOs for .NET 7

• Turn ON by default

• Investigate the impact of measurement history, if made ON

• Annotate 1000+ benchmarks if they are impacted by memory 
randomization?



Tooling improvements



Superpmi collections
• Collection of cached method contexts

• Metrics: Code size, PerfScore, Allocation Size, Instruction count

Collection type Number of methods

Libraries pmi 233,282

Benchmarks run 26,777

Coreclr tests 254,004

Libraries tests 344,291

ASP.NET benchmarks run 43,533

https://github.com/dotnet/runtime/blob/main/src/coreclr/scripts/superpmi.md

https://github.com/dotnet/runtime/blob/main/src/coreclr/scripts/superpmi.md


Superpmi diffs

https://gist.github.com/kunalspathak/9dd9c76a740f3399dd19a3ed0edabddf

https://gist.github.com/kunalspathak/9dd9c76a740f3399dd19a3ed0edabddf


Thank you


